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Abstract— An adaptive-update-rate target-tracking algorithm is indeed a developed version of constant-update-rate tracking 

algorithms. The update rate is closely related with the level of target maneuvering and the required quality of tracking performance—

the shorter the time intervals between two successive updates, the better the radar resources are made use of. Considering the needs of 

the phased-array radar system and multi-function tracking, we here propose an algorithm which makes a better use of radar resources; 

therefore, many targets can be tracked with an improved accuracy, and more regions can be detected. The proposed algorithm is based 

upon the adaptive interactive tracking algorithm (AIMM); the revisit time has been calculated using Van Keuk method, and then the 

fast AIMM has been amended such that the tracking error is no more than that in Van Keuk method. Our proposed algorithm which 

has a revisit time different than Van Keuk’s results in 62% saving of the radar resources. 

I. INTRODUCTION 

A tracking algorithm suitable for optimal management of radar 

resources has the lowest tracking load—such an algorithm 

requires longer revisit times for target tracking. An algorithm 

with constant coefficients of αβ has a higher tracking load of 

about 0.8 seconds as compared to the 1.-1.2 seconds of Kalman 

filter and to the 1.5 seconds of the IMM filter [9]. As opposed 

to a constant revisit time, an adaptive revisit time in a tracking 

algorithm allows for the resource management optimization. 

Kalman filters used in interactive multiple models (IMM) are 

optimal when the revisit time (T) is constant and the noise is 

Gaussian; therefore, when the target maneuvers, the covariance 

matrix (Q) of the measurement noise and the transition matrix 

(φ) need to be updated at each revisit time in order for the 

algorithm to stay optimal. The lower the revisit time is, the 

more accurately the tracking will be done, and the more stable 

the algorithm is against errors. More observations results in a 

higher cumulative probability of detection and a lower noise 

variance or uncertainty in position [7]. Overall, the stability and 

accuracy of the tracking method must be met simultaneously; if 

the tracks are not updated adaptively—their update rates are 

not specific to their nature, then radar resources will be wasted 

when the target stops maneuvering but the update rate is still 

constantly high. The target trajectory is generally composed of 

segments corresponding to different motions; therefore, only an 

algorithm like the IMM which contains a filter bank of 

different motion models can realistically model the motion of 

the target [5-8].Here, we have made use of the IMM algorithm 

as the basis for resource management optimization through 

improving the tracking method; the IMM enjoys a bank of 

filters appropriate for particular kinematics of different targets, 

which reduces the tracking load; therefore, if we adaptively 

make use of such a filter bank, we can greatly minimize the use 

of radar resources. Choosing a revisit time according to the 

maneuvering of the target while keeping tracking error under a 

given threshold, we have proposed an adaptive version of the 

IMM algorithm, which has been shown through computer 

simulations to considerably reduce the use of radar resources. 

II. THE  IMM  ALGHORITM 

The IMM algorithm is most commonly used for estimating the 

overall state (position, velocity, and acceleration) of a moving target; 

this algorithm employs many sub-filters run in parallel, each of which 

is connected to a particular model assumed for the motion of the target. 

The output of each of these sub-filters is indeed the target’s state 

estimated by that sub-filter using its corresponding model of motion. 

The accuracy of the state estimation of each sub-filter is found through 

using its residual and Bayes’ rule. A weight is assigned to each sub-

filter, which is the probability of the model of that sub-filter; therefore, 

the overall estimated state of the maneuvering target, the output of the 

IMM algorithm, is a weighted sum of the states estimated by all the 

sub-filters running in parallel; that is, the output of the IMM algorithm 

is a weighted sum of the outputs of the relevant sub-filters. The 

covariance matrix of the different models used in the IMM algorithm 

is based on Markov’s model for transitioning of the maneuvering 

target from one model state to another. These different models of 

motion of the target, the transition probabilities between different 

states, and the parameters of the models, specifically their noise levels, 

all have to be appropriately chosen in order that the IMM algorithm 

works correctly. This algorithm consists of four steps: 

 A. Interaction mixing 

the initial values for each model are determined from the weighted 

sum of the estimated values of all the models in the previous time step. 

If 
 ˆ |iX k k

 is the estimation obtained by model i at time k, then the 

initial values for model j is given by the following equation:    
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, where r is the number of the interacting models, and the mixing probability 
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, where 
ij

  is the transition probability from sub-filter i, 

connected with model i, to sub-filter j which is matched to 

model j. Like the covariance matrix, the value of 
ij

 is fixed 

by the designer of the algorithm. The following relation 

predicts the probability of model j for the next time step: 

|

1
( | ) ( | )

( 1| )i j ij i
j
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 B. The filtering algorithm 

The values obtained above are applied to the corresponding 

filter as the initial values; finally, through using the measured 

values at time k+1, we can have the values obtained from the 

jth filter as 
 1ˆ | 1jX k k 

 and 
 ˆ 1| 1jP k k 

. Depending on 

the type of the filter, all the relations given in the previous step 

of the algorithm can now be used. Moreover, the likelihood 

function of model j is as follows: 
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where jv  and Sj are respectively innovation vector of 

dimension n, and the innovation covariance matrix of model j.  

 C. Calculation of the probability of the model 

after the measurements at time step k+1 are done, the 

probability of model j at the time step k+1 can be updated with 

the use of the likelihood function j
 and the probability of the 

model predicted in the previous step, 
 1|j k k 

, as 

follows:    

( 1| 1) ( 1| )
1 Λ

j j j
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, where C is the normalization factor. 

  D. Mixing the sub-filters’ estimates and calculating the 

overall estimate 

 finally, using the updated probability of model j, 

 1| 1j k k  
, we can mix the estimated states and the 

covariance errors of the sub-filters as follows: 
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III. THE MOTIN MODEL OF THE  TARGET  

To build an algorithm which can track both highly and lowly 

maneuvering targets, we have made use of the constant-

velocity and constant-acceleration motion models in the IMM 

algorithm. Either of the models is expressed as follows:  

 

   
( 1) ( ) ( )x k Fx k v k  

                                1-3    

, where F is the transition matrix of the state of the system, 

  is the noise efficiency, and vector  ( )v k is a zero-mean 

white tail with the variance of  2
v .  

IV. CALCULATION OF THE  REVISIT  TIME  

 

It should be noted that a maneuvering target increases the 

uncertainty in the estimates, which then results in an increase in 

the value of the error covariance. Therefore, the revisit time 

should be selected accordingly. We here review the methods 

used for calculating an appropriate revisit time.  

A. The IMM-controlled revisit time 

Three motion models, the constant-velocity (CV), 

exponentially-increasing acceleration (EIA), and three-

dimensional turning rate (3DTR), are used in the IMM 

algorithm for tracking a maneuvering target. The revisit time is 

calculated such that the predicted error covariance in the 

position of the target exceeds a given threshold [8].   

B. The adaptive-tracking-IMM revisit time from Van Keuk’s 

method 

Van Keuk’s criterion assumes that the next revisit time  is 

chosen such that the predicted error variance in the position of 

the target is always kept below a given threshold [7].  

  

      1-4 ,            

          

 

, where 0ν is a constant,   is the covariance of the 

measurement error,  mτ  is the maneuver correlation time, and   

is the covariance of the acceleration of the target. Ref [8] 

gives the relation between the variance of the estimation error 

of the trajectory and the revisit time (T). Here,  is the 

standard deviation of radar’s observations, is the standard 

deviation of the maneuvers (meter per square second), and R is 

the range of the target in meters. A closed formula has also 

been suggested for the revisit time as [8]:                              
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, where  is the probability of model j at time k, r is the 

number of the models used in the IMM algorithm, and  is 

the acceleration covariance for model j. Here, in Van 

Keuk’s formula has been replaced with an estimated parameter. 

                                                                                  

C. Adaptive update rate in the Fast Adaptive Interacting 

Multiple Models (FAIMM) algorithm 

 In this method, the IMM algorithm is used with the constant-

velocity and constant-acceleration motion models. The update 

time at scan k is obtained from[5]: 

                          
3-4 

, where  is the probability of model j at time k; r=2; 

T1=Tmin; T2=Tmax with Tmin and Tmax being for 

maneuvering and non-maneuvering targets, respectively. 

D. Revisit time in the error-based adaptive IMM algorithm 

(EAIMM) 

We now propose an improved method which is based on the 

AIMM tracking algorithm with Van Keuk’s method of revisit 

time calculation. Here, the revisit time is calculated such that 

the error standard deviation in the stable state of the target in 

the highest maneuver is the same for both of the IMM and 

AIMM algorithms. The revisit time (T) in the highest maneuver 

is then placed as the revisit time in the IMM tracking algorithm. 

     TIMM = TMIN_AIMM                               4 -4                                          

The minimum revisit rate of the AIMM algorithm in high 

maneuverings is used for the IMM algorithm. Therefore, the 

error standard deviations of these two algorithms will always 

be the same. A low maneuvering target with a constant velocity 

will be tracked by the IMM algorithm with the same revisit 

time of TMIN_AIMM, but by the AIMM algorithm with a 

lower update rate; therefore, the error standard deviation will 

remain relatively constant at different conditions. 

Using the minimum and maximum revisit times, the 

FAIMM method calculates a new revisit time for the next 

revisit on the basis of the probability of the model at the present 

revisit. The criterion for choosing the minimum revisit time in 

the FAIMM is the same as that explained above; that is, 

TMIN_EAIMM  = 𝝁 TIMM , where 𝝁<1 is obtained with the 

consideration of other parameters and the required accuracies. 

A TMAX_EAIMM selected on the basis of the FAIMM 

algorithm, where  Tmax=5 sec, will results in a delay in the 

algorithm, which will dramatically increase the error standard 

deviation. Therefore, the revisit time should be optimized with 

respect to the maneuvering conditions of the target and an 

acceptable state transition error. Considering the maximum 

maneuver of 25 g, for example in the cross maneuvering of a 

tactical air-defense missile, the value of Tmax=2 sec is the 

choice for computer simulations; moreover, we increased the 

transition probability in Markov’s matrix from 0.05 to 0.2 to 

control the transition error and to improve the maximum error 

at the condition of highest maneuvering. 

V. SIMULATIONS 

The simulations evaluated the IMM, AIMM, and EAIMM 

algorithms. A rather complicated scenario consisting of an 

aerodynamic target, a fighter, and an anti-aircraft tactical 

missile were evaluated in a flight trajectory. In the first part of 

this flight scenario, the target moves with a constant velocity; 

thereafter, it immediately receives a high acceleration in both X 

and Y directions; such a two-dimensional acceleration can be 

an appropriate test for the performance of the tracking 

algorithm. The one-sigma measurement error of the radar 

sensor was assumed to be 100 meters in all x, y, and z 

directions. In the implementation of the AIMM algorithm, the 

predicted error was always kept below the measurement error 

in the input of the tracking algorithm. The errors of the tracking 

algorithms were evaluated using Monte Carlo method based on 

Blackman’s rule [1] with 1000 runs. 

A. The flight scenario 

 The target first moves with the constant velocity of 300 m/s 

along the x-axis, and then moves along the y-axis with the 

velocity of 100 m/s. After travelling a distance from the 20th 

second for 20 seconds, the target will maneuver with the 

acceleration of 25g along the x-axis and 10g along the y-axis, 

and then continues moving with its constant velocity. Then, it 

will maneuver at the 30th second with the acceleration of -10g 

along the x-axis. 

B. The simulation results 

The simulations results of the IMM algorithm show that the 

radar visits the target 257 times within 180 seconds with a 

constant update rate. The AIMM algorithm with the Van 

Keuk’s revisit time tracks the target 224 times within the 180 

seconds, which means that the 13% of the radar resources have 

been saved. Moreover, the EAIMM algorithm needed only 109 

revisits to track the target, which obviously means a 

considerable saving of 62% in the radar resources has now 

been achieved. The tracking error standard deviation was also 

controlled in all conditions, particularly at the transition 

moments. Regulating the coefficients of CV and CA filters, and 

increasing the transition probability in Markov’s matrix, we 

managed to produce a better response from the IMM and 

AIMM filters. Therefore, we have shown that our improving 

the IMM tracking algorithm has considerably lowered the use 

of the radar resources. 

VI. CONCLUSIONS 

We have shown that our improving the IMM tracking 

algorithm has considerably lowered the use of the radar 

resources. This allows multi-functional radar to either extend 

its scanning region or track multiple targets simultaneously. 

Our proposed algorithm can be further improved through 

incorporating more complete and diverse motion models into 

the filter bank of the tracking algorithm. Furthermore, 

separation of targets on the basis of their maximum 

accelerations can also help us further develop more efficient 

tracking algorithms.  
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Fig.1 . The update diagram in the algorithms evaluated by the computer 

simulations. 

 

 
Fig. 2: error in posistion along the x-axis 

 
Fig.3 . Error calculation at transition from the CV motion to the high-

maneuvering condition 
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