
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 4 Issue 5 May 2015, Page No. 11916-11921

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11916

Potential Of Replication In Distibuted R.T.D.B.
Er. Anup lal Yadav, Er. Sahil Verma, Er. Kavita

M-Tech

Asst. Prof. in C.S.E. Deptt.

EMGOI , Badhauli.

sahilkv4010@yahoo.co.in

Asst. Prof. in C.S.E. Deptt.

EMGOI , Badhauli.

1. ABSTRACT

Transactions in real-time databases should be scheduled considering both data consistency and timing

constraints. In addition, a real-time database must adapt to changes in the operating environment and

guarantee the completion of critical tasks. The effects of scheduling decisions and concurrency control

mechanisms for real-time database

systems have typically been demonstrated in a simulated environment. Many time-critical applications data

may be distributed among multiple sites. For example, such applications include command and control,

industrial automation, aerospace and defense systems, telecommunications, banking, etc. In such

applications, it imperative that the data be available to the requesting transactions at the time it is needed. In

a typical distributed database, the transaction is required to access the remote data directly, at the risk of

missing its deadline. Another problem can occur in such a scenario when the requesting transaction accesses

the data, but it is not temporally valid. That is, its value is “out-of-date” because the transaction did not read

from the most recent update. A replication algorithm creates replication transaction based on client’s data

requirements in a distributed real time databases. These replication transaction copy data objects to the site

on which they are needed just in time for the deadline to occur. The algorithm carefully computes the

parameters of the replication transactions so that we can guarantee that any requests that read data, in fact,

read temporally valid data. This algorithm is designed to work in a static environment in which all object

locations, and client data requirements are known a priori.

2. Introduction

2.1. Systems Specification :The following are the

lists of assumptions that are made regarding the

system, the system model and transaction model

that are describe in this section: -

1) The system is static. That is, all distributed

sites and every object on each site are known a

priori. All read/write requests from clients are

kept in queues, which are known a priori.

2) For each object there is one update transaction

that we call the “sensor update transaction”.

There can be more than one transaction that

updates the object, but only one is called the

http://www.ijecs.in/
mailto:sahilkv4010@yahoo.co.in

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11917

sensor update transaction.

3) Each object has a local site, where it

originates. Any other sites that require this

object have a copy of it.

4) All the databases in the distributed system are

homogeneous. All the sites in the system

contain the same DBMS.

5) The period of the sensor update is always less

than the temporal validity of the objects. That

is, the object will be updated before it becomes

temporally inconsistent.

6) Copies of objects are not accessible to

transactions (Replication transaction) on other

sites. That is, only the object on its origination

site is accessible to be replicated.

2.1.1. System Model The model on which the Real

Time Replication algorithm is based is made up

of M distributed sites, data objects, and

periodic requests and updates that access the

data objects.

Objects. Each object in the system is defined as

follows: Object = < OID, Value, Time, OV >

Where

OID is a unique identifier of the object within

the system. Value is the present value of the

object. Time is the time at which the object was

last updated. OV is the object validity, i.e. the

time after which the value of the object is no

longer valid.

Requests and Updates. Application

requirements are specified as periodic Requests

for data and Updates of data with following

parameters: Request = <OID, per, rel, dl,

LsiteID >,

 Update = <OID, per , rel, dl,

LsiteID >

 Where Requests are read-only data accesses, and

Updates are write-only. OID is the unique

identifier if the requested object. Per is the

frequency (period) at which the data is to be

accessed. Rel is the release time at which the

request / update should be started, dl is the relative

deadline of the request/update within each period

and LSiteID specifies the site at which the

update/request was made.

2.1.2. Transaction Model : The algorithm

produces a model with two types of transactions,

local transaction and replication transaction. Local

transaction: A transaction is a local transaction if

all of its operations execute on the same site as the

site on which the request is made.Replication

transaction: A transaction is a replication

transaction if at least one of its operations

executes on a remote site. The following is the

specification for the model of the transaction

created by the RM.

Ttype < opers(OID), period, release, deadline >

Where

type specifies the type of the transaction, local or

replication. opers - set of operations on OID such

as read, write etc., Period is the period of

transaction, Release is the release time of the

transaction and Deadline is the deadline of

transaction in each period (relative to the period).

2.2 Replication Manager

In this section, Replication Manager (RM) takes

the above parameters and creates the replication

and local transactions according to the Replication

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11918

algorithm. The RM maps the system

specifications to set of transactions. All the

transactions are of type local or replication. For a

request, the replication transaction must be

finished before the start of the local transaction so

that the local transaction can read the object from

the replicated transaction. Also for an Update, the

replication transaction must execute after the local

transaction is finished. Hence replication manager

also carries mapping of Request/Update

transactions.

2.2.1. Transaction Mapping

Basically algorithm finds the appropriate sites for

random occurrence of request / update. RsiteID is

replication site and LsiteID is a local site.

Requests Mapping: There are two cases.

Case 1: If RSiteID == LsiteID

In this case Request maps to Local transaction

specified as follows. Tlocal (opers(OID), period,

release, deadline) Where opers(OID) is a

read(OID)on local site of OID, Period, Release

and Deadline are specified by Request.

Case 2: If RSiteID =/= LsiteID

In this case, Request maps to two transactions, a

replication transaction and then a local

transaction.

i) Replication transaction: Following are the

parameters for the replication transaction.

Trep(opers(OID), period, release, deadline, exec-

time) opers(OID) are read(OID) on site whose site

ID is RSiteID and write(OID) on site whose site

ID is LsiteID. Period is period of replication

transaction. This period is in phase and equal to

the period of sensor update so that the transactions

will read valid data. Release is the start of the

period, exec time is the total execution time of the

replication transaction (i.e. exec time of read +

exec time of write + network delay + preemption

time).

Deadline Computation: The deadline is the crucial

part of the algorithm. The algorithm carefully

computes it in order to ensure that all requests

always read valid data. Let d be the deadline of

the replication transaction. Let N be the least

common multiple of the periods of all Requests on

OID and the period of sensor update and ‘n’ be the

number of replication periods that should be

considered for the analysis, where n is equal to

N/period of replication transaction. We call ‘N’

the super period of replication transaction because

after that the cycle repeats. Deadline computation

is done for one full super period. The invalid

interval is the interval of time during any period of

replication transaction for which the object does

not have the valid value associated with it, that is,

the object is temporarily inconsistent (See Figure

2).

Initially the deadline is equal to period of

replication transaction. Then, for each of the n

periods, there are 3 cases to consider in

calculating the deadline.

Case 1: If no requests are executing in the invalid

interval, the deadline is unchanged. We need not

care if there are no transactions executing in this

interval, as no requests will be reading invalid

data.

Case 2: If no request has started executing before

the invalid interval but a new transaction enters at

xi, where xi is any point of time in the invalid

interval of ith period, then the deadline is changed

to minimum (d, xi).

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11919

Case 3: If any request has started before or at OV

and continues to execute in the invalid interval,

then the deadline is changed to OV. Changing the

deadline assures that the requests read the valid

data. Note that once the deadline is changed to

OV, the computation of deadline is stopped as we

have reached the minimum deadline.

Once we have considered these three cases for

each of the n replication transactions periods in

the super period, the deadline is computed.

ii) Local Transaction: After the above replication

transaction is created for a request, a local

transaction is created for each request with the

following parameters. Tlocal (opers(OID), period,

release, deadline, exec time) Where opers(OID) is

read(OID) on site of siteID. period, release,

deadline are specified by Request. Exec time is

execution time of opers(OID).

Updates Mapping: This section discusses in detail

how the algorithm works for Updates. Again here

we consider the same two cases. Case 1: If

RSiteID == LsiteID

In this case Update maps to the Local

transaction.Tlocal (opers(OID), period, release,

deadline, exec time) Where opers(OID) is

write(OID) on local site of OID. Period, release,

deadline are specified by Update. Exec time of

transaction is the execution time of write.

 Case 2: If RSiteID =/= LsiteID

In this case, Update maps to a Local transaction

and then a ReplicationTransaction. Each update

local transaction causes the RM to create a

replication transaction with one exception Even

though each local update transaction may require

a replication transaction to copy back, some

unnecessary replication transactions can be

eliminated.

The possible cases for eliminating the replication

transactions are: a) If more than one local

transaction has the same release and deadline, then

only one of these local transactions needs to be

copied back. b) If more than one transaction has

the same period and starts at the same time, only

the transaction with the least deadline (higher

priority) creates the replication transaction.

2.3. Schedulable Model

In this section, it analyze and execute the

transactions created by the algorithm translates

requests/updates into the set of local and

replication transactions, and determines whether

each request/update is made on a local object or

on a replicated object. We state and prove three

theorems that indicate the correctness and

goodness of the algorithm.

2.3.1. Theorem 1: All requests will always access

temporally consistent data.

Proof: Consider a replication transaction TO

that copies object O. Let d be the deadline of TO

as computed by the JITRTR algorithm. Let OVi

be the point in time in the ith period after which

the copy of the object O becomes invalid and let

P be the period of TO. O is temporally

inconsistent in the ith period in the interval

between OVi and d (see Figure 2). Thus the

agolritm proves that no request executes in the

invalid interval, then all requests access

temporally valid data considering the above

three deadline computing cases

2.3.2 Theorem 2: The period of the

replication transaction TO must be equal to the

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11920

period of the sensor update transaction for object

O in order for all requests to read valid data using

our algorithm.

Proof: The second theorem tries to prove that

the period of the replication transaction (PTo))

and the period of sensor update(PSuo) must

equal, considering contradictory situation. Let

us assume they are not equal i.e. we consider

the two cases. The first case is that PTo > PSuo

and the second case is that PTo < PSuo. Thus

the agloritm proves that it is not possible to

construct a replication transaction with the above

two cases.

2.3.2. Theorem 3: The deadline assignment

for a replication transaction from a request,

made by the Real Time Replication algorithm,

is necessary and sufficient for ensuring the

temporal consistency of data.

Proof: We first prove the sufficient condition,

and then we prove the necessary

condition.Sufficient condition: Theorem 1

proves that requests always read temporally

consistent data, which means that the deadline

assignment is sufficient for ensuring the temporal

consistency of data. Necessary Condition: To

prove that the deadline assignment is necessary

for replication transaction, algorithm takes the

contradictory situation, considering the three

cases mentioned above while deadline

computations. This itself implies that the

deadline assignment by our algorithm is a

necessary condition to ensure the temporal

consistency of data read by the transactions.

3. Observations

That is, given a random system specification,

how often does the RTR algorithm produce a

system that is schedulable, where all deadlines

can be met. We also measured percentage

of task schedulability to indicate how many

tasks in a given system are found to be

schedulable.

To implement the tests, we created a simulation

algorithm as one of the module in which system

specifications were randomly generated. The

system specifications provided input to the

RTR algorithm, and the resulting

transactions were tested for schedulability

using simulating module. For comparison we also

simulated an algorithm for creating full

replication transactions and no replication

transactions.

4. Conclusions

In this paper we have presented an algorithm for

replication of data transaction and simulating in

a distributed real-time database.The algorithm

works in a static environment in which the data

available, and that guarantee that only valid data

will be read.We have proven that the algorithm

uses necessary and sufficient conditions for

providing valid data to all requests. They indicate

that the benefit of guaranteed temporal

validity that outweighs the other replication

strategy.

5. References

1. A. Bestavros, K. Lin, and S. H. Son, “Real-

Time Database Systems: Issues and

Applications,’’Kluwer Academic Publishers,

1997.

2.A. Bestavros, “Advances in Real-Time Database

Systems Research,” ACM SIGMOD Record, vol.

25, no. 1, March 1996.

Er. Anup lal Yadav, IJECS Volume 4 Issue 5 May, 2015 Page No.11916-11921 Page 11921

3. Y. Kim and S. H. Son, “Supporting

Predictability in Real-Time Database Systems,”

IEEE Real-Time Technology and Applications

Symposium (RTAS’96), Boston, MA, June 1996,

pp 38-48.

4. K. Lam, S. H. Son, and S. Hung, “A Priority

Ceiling Protocol with Dynamic Adjustment of

Serialization Order,” IEEE Conference on Data

Engineering, Birmingham, UK, April 1997.

5. M. Lehr, Y. Kim, and S. H. Son, “Managing

Contention and Timing Constraints in a Real-

Time Database System,” 16th IEEE Real- Time

Systems Symposium, Pisa, Italy, Dec.

6. G. Ozsoyoglu and R. Snodgrass, “Temporal and

Real-Time Databases: A Survey,” IEEE Trans. on

Knowledge and Data Eng., August 1995, pp 513-

532.

