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Abstract:  Modern research has offered confirmation signifying how a malicious user could perform coresidence profiling and public-to-

private IP mapping to target and exploit customers which share physical resources. Twp steps are relayed for this attack they are 

resource placement on the target’s physical machine and extraction. In this paper, in part inspired by mussel self-organization, relies on 

user account and workload clustering to mitigate coresidence profiling. Users with similar preferences and workload characteristics are 

mapped to the same cluster. To obfuscate the public-to-private IP map, each cluster is managed and accessed by an account proxy. Each 

proxy uses one public IP 

Address, which is shared by all clustered users when accessing their instances, and maintains the mapping to private IP addresses. In 

this paper gives the risk assessment for mussel behavior. This paper presented arguments to show how our strategy increases the effort 

required for an adversary to carry out a directed attack against a target set. This paper proved the experimental result from a risk 

assessment that suggests a reduced per-individual chance of being randomly victimized given a non directed attack 
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INTRODUCTION 

Equipped with the ability to leverage virtual resources on-

demand, cloud computing systems have recently emerged as a 

viable low-cost alternative to traditional computing platforms. 

This has sparked widespread interest, adoption, and/or research 

initiatives from all institutions alike (e.g., academic, industrial, 

government, etc.), which in turn, has led to myriads of success 

stories [1], [2] that give credence to its potential and 

effectiveness. Though promising, this technology suffers from 

the same fate as any other new development in its infancy 

stage. It solves some problems while newly introducing 

unanticipated and not readily understood challenges [3]. At the 

core of these concerns lies privacy and security [4]–[6]. Recent 

research [7] has shown that it is possible to identify and target 

a cloud user, launch malicious virtual machines (VMs) which 

perform coresidence checks, and possibly extract confidential 

information once coresidency with the victim has been 

established. An example such as this exposes the volatility of 

cloud security. 

A cloud computing scenario can be modeled using three 

different classes of participants: service users, service instances 

(or just services), and the cloud provider. Every interaction in a 

cloud computing scenario can be addressed to two entities of 

these participant classes. In the same way, every attack attempt 

in the cloud computing scenario can be detailed into a set of 

interactions within this 3-class model. For instance, between a 

user and a service instance one has the very same set of attack 

vectors that exist outside the cloud computing scenario. Hence, 

talking about cloud computing security means talking about 

attacks with the cloud provider among the list of participants 

[14].  

Badishi et al. propose an ack-based port-hopping [7] 

protocol focusing on the communication only between two 

parties(client-server), modeled as cloud sender and cloud 

receiver. The cloud receiver sends back an acknowledgment 

for every data message received from the sender sending data 

message, and the sender uses these acknowledgments as 

signals to change the destination port numbers of its messages. 

Since this protocol is acknowledgement based port hopping, 

For this time synchronization is not necessary in this cloud 

services and users 

 

SYSTEM MODEL, THREAT MODEL, AND EXPLOIT DESCRIPTION 

Cloud computing systems provide innovative solutions 

while introducing new avenues for research direction. One 

aspect of cloud systems which serves in this capacity is 

hardware virtualization – the ability for multiple customers to 

share the same physical resources simultaneously. Though 

providers benefit from resource consolidation, this feature 

poses new security challenges and possibly serves as a 

significant system vulnerability. Consider two competing 

organizations which both lease resources from the same cloud 

provider. It is foreseeable that one customer’s motive could 

consist of exploiting the shared nature of the cloud to identify, 

target, and victimize its competitor. Possible attacks could 

include: monitoring workflow patterns, extracting valuable 

information, conducting denial of service (DoS), distributed 

DoS (DDoS), or EDoS (Economic Denial of Service), where 

the victim’s bill causes a shock at the end of the accounting 

period because they used more instances than planned. Given 

this, we consider customer VMs, data, and information to be 

assets. 

A. System and Threat Model 

From a system model perspective, we classify customers 

based on intent. Malicious users are those with malevolent 

intent – those who target other users and seek physical machine 

coresidence for unauthorized surveillance and/or data 

extraction via certain exploits, e.g., side channel attacks. We 

consider these type of users to be threats which launch attacks 
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comprised of two steps: VM placement on the machine upon 

which the target resides and data extraction. Below, we 

identify 4 types of attackers and list the possible goals for each. 

 eavesdropping nondirected attacker goal is to read 

data or find out about any target 

 malicious nondirected attacker goal is to cause a DoS 

on any or all instances 

 (eavesdropping directed attacker goal is to get data 

from a specific competitor’s instance or learn about 

their workload pattern 

 malicious directed attacker goal is to cause one of the 

following attacks on a particular target: DoS, DDos, 

or EDoS.  
Honest users, on Honest users, on the contrary, are those that 

use cloud resources for their intended purposes. These users 

have sincere intent. They abide by the protocols, procedures, 

and regulations as outlined in the terms of service agreement. 

We would like to prevent these users from being identified and 

targeted by malicious users. A peer is simply one that shares 

the same physical resources – a coresident user. A peer can 

either be a malicious or honest user. We assume the cloud 

provider to be trusted and honest – providing the services to its 

customers as outlined in the service license agreement. 

B. Exploit Description 

Since the inception of cloud services, the possibility of users 

being exploited by a rogue peer has always been amajor issue 

of concern. However, the realization of these fears never quite 

materialized until researchers began to uncover the extent of 

cloud user vulnerability. The exploit we consider is described 

by Ristenpart et al. In [7], they use Amazon’s EC2 [17] “ as a 

case study to demonstrate that careful empirical mapping can 

reveal how to launch VMs in a way that maximizes the 

likelihood of advantageous placement.” To investigate this 

notion, they assume a placement and extraction attack strategy. 

They use domain name system (DNS) resolution queries and 

traditional network tools, e.g., nmap, hping, wget, to determine 

the external name of an instance and to derive a map which 

exposes the correlation between the external public IP address 

and the internal private IP address of an instance. They 

additionally found that the internal IP addresses are statically 

assigned to physical machines according to availability zone 

and instance type. Thus, the map could be used to deduce the 

availability zone and instance type for any given target – 

effectively reducing both the search space for finding a target 

and the number of “probe instances” needed to be deployed 

before achieving coresidence. A probe instance is simply a 

malicious VM that performs a coresidence check to determine 

whether or not a target is a peer. If the target is a peer, it 

proceeds with data extraction – the next phase of the attack. 

Otherwise, it terminates. Ristenpart et al. identify 3 different 

methods which could be used to determine coresidence, and 

present two strategies an attacker could use to exploit 

placement in EC2 – brute-forcing placement and placement 

locality. The brute-forcing placement strategy deploys a large 

number of instances over time in the same zone and of the 

same type as that of the instances belonging to a large target 

set. They conduct an experiment using this strategy and receive 

a success rate of 8.4%. This means that 8.4% of the probe 

instances actually achieved coresidence with instances of the 

target set. The placement locality strategy, on the other hand, 

assumes a smaller target set, and also presumes that the 

attacker can launch probe instances soon after a targeted 

victim’s instances are launched. They conduct another 

experiment, and find that this strategy yields a success rate of 

40%. They make the following conclusions concerning 

Amazon’s VM placement algorithm 

 N parallel instantiations launched from a single 

account tend to result in placement on N different 

machines. 

 If a VM which runs on machine A is terminated and 

another VM is launched immediately thereafter, then 

that new VM tends to be placed on machine . This 

may explainwhy the brute-forcing strategy did not 

fare as well. 

 Two VMs launched around the same time, from two 

different accounts, tend to be assigned to the same 

machine. 

 There is a small inherent bias in assigning new VM 

instances to machines with light loads. 

MUSSEL BEHAVIOR USING K-MEANS ALGORITHM 

It is foreseeable that a combinatorial rise in the possible 

combinations of user preferences could result in large 

computational overhead with deterministic or complete 

enumeration algorithms. Thus, the use of heuristic algorithms 

may prove to be beneficial. We extend the self-organization 

behavior of mussels to develop an algorithm to address such a 

problem. 

Interactions between organisms, themselves, and the 

environment in which they live lead to feedback which affects 

both the organisms and the environment. For mussels, the 

magnitude of this feedback varies with distance – a 

phenomenon known as scale-dependent feedback (SDF) [5]. 

There are two types of SDF: positive and negative. Mussels 

experience positive SDF over short-range distances with 

respect to peers. This leads to cooperation between individuals 

in the vicinity. If there is shortrange density, or a certain 

number of peers per unit area in its immediate surroundings, an 

individual mussel tends settle, or maintain its current position. 

It then secretes byssal threads to attach itself to the shells of 

peers, rocks, or other various substrates. 

On the other hand, mussels experience negative SDF over 

long-range distances with respect to peers. This leads to 

competition which restricts survival over long distances. If 

there is long-term density in its not so immediate surroundings, 

an individual mussel tends to move to a new location. The 

interplay between positive and negative SDF ultimately results 

in patches of optimal sized clusters – large enough to decrease 

the risk of predation and water stress yet small enough for the 

groups to withstand the risk of food depletion. 

 

 

 

 

 

 

Algorithm 

Step 1: K points as the initial centroids 

Step 2: repeat 

Step 3: Form K clusters by assigning all points to the 

closest centroid 

Step 4: Recomputed the cancroids of each cluster 

Step 5: until, the centroid don’t change. 
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MODIFIED MODEL 

We now look to modify this model such that groups of 

individuals within some given population self-organize – 

where clustering only occurs between peers which belong to 

the same group or category. This requires thatmembers bemore 

selective when choosing peers for cluster formations. In the 

original algorithm, only peers within short-range distance are 

eligible for local clustering. This condition   , is satisfied 

when peers               are distance away 

                                                                     (1) 

 

Here the distance is calculated by using k-means algorithm. 

Further, peers that are            distance away tend to 

viewed as potential competitors prompting an increase in 

negative SDF. Thus, 

                                                              (2) 

Here,      is 22.5 – the distance used to determine long-

range density. In order to increase selectiveness, in this paper  

modify the  conditions for peer eligibility when determining 

short and long-range density. For short-range density, we now 

specify that in addition to being             distance away, a 

peer must belong to the same group,      That is to say 

 

    (     )                                                      (3) 

In a similar fashion, for long-range density, we now 

maintain that peers have to belong to the same group and must 

be         distance away. To ensure that there is not 

extensive overlap between heterogeneous clusters, in this paper  

also specify that peers that belong to different groups, , are at 

least distance away. We run multiple simulations, each time 

varying the value for      , and find that       yields the best 

results. Given this, we say that the modified condition to 

determine peers eligible for long-range density is: 

    (           )  (        )      (4) 

We now explicitly point out the difference between the 

original and modified conditions for short and long-range 

density. The original conditions for short and long-range 

density are shown in (3) and (4). Here, is the total number of 

mussels in the population. For short-range density, each 

individual mussel performs a Boolean comparison – where the 

distances of its peers are compared to .Apeer whose distance is 

within short-range yields 1. Otherwise, it yields 0. Taking the 

sum of all the comparisons excluding the reference mussel, and 

dividing by the short-range area yields the short-range density. 

A similar procedure is exercised to compute long-range 

density. However, there are two differences. One, all mussels 

determine whether the distances of their peers falls between 

and ; and two, all mussels use the long-range area instead of 

the short-range area. 

   
 

   
 ∑ [  ]   

 
                                             (5) 

   
 

   
 ∑ [  ]

 
                                               (6) 

The modified conditions are presented in (5) and (6). The 

procedures to compute the modified short and long-range 

densities are similar to those used for the original conditions. 

The differences there are: all mussels take into consideration 

whether their peers belong to the same group; and for long-

term density, mussels additionally consider whether those from 

a different group are too close. 

    
 

   
 [[∑    

 
   ]   ]                                  (7) 

    
 

   
 [[∑    

 
   ]   ]                                   (8) 

The linear expression which describes an individual 

mussel’s chance of movement is now:  

                                                     (9) 

To reverse the process, that is, to have the mussels disperse 

from groups to random individual positions, we simply invert 

the magnitudes for short and long-range density in (7). This 

results in the linear expression shown in (8). 

                                                     (10) 

Thus, the differences for the modified mathematical 

formulation are:       replaces   ,     replaces    , and     

replaces    

Now describe the technical analysis of the mussel-inspired 

self-organization approach towards reducing the risks 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Technical architecture of the account proxies and 

mussel-based account allocation. 

In this figure ap# denotes the account proxy, vm# denotes the 

virtual machine, gp# denotes the gateway interface with public 

IP, gr# denotes the interface to private IP, cluster # denotes the 

logical VM cluster from mussel algorithm and host# denotes 

the physical host for VM creation. of adversary exploitation as 

described in [6] 

They conclude by stating cloud providers should obfuscate 

the internal structure of their services and placement policies in 

order complicate the adversary’s attempts. However, 

obfuscation of topology and placement policy leads to 

additional computational overhead when doing VM placement, 

CPU load balancing, traffic shaping and workload migrations. 

They additionally state that such obfuscation techniques should 

be demanded only by customers with strong privacy 

requirements, but this additional differentiation in user 

classification and infrastructure configuration leads to more 

complex registration, preference analysis, and configuration 

options. We suggest defining a single user management and 

placement solution that comes with low-computation 

placement and topology obfuscation inherently, without 
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causing a change in the familiar interface exposed to cloud 

users. Fig. 5 provides an overview of the integrated solution’s 

technical architecture. Here, each logical cluster (cluster#) is 

managed and accessed by the same account proxy (ap#). An 

account proxy has one public IP address, which is hence shared 

by all account owners in a cluster when accessing their 

instances and the account proxy maintains the mapping to 

private IP addresses. There is hence no 1-to-1 mapping of 

public to private IP addresses or dependence on a sequential 

allocation of private IP addresses. A 1-tomapping of public to 

private IP addresses is implemented by most modern 

application-level gateways that include network address 

translation (NAT) and traversal. The sequence of interactions 

of a typical user is as follows: 

 Subscription of user with the cloud infrastructure via an 

accessible gateway interface, gp0, with a static public IP 

address. The user provides a username, password and 

collection of preferences (duration, CPU, memory), 

encrypted with the public key of the cloud infrastructure 

provider. 

 The user information is checked against subscription 

policies and forwarded to the mussel-based 

allocator/controller, which is responsible for 

creating/dissolving groups and account proxies, as well 

as assigning users and VM instances to account proxies, 

groups, and physical hosts respectively. VMs with 

similar workload and access preferences are assigned to 

the same physical host when possible. 

 The allocator/controller creates a new account proxy 

(ap#), if necessary, and assigns the user; or it adds the 

user to an existing account. 

 Asynchronously, the allocator/controller selects a host 

to create the requested VM instance and starts the VM 

instance – assigning it a random IP address from a pool 

of unassigned private addresses. 

 The public IP of the newly created VM is mapped to the 

private IP and returned to the user as a uniform resource 

identifier (URI) of form /{ip of gp#}/{userid}/{vm_id}. 

 The user uses the URI to send requests to the VM 

including start, stop, modify, or ssh. 

 The account proxy translates the URI into a private IP 

and forwards the requests to the VM. 

 Responses from the VM are returned to the user as if the 

target was the public IP address of the account proxy. 

In this paper assume that each user and the cloud provider 

are able to generate and maintain non compromised public-

private key pairs (e.g., RSA [7]) and symmetric keys (e.g., 

AES [8]) such that the above interactions can be secured using 

protocols like transport layer security (TLS) [9]. This is among 

the current best practices from leading cloud providers such as 

Amazon [10], and is an effective approach for minimizing 

cloud communication risks such as man-in-the-middle, session 

high jacking, and replay attacks – as also denoted in [11]–[13]. 

These types of attacks are hence not the focus of the solution as 

we are intereste in mitigating the impact coresident placement 

and data extractions have on an attacker’s ability to carry out 

successful exploits against a given target set. 

Figs. 3 – 6 show the set of capabilities and attack path an 

attacker needs to execute for targeted coresidence. As shown in 

Fig. 3, do not provide a solution to stopping (1) malicious VMs 

or scripts from being installed in the cloud infrastructure, as 

this depends on the types of pre installation scanning 

mechanisms the provider implements.. in this paper remove the 

usefulness of public-to-private IP address aims to remove the 

usefulness of public-to-private IP addr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Attack capabilities and path to map public to private 

IPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Attack path to determine mapping of VM types to IP 

ranges and availability zones. 
 

Step 1: Install VM with DNS lookup scripts 

Step 2: Probe web-servers externally to check 

responsive public IPs 

Step 3: Use internal DNS lookup to map public 

IPs to Private IPs 

Step 4: Record unique public to private 

mappings 

Step 5: If more GOTO2, ELSE end 

 

 

3 4 5 

1 

2 

* * 

* hard/ in distinguishable        Easy / distinguishable 

? Partial /enumerable 

* hard/ in distinguishable        Easy / distinguishable 

? Partial /enumerable 

 

Step 1: Install VM for IP assignment recording 

Step 2: Specify VM of type * 

Step 3: Install VM of type * in cloud 

Step 4: Record private IP of newly-installed VM 

Step 5: Infer IP assignment pattern for type * 

     Step 6: If try further GOTO 7, ELSE end 

     Step 7: Very type specification of *, GOTO 2 

1 2 3 4 5  

7 

6 

* 
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mappings observable by the attacker, which impacts steps 

(2), (3) and (4) in the attack path, shown in Fig. 3. Mapping 1 

public IP address to randomly assigned private IP addresses 

reduces the specificity of knowledge gained by an attacker 

with the capability to do internal DNS. The records of 

mappings will have collisions, which serve to impede targeted 

coresidence by introducing additional effort and cost for the 

attacker, in that more brute-force attempts and malicious 

instances need to be deployed 

Fig. 4 shows that the critical step (5) in the attack path is 

disrupted by our approach, as there is no pattern used for 

private IP address assignment. The assignment of IP addresses 

by a dynamic host configuration protocol (DHCP) server will 

follow a predictable sequence by default; but this can be 

configured to randomly select from the pool of available IP 

addresses. There is no need for the cloud administrator to 

allocate IP addresses per availability zone as groups are 

dynamically created and assigned responsibility for specific IP 

addresses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Determine of coresidence using Domo equivalence 

check 

 

 

 

 

 

 

 

 

 

Figure 6: Determination of coresidence using relative round 

trip time estimate. 

Figs. 5 and 6 show that addressing the critical steps (5) in 

determining coresidence are not addressed explicitly by our 

solution. It is still possible for the attacker to execute tracert on 

randomly selected private IP addresses and test for coresidence 

based on equivalent Dom0 addresses or relatively short round 

trip times. However, in both cases the attacker is forced to 

follow a random selection as opposed to following a sequence. 

Therefore successful coresidence detection does not reveal 

knowledge about other IP addresses that are numerically close. 

Figs. 8 and 9 show that addressing the critical steps (5) in 

determining coresidence are not addressed explicitly by our 

solution. It is still possible for the attacker to execute tracert on 

randomly selected private IP addresses and test for coresidence 

based on equivalent Dom0 addresses or relatively short round 

trip times. However, in both cases the attacker is forced to 

follow a random selection as opposed to following a sequence. 

Therefore successful coresidence detection does not reveal 

knowledge about other IP addresses that are numerically close. 

I. RISK ASSESSMENT 

Up until this point, we have discussed how our solution 

provides measures to prevent users from being targeted and 

exploited. However, it is quite possible for users to be random 

victims of non directed exploits. In this paper perform a risk 

assessment to determine the likelihood of this event, 

considering that the impact of non directed exploits is 

workload and user dependent. With that said, suppose a 

malicious user decides to randomly target users belonging to 

any account proxy. Let user A denote a particular user amongst 

those which could be victimized; and let group B describe all 

users aside from user A. Below, we list 3 events. 

Event   : User A is not victimized 

Event   : Group B users are not victimized 

Event B: A successful exploit occurs 

Further, 

  

          
 (  )  

 ( |  )  
‖

 (  )    

 ( |  )    
                                        (11) 

  In this   (  ) is the likelihood that user A is not victimized 

and  (  ) is the likelihood group B users are not victimized, 

 ( |  ) is the likelihood a successful exploit occurs, given 

that user A is not victimized and  ( |  ) is the likelihood a 

successful exploit occurs, given that group B users are not 

victimized. In this paper assumed that events    and     are 

mutually exclusive. 

Bayes’ Theorem is taken in this paper to determine the 

likelihood user A is NOT victimized, given that a successful 

exploit occurred. 

 (  | )  
 (  ) ( |  )

 (  ) ( |  )  (  ) ( |  )
                      (12) 

 

                     
  

   (   )(   )
                                  (13) 

Now, suppose that all users each have a VM deployed; each 

account proxy has      members; and there are N total account 

proxies. Further, consider that each proxy has the same chance 

of being targeted, and that members assigned to each account 

have the same chance of being victimized. Then, the chance of 

user A being victimized is the likelihood that his particular 

Step 1: Install VM with tracert script 

Step 2: Select private IP of target 

Step 3: Do tracert on private IP of target 

Step 4: Check firsthop in tracert against last hop of 

before target 

Step 5: If first hop equals last hop infer share Domo 

     Step 6: If more targets GOTO 2 else end 

      

 
1 2 3 4 5  

7 

6 

 

Step 1: Install VM 

Step 2: Select private IP within numeric range 

Step 3: Do ping on private IP of target 

Step 4: Check round trip time (rtt) 

Step 5: If response and “short” rtt: infer co-

residence; 

Step 6: If more targets GOTO 2 else end 

 
1 2 3 4 5  6 
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account proxy is targeted,   ⁄  times the likelihood that user A 

will be randomly targeted    ⁄ .  This yields     ⁄ . Thus, the 

chance that user A will not be victimized is expressed in (10). 

Notice, here, we use to denote the product N of and   . 

Moreover, as denoted in (11), we say that the likelihood of user 

A being victimized is the same as the chance that users from 

group B are not victimized 

    [
 

 

 

  
]    

 

 
                                          (14) 

      [  
 

 
]  

 

 
                                        (15) 

Substituting (14) and (15) into (13), we receive 

 (  | )  
[  

 

 
] 

[  
 

 
]  [

 

 
](   )

                                      (16) 

 
    

 [
       

 
]
                                                             (17) 

 
   

       
                                                                (18) 

Also use Bayes’ Theorem to determine the likelihood that 

users from group B are NOT victimized, given that a 

successful exploit occurred. 

 (  | )  
 (  ) ( |  )

 (  ) ( |  )  (  ) ( |  )
                       (19) 

 

 
(   )(   )

   (   )(   )
                                                       (20) 

Substituting (14) and (15) into (20), we find 

 

 (  | )  
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][   ]

[  
 

 
]  [

 

 
][   ]

                                        (21) 
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]  

   

 

                                                            (22) 

 

 
   

 (   )  
                                                                (23) 

 

Given an exploit, events      and     are equally likely when 

 (  | )   (  | )                                              (24) 

 
   

       
 

   

 (   )  
                                                (25) 

Set      and solve for   receive  

(   )(      )  (   )(       )    (26) 

 

                                                      (27) 

 (   )                                                     (28) 

    
     

 
                                                         (29) 

The parameters for (12) (14), and (16) are           .    . 

To understand howthe number of members    affect and 

 (  | ) and  (  | ).  we arbitrarily choose N=36 , specify a 

set of values for parameters     and  , and plot the results. The 

interpretation of the graphs is quite intuitive.  

 

 

CONCL

USION 

Prop

osed a 

solution 

which relies on mussel-inspired user account, workload 

clustering, and account proxies to obfuscate the public to 

private 

 

 

Figure 7:  (  | ) The likelihood user A is NOT victimized 

The above figure clearly illustrates that it is highly likely a 

user A will be NOT victimized, given a successful exploit has 

occurred. The chances increase as the number of members to 

one’s account proxy increases 

 

 

Figure 11:  (  | ) The likelihood that users from group B 

are NOT victimized. 

 

From the figure observes that the chances of a user from 

group B not being the victim decrease as increases. 

From the figure 12 observes that this only occurs for a select 

values of    and β   when       as shown in above figure 

.When         the events are equally likely when   . The 

values of are negligible in this case.  
 

 

 

Figure 7:  (  | )   (  | ) The likelihood user A1 and A2 

is NOT victimized 
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