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The algorithm performs the task of text summarization 

is  called  as  text  summarizer. The  text  summarizers are 

broadly categorized in  two  categories which are  single- 

document summarizer and  multi-document summarizers. 

In   single-document  summarizers,  a   single   large   text 
document  is  summarized  to  another  single  document 

summary, whereas in multi-document summarization, a set 

of text documents (multi documents) are summarized to a 

single  document  summary  which  represents  the  overall 

glimpse of the multiple documents. 

 
Multi-document summarization is a technique used to 

summarize   multiple  text   documents  and   is   used   for 

understanding  large  text  document  collections.  Multi- 

document summarization generates a compact summary by 

extracting  the  relevant  sentences  from  a  collection  of 

documents on the basis of document topics. In the recent 
years  researchers  have  given  much  attention  towards 

developing    document    summarization    techniques.    A 

number  of  summarization  techniques  are  proposed  to 

generate summaries by extracting the important sentences 

from the given collection of documents. Multi-document 

summarization is used for understanding and analysis of 
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Abstract:Document summarization provides an instrument for faster understanding the collection of text documents and 

has a number of real life applications. Semantic similarity and clustering can be utilized efficiently for generating effective 

summary of large text collections. Summarizing large volume of text is a challenging and time consuming problem particularly 

while   considering the semantic similarity computation in   summarization  process.   Summarization   of   text   collection   

involves   intensive   text   processing   and computations to generate the summary. MapReduce is proven state of art technology 

for handling Big Data. In this  paper,  a  novel  framework based  on  MapReduce technology is  proposed for  summarizing 

large  text collection. The proposed technique is designed using semantic similarity based clustering and topic modeling using 

Latent Dirichlet Allocation (LDA) for summarizing the large text collection over MapReduce framework. The summarization 

task is  performed in  four stages and provides a modular implementation of multiple documents summarization. The  

presented technique is  evaluated  in  terms  of  scalability and  various  text summarization parameters namely, compression 

ratio, retention ratio, ROUGE and Pyramid score are also measured. The advantages of MapReduce framework are clearly 

visible from the Experiments and it is also demonstrated that MapReduce provides a faster implementation of summarizing 

large text collections and is a powerful tool in Big Text Data analysis. 
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Introduction 
 

Text   summarization  is   one   of   the   important  and 

challenging problems in text mining. It provides a number 

of  benefits  to  users  and  a  number  of  fruitful  real  life 

applications can be developed using text summarization. In 

text summarization a large collections of text documents 

are transformed to a reduced and compact text document, 

which represents the digest of the original text collections. 
A summarized document helps in understanding the gist of 

the large text collections quickly and also save a lot of time 

by avoiding reading of each individual document in a large 

text  collection. Mathematically, text  summarization is  a 

function of converting large text information to small text 

information   in   such   a   manner   that   the   small   text 

information carries the  overall picture  of  the  large  text 
collection as given in equation (1), where D represents the 

large text collection and d represents the summarized text 

document and the size of large text collection D is larger 

than the size of summarized document d. 

 f:D→d||D|≪|d|f:D→d||D|≪|d|    (1)
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widely used  for  processing and  managing large data 

sets in a distributed cluster, which has been used for 

numerous  applications  such  as,  document  clustering, 
access  log  analysis,  generating  search  indexes  and 

various  other  data  analytical  operations.  A  host  of 

literature is present in recent years for performing Big 

Data clustering using MapReduce framework [3, 4, 13– 

16]. A modified K-means clustering algorithm based on 

MapReduce framework is proposed by Li et al. [17] to 
perform clustering on large data sets. 

 For  analyzing  large  data  and  mining  Big  Data 

MapReduce framework is used in a number of works. 

Some of the work presented in this direction is web log 

analysis [18], matching for social media [19], design and 

implementation of Genetic Algorithms on Hadoop [20], 
social    data    analysis    [21, 22],    fuzzy    rule    based 

classification  system  [23],   log  joining  [24],   online 

feature   selection   [25],   frequent   item   sets   mining 

algorithm    [26]    and    compressing    semantic    web 

statements [27]. 

 
Handling large text is a very difficult task particularly 

in knowledge discovery process. MapReduce framework 

is successfully utilized for a numbers of text processing 

tasks such as stemming [28], distribute the storage and 

computation loads in a cluster [29], text clustering [30], 

information   extraction   [31],   storing   and    fetching 
unstructured  data  [32],  document  similarity  algorithm 

[33],  natural  language  processing  [34]  and  pair-wise 

document   similarity   [35].   Summarizing   large   text 

collection is an interesting and challenging problem in 

text analytics. A numbers of approaches are suggested 

for handling large text for automatic text summarization 
[36, 37].  A  MapReduce  based  distributed and  parallel 

framework for summarizing large text is also presented 

by Hu and Zou [38]. 

 
A technique is proposed by Lai and Renals [39], for 

meeting  summarization  using  prosodic  features  and 

augment  lexical  features.  Features  related  to  dialogue 
acts    are    discovered    and    utilized    for    meeting 

summarization.   An    unsupervised   method   for   the 

automatic summarization of source code text is proposed 

by Fowkes et al. [40]. The proposed technique is utilized 

for code folding, which allows one to selectively hide 
blocks of code. A multi-sentence compression technique 

is   proposed   by   Tzouridis et   al. [41].   A   parametric 

shortest path algorithm using word graphs is presented 

for multi-sentence compressions. A parametric way of 

edge   weights   is   used   for   generating   the   desired 

summary.  Parallel  implementation  of  Latent  Dirichlet 
Allocation  namely,  PLDA  is  proposed  by  Wang et 

al. [42]. The implementation is carried using MPI and 

MapReduce framework. It is demonstrated that PLDA 

can be applied to large, real-world applications and also 

achieves good scalability. 

 

MapReduce is a popular programming model 

for processing large data sets.  It  offers a  number of 

benefits in handling large data sets such as scalability, 

flexibility,    fault    tolerance    and    numerous    other 

advantages.  In  recent  years  a  number  of  works  are 
presented by researchers in field of Big Data analytics 

and   large   data   sets   processing.   The   challenges, 

opportunities, growth  and  advantages of  MapReduce 

framework in handling the Big Data is presented in a 

number  of  studies  [6–12].  MapReduce  framework  is 

 

 

large  document  collections,  the  major  source  of  these 

collections are news archives, blogs, tweets, web pages, 

research papers, web search results and technical reports 
available   over   the   internet   and   other   places.   Some 

examples   of   the   applications  of   the   Multi-document 

summarization are  analyzing  the  web  search  results  for 

assisting  users  in  further  browsing  [1],  and  generating 

summaries for news articles [2]. Document processing and 

summary generation in a large text document collection is 
computationally complex task and in the era of Big Data 

analytics where size of  data collections is  high there is 

need   of   algorithms   for   summarizing   the   large   text 

collections rapidly. In this paper, a MapReduce framework 

based summarization method is proposed to generate the 

summaries   from   large   text   collections.   Experimental 
results on UCI machine learning repository data sets reveal 

that  the  computational  time  for  summarizing  large  text 

collections  is  drastically  reduced  using  the  MapReduce 

framework   and   MapReduce   provides   scalability   for 

accommodating  large  text  collections  for  summarizing. 

Performance    measurement    metric    of    summarization 
ROUGE  and  Pyramid  scores  are  also  gives  acceptable 

values in summarizing the large text collections. 

 
Single-document  summarization  is   easy   to 

handle  since  only  one  text  document  needs  to  be 

analyzed  for  summarization,  whereas  handling  multi- 
document summarization is a complex and difficult task. 

It requires a number of (multiple) text documents to be 

analyzed  for  generating  a  compact  and  informative 

(meaningful)  summary.  As  the  number  of  documents 

increases    in    multi-document    summarization,    the 

summarizer  gets  more  difficulties  in  performing  the 
summarization. A summarizer is said to be good, if it 

contains     more     fruitful     and     relevant     compact 

representation  of  large  text  collections.  Considering 

semantic  similar  terms  provide  benefits  in  terms  of 

generating  more  relevant  summary  but   it   is   more 

compute   intensive,   since   semantic   terms   will   be 
generated and considered for creating summary from a 

large  text  collection.  In  this  work  the  problems  with 

multi-document text summarization are addressed with 

the help of latest technologies in text analytics. A multi- 

document summarizer is presented in this work with the 
help  of  semantic  similarity  based  clustering  over  the 

popular distributed computing framework MapReduce. 

 
Background and Literature review 
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The  process  of  proposed  multi-document 

summarization is shown in the Fig. 1 and Fig. 2. The 

summarization is performed in four major stages. The 

first stage is the document clustering stage where text 

clustering technique is applied on the multi document 

text collection to create the text document clusters. The 

purpose of this stage is to group the similar text 

document for making it ready for summarization and 

ensures that all the similar set of documents participates 

as a group in summarization process. 

clusters are taken as input to the summarizer which are 

shuffled and broadcasted to the mappers in Map-Reduce 

framework. The frequency of these topic terms is 

calculated and frequent terms are selected and semantic 

similar  terms  for  these  selected  terms  are  computed 

using WordNet application programming interface (API) 

[43] which are collectively computed and taken as input 

to the next stage. WordNet is a popular API which 

provides  an   excellent  way   for  generating  semantic 

similar terms for a given term. In the last stage, sentence 

filtering is  performed from  each  individual input text 

document on the basis of frequent and semantic similar 

terms generated from previous stage. For each document 

the sentences which are containing the frequent terms 

and semantic similar terms to the frequent terms are 

selected for participation in the summary document. 

Finally  the  approximate  duplicate  sentences  are 

identified and  removed from the  summary report  and 

final summary document is generated.
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 

Methodology of multi document summarization 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 

Stages in MapReduce framework for multi document 

summarization 
 

 
In the second stage Latent Dirichlet Allocation (LDA) 

topic modeling technique is applied on each individual 

text document cluster to generate the cluster topics and 

terms belonging to each cluster topic. In the third stage, 

global frequent terms are generated from the collection 

of  multiple  text  documents.  The  process  of  frequent 

terms  generation from the  multiple text  documents is 

shown in the Fig. 3. The topic terms generated for text 

Fig. 3 

Frequent  terms  counting  from  text  collection  using 

MapReduce framework 
 

 
Latent dirichlet allocation 

 

Latent  Dirichlet  Allocation (LDA)  [44]  is  a  popular 

topic modeling technique which models text documents 

as  mixtures of  latent topics, which are key concepts 

presented in the text. A topic model is a probability 

distribution technique over the collection of text 

documents, where each document is modeled as a 

combination  of  topics,  which  represents  groups  of 

words  that  tend  to  occur  together.  Each  topic  is 

modeled  as  a  probability  distribution φk over  lexical
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terms. Each topic is presented as a vector of terms with 

the  probability  between  0  and  1.  A  document  is 

modeled  as  a  probability  distribution  over  topics  In 

LDA, the topic mixture is drawn from a conjugate 

Dirichlet prior that is the same for all documents. The 

topic modeling for text collection using LDA is 

performed in  four  steps. In  the  first  step  a 

multinomial distribution  for  each  topic tt is  selected 

from  a  Dirichlet  distribution  with  parameter ββ.  In 

second step for each document d, a multinomial 

distribution θbθb is     selected     from     a     Dirichlet 

distribution with parameter αα. In third step for each 

word w in document s a topic t from θbθb is selected. 

And  finally  in  fourth  step  a  word  w  from θtθt is 

selected to represent the topic for the text document. 

The probability of generating a corpus is given by the 

equation (4) [44]. 

 ∬∏t=1KP(θt|β)∏b=1NP(θb|α)(∏t=1Nb∑b=1KP(ti|θ)P( wi|t,∅ ))dθd∅ ∬∏t=1KP(θt|β)∏b=1NP(θb|α)(∏t=1Nb∑ b=1KP(ti|θ)P(wi|t,∅ ))dθd∅ 

used for clustering. It is a simple, low complexity and a 

very popular clustering algorithm. 

 
The k-means  algorithm  [45]  is  a  partitioning  based 

clustering  algorithm.  It  takes  an  input  parameter, k 

i.e. the   number   of   clusters   to   be   formed,   which 

partitions a set of n objects to generate the k clusters. 

The   algorithm  works  in   three   steps.  In   the   first 

step, k number of the objects is selected randomly, each 

of which represents the initial mean or center of the 

cluster. In the second step, the remaining objects are 

assigned  to  the  cluster  with  minimum distance  from 

cluster center or mean. In the third step, the new mean 

for each cluster is computed and the process iterates 

until the criterion function converges. The algorithm is 

presented in the Fig. 6 and the performance of k-means 

is measured using the square-error function defined in 

the equation (5).

 

LDA estimates the topic-term distribution and the 

document topic distribution from an unlabelled collection 

of documents using Dirichlet priors for the distributions 

over a fixed number of topics. Graphical representation 

of LDA topic modeling technique is presented in the Fig. 

5. 

 
 
 
 
 
 
 
 
Fig. 6

 

K-Means clustering algorithm 
E=∑i=1k∑p∈ Ci∣  ∣  p−mi∣  ∣  2E=∑i=1k∑p∈ Ci|p−mi|2 

 

Where E is the sum of the square error, p is the point in 

space representing a given object and mi is the mean of 

cluster Ci. This criterion tries to make the resulting k 

clusters as compact and  as separate as possible. The 

algorithm is consisting of five major steps which are 

summarizes as given below. 
 

Fig. 5 

 
Graphical representation of LDA process 

 
K-means clustering algorithm 

 
Clustering is  a  process of  creating groups of  similar 

objects. Clustering algorithms are categorized into five 

major categories namely, Partitioning techniques, 

Hierarchical  techniques,  Density  Based   techniques, 

Grid Based techniques and Model based techniques. 

Partitioning  techniques  are  the  simplest  techniques 

which creates K number of disjoint partitions to create K 

number of clusters. These partitions are created using 

certain statistical measures like  mean,  median etc. K- 

means is a classical unsupervised learning algorithms 

Result analysis 

 
The  scalability of  the  proposed work in  MapReduce 

framework up to four nodes is shown in the Fig.7. The 

scalability   is   calculated   using   different   nodes   and 

different numbers of  text  document reports for 

generating the summary using the proposed MapReducer 

based summarizer. Scalability tends to increase in 

proportion to the number of text documents with 

maximum numbers of nodes. The scalability of the 

proposed work is also supported by the Amdahl’s law. 

As per the Amdahl’s law [57], the optimal speedup 

possible for a computation is limited by its sequential 

components. If f is the fraction of the computational task

http://link.springer.com/article/10.1186/s40537-015-0020-5#CR44
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 Fig. 8 

Time in ms for summarizing the text reports 
 

The   performance   parameters   of   proposed 

summarizers i.e. compression   ratio,   retention   ratio, 

ROUGE  and  Pyramid  scores  are  evaluated for  three 

different scenarios. The summarizers are evaluated for 

the following three cases: 

∑ Case 1: Summarization without performing clustering 

and semantic similarity. 

∑ Case  2:  Summarization  with  clustering  but  without 

considering semantic similarity. 

∑ Case 3: Summarization by considering both clustering 

and semantic similarity. 

 
The compression ratio for different number of nodes for 

the  three  different  scenarios  is  shown  in  the  Fig.9. 

Similarly, the retention for the possible three cases is 

presented in the Fig. 10. It is apparent from the graphs 

that considering the semantic similarity (Case 3) will 

definitely give  better  results  for  generating  effective 

and meaningful summary of text document collections. 
These results clearly indicates that semantic similarity 

along  with  the  clustering gives  better  summarization 

results  as  compared  to  the  summarization  without 

semantic similarity and clustering. Semantic similarity 

provides meaningful grouping of similar text segments 
as summarization content units for generating summary 

of  the  text  collections.  Semantic  similarity  ensures 

better chunking of meaningful text groups as compared 

to  the  plain  clustering  of  text  documents  (Case  2). 

Semantic  similarity along  with  clustering provides  a 

mechanism     of     participation     of     the     different 
summarization content units from the different groups 

of text documents. 

 

 

then the theoretically maximum possible speedup for N 

parallel resources is SN=1(f+1−fN)SN=1(f+1−fN).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 

 
Scalability of MapReducer based summarizer  

The time required for generating summary from the text 

collection of different size and for different nodes in 

MapReduce 

framework is also shown in the Fig.8. Time to compute 

the summary tends to decrease with increase in number 

of nodes. As the nodes increases the computation time 

tends to linear and up to four nodes it becomes just 

linear in proportionate to the number of text documents 

participating in summary. When the number of nodes 
are changed from one to two the computational time 

downfall in exponential manners and when the nodes 

reaches  up  to  four  the  computational  time  becomes 

linear   with   proportionate   to   the   number   of   text 

document collection. 
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maximum pyramid score is achieved for the case III, where 

both   semantic   and   textual   similarity   (clustering)   is 

considered for summarizing the text collections. It is also 
shown that clustering (grouping the similar text segments) 

provides    better    summarization    in    context    to    the 

summarization     performed     with     non-clustered     text 

collections. Clustering provides better summarization units 

(text segments) for summarizing the text collections. It is 

also clear that clustering along with the semantic similarity 
provides better summarization content units for generating 

summary from the text collections. To better demonstrate 

the results of the different cases, Fig:11 visually illustrate 

the   comparison.   Figure 11   demonstrates   spider   chart 

showing the comparisons of the three different cases, it is 

clearly   visible   from   the   chart   that   the   values   of 
performance parameters for case-III (considering both the 

clustering with semantic similarity) gives better results as 

compared to the rest of the two cases. 

 

The   rouge   and   pyramid   scores   of   the   presented 

summarization approaches are tabulated for the three different 

cases in the Table 1. ROUGE unigram and bigram scores are 

calculated  for  the  presented  work.  ROUGE  unigram  gives 
better results for summarization as compared to the ROUGE 

bigram approach. The pyramid score gives a normalized score 

in the range of 0 to 1 in order to evaluate the summary. 
As expected from the results the ROUGE and Pyramid 

scores are found higher for the case III than the other two 

cases.  Case  III  consider  both  the  textual  similarity  (using 

clustering) and semantic similarity which makes sure that best 

summarization  content  units  participate  in   the   summary 

generation. Case II gives better results than the Case I results, 

in  other  words  summarization using clustering gives better 

summarization  results  as  compared  to  the  summarization 
performed  without  performing  clustering.  It  indicates  that 

summarization performed on the clustered text documents is 

more accurate since similar text information is grouped within 

the same clusters. 

 Higher  pyramid  scores  indicating  that  relatively 
more of the content is as highly weighted as possible. High 

pyramid  score  reflects  the  greater  likelihood  that  more 

SCUs  (Summarization  Content  Units)  in  the  summary 

appear in the pyramid [53]. Just like the ROUGE score, 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 
 

Compression ratio for different cases 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 

Retention ratio for different 

cases 

 
 
Comparison of ROUGE and pyramid scores

 

                                                                                                                 Conclusion and Future enhancements 

 
A  multi-document  text  summarizer  based  on 

MapReduce framework is presented in this work. 

Experiments   are   carried   using   up   to   four   

nodes   in MapReduce framework for a large text 

collection and the 

summarization performance parameters compression 

ratio, retention ratio and computation timings are 

evaluated for a large text collection. It is also shown 

experimentally that MapReduce framework provides 

better scalability and reduced time complexity while 

considering large number of text documents for 

summarization. Three possible cases of summarizing  

the   multiple  documents  are   also   studied 

comparatively. It is shown that effective 

summarization is performed when both clustering and 

semantic similarity are considered. Considering 

semantic similarity gives better retention ratio, 

ROUGE and pyramid scores for summary. Future 

work in this direction can be providing the support

http://link.springer.com/article/10.1186/s40537-015-0020-5#Tab1
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR53
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for multi lingual text summarization over the 

MapReduce framework in  order  to  facilitate  the  

summary generation from the  text  document 

collections available in  different languages. 
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