
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 12 Dec. 2016, Page No. 19432-19438

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19432

The algorithm performs the task of text summarization

is called as text summarizer. The text summarizers are

broadly categorized in two categories which are single-

document summarizer and multi-document summarizers.

In single-document summarizers, a single large text
document is summarized to another single document

summary, whereas in multi-document summarization, a set

of text documents (multi documents) are summarized to a

single document summary which represents the overall

glimpse of the multiple documents.

Multi-document summarization is a technique used to

summarize multiple text documents and is used for

understanding large text document collections. Multi-

document summarization generates a compact summary by

extracting the relevant sentences from a collection of

documents on the basis of document topics. In the recent
years researchers have given much attention towards

developing document summarization techniques. A

number of summarization techniques are proposed to

generate summaries by extracting the important sentences

from the given collection of documents. Multi-document

summarization is used for understanding and analysis of

Text Summarization using topic modeling and cluster based

MapReduce framework
N.Prameela

Assistant Professor

Department of Computer science & Engineering

Marri Laxman Reddy Institute of

Technology,Hyderabad

prameelakotipalli@gmail.com

Abstract:Document summarization provides an instrument for faster understanding the collection of text documents and

has a number of real life applications. Semantic similarity and clustering can be utilized efficiently for generating effective

summary of large text collections. Summarizing large volume of text is a challenging and time consuming problem particularly

while considering the semantic similarity computation in summarization process. Summarization of text collection

involves intensive text processing and computations to generate the summary. MapReduce is proven state of art technology

for handling Big Data. In this paper, a novel framework based on MapReduce technology is proposed for summarizing

large text collection. The proposed technique is designed using semantic similarity based clustering and topic modeling using

Latent Dirichlet Allocation (LDA) for summarizing the large text collection over MapReduce framework. The summarization

task is performed in four stages and provides a modular implementation of multiple documents summarization. The

presented technique is evaluated in terms of scalability and various text summarization parameters namely, compression

ratio, retention ratio, ROUGE and Pyramid score are also measured. The advantages of MapReduce framework are clearly

visible from the Experiments and it is also demonstrated that MapReduce provides a faster implementation of summarizing

large text collections and is a powerful tool in Big Text Data analysis.

Keywords: Summarizing large text Semantic similarity Text clustering, Clustering based summarization

Big Text Data analysis

Introduction

Text summarization is one of the important and

challenging problems in text mining. It provides a number

of benefits to users and a number of fruitful real life

applications can be developed using text summarization. In

text summarization a large collections of text documents

are transformed to a reduced and compact text document,

which represents the digest of the original text collections.
A summarized document helps in understanding the gist of

the large text collections quickly and also save a lot of time

by avoiding reading of each individual document in a large

text collection. Mathematically, text summarization is a

function of converting large text information to small text

information in such a manner that the small text

information carries the overall picture of the large text
collection as given in equation (1), where D represents the

large text collection and d represents the summarized text

document and the size of large text collection D is larger

than the size of summarized document d.

 f:D→d||D|≪|d|f:D→d||D|≪|d| (1)

mailto:prameelakotipalli@gmail.com
mailto:prameelakotipalli@gmail.com

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19433

widely used for processing and managing large data

sets in a distributed cluster, which has been used for

numerous applications such as, document clustering,
access log analysis, generating search indexes and

various other data analytical operations. A host of

literature is present in recent years for performing Big

Data clustering using MapReduce framework [3, 4, 13–

16]. A modified K-means clustering algorithm based on

MapReduce framework is proposed by Li et al. [17] to
perform clustering on large data sets.

 For analyzing large data and mining Big Data

MapReduce framework is used in a number of works.

Some of the work presented in this direction is web log

analysis [18], matching for social media [19], design and

implementation of Genetic Algorithms on Hadoop [20],
social data analysis [21, 22], fuzzy rule based

classification system [23], log joining [24], online

feature selection [25], frequent item sets mining

algorithm [26] and compressing semantic web

statements [27].

Handling large text is a very difficult task particularly

in knowledge discovery process. MapReduce framework

is successfully utilized for a numbers of text processing

tasks such as stemming [28], distribute the storage and

computation loads in a cluster [29], text clustering [30],

information extraction [31], storing and fetching
unstructured data [32], document similarity algorithm

[33], natural language processing [34] and pair-wise

document similarity [35]. Summarizing large text

collection is an interesting and challenging problem in

text analytics. A numbers of approaches are suggested

for handling large text for automatic text summarization
[36, 37]. A MapReduce based distributed and parallel

framework for summarizing large text is also presented

by Hu and Zou [38].

A technique is proposed by Lai and Renals [39], for

meeting summarization using prosodic features and

augment lexical features. Features related to dialogue
acts are discovered and utilized for meeting

summarization. An unsupervised method for the

automatic summarization of source code text is proposed

by Fowkes et al. [40]. The proposed technique is utilized

for code folding, which allows one to selectively hide
blocks of code. A multi-sentence compression technique

is proposed by Tzouridis et al. [41]. A parametric

shortest path algorithm using word graphs is presented

for multi-sentence compressions. A parametric way of

edge weights is used for generating the desired

summary. Parallel implementation of Latent Dirichlet
Allocation namely, PLDA is proposed by Wang et

al. [42]. The implementation is carried using MPI and

MapReduce framework. It is demonstrated that PLDA

can be applied to large, real-world applications and also

achieves good scalability.

MapReduce is a popular programming model

for processing large data sets. It offers a number of

benefits in handling large data sets such as scalability,

flexibility, fault tolerance and numerous other

advantages. In recent years a number of works are
presented by researchers in field of Big Data analytics

and large data sets processing. The challenges,

opportunities, growth and advantages of MapReduce

framework in handling the Big Data is presented in a

number of studies [6–12]. MapReduce framework is

large document collections, the major source of these

collections are news archives, blogs, tweets, web pages,

research papers, web search results and technical reports
available over the internet and other places. Some

examples of the applications of the Multi-document

summarization are analyzing the web search results for

assisting users in further browsing [1], and generating

summaries for news articles [2]. Document processing and

summary generation in a large text document collection is
computationally complex task and in the era of Big Data

analytics where size of data collections is high there is

need of algorithms for summarizing the large text

collections rapidly. In this paper, a MapReduce framework

based summarization method is proposed to generate the

summaries from large text collections. Experimental
results on UCI machine learning repository data sets reveal

that the computational time for summarizing large text

collections is drastically reduced using the MapReduce

framework and MapReduce provides scalability for

accommodating large text collections for summarizing.

Performance measurement metric of summarization
ROUGE and Pyramid scores are also gives acceptable

values in summarizing the large text collections.

Single-document summarization is easy to

handle since only one text document needs to be

analyzed for summarization, whereas handling multi-
document summarization is a complex and difficult task.

It requires a number of (multiple) text documents to be

analyzed for generating a compact and informative

(meaningful) summary. As the number of documents

increases in multi-document summarization, the

summarizer gets more difficulties in performing the
summarization. A summarizer is said to be good, if it

contains more fruitful and relevant compact

representation of large text collections. Considering

semantic similar terms provide benefits in terms of

generating more relevant summary but it is more

compute intensive, since semantic terms will be
generated and considered for creating summary from a

large text collection. In this work the problems with

multi-document text summarization are addressed with

the help of latest technologies in text analytics. A multi-

document summarizer is presented in this work with the
help of semantic similarity based clustering over the

popular distributed computing framework MapReduce.

Background and Literature review

Methodology

http://link.springer.com/article/10.1186/s40537-015-0020-5#CR3
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR3
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR13
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR16
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR17
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR18
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR19
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR20
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR21
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR21
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR23
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR24
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR25
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR26
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR27
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR28
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR29
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR30
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR31
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR32
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR33
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR34
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR35
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR36
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR36
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR38
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR39
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR40
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR41
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR42
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR6
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR1
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR2

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19434

The process of proposed multi-document

summarization is shown in the Fig. 1 and Fig. 2. The

summarization is performed in four major stages. The

first stage is the document clustering stage where text

clustering technique is applied on the multi document

text collection to create the text document clusters. The

purpose of this stage is to group the similar text

document for making it ready for summarization and

ensures that all the similar set of documents participates

as a group in summarization process.

clusters are taken as input to the summarizer which are

shuffled and broadcasted to the mappers in Map-Reduce

framework. The frequency of these topic terms is

calculated and frequent terms are selected and semantic

similar terms for these selected terms are computed

using WordNet application programming interface (API)

[43] which are collectively computed and taken as input

to the next stage. WordNet is a popular API which

provides an excellent way for generating semantic

similar terms for a given term. In the last stage, sentence

filtering is performed from each individual input text

document on the basis of frequent and semantic similar

terms generated from previous stage. For each document

the sentences which are containing the frequent terms

and semantic similar terms to the frequent terms are

selected for participation in the summary document.

Finally the approximate duplicate sentences are

identified and removed from the summary report and

final summary document is generated.

Fig. 1

Methodology of multi document summarization

Fig. 2

Stages in MapReduce framework for multi document

summarization

In the second stage Latent Dirichlet Allocation (LDA)

topic modeling technique is applied on each individual

text document cluster to generate the cluster topics and

terms belonging to each cluster topic. In the third stage,

global frequent terms are generated from the collection

of multiple text documents. The process of frequent

terms generation from the multiple text documents is

shown in the Fig. 3. The topic terms generated for text

Fig. 3

Frequent terms counting from text collection using

MapReduce framework

Latent dirichlet allocation

Latent Dirichlet Allocation (LDA) [44] is a popular

topic modeling technique which models text documents

as mixtures of latent topics, which are key concepts

presented in the text. A topic model is a probability

distribution technique over the collection of text

documents, where each document is modeled as a

combination of topics, which represents groups of

words that tend to occur together. Each topic is

modeled as a probability distribution φk over lexical

http://link.springer.com/article/10.1186/s40537-015-0020-5#Fig1
http://link.springer.com/article/10.1186/s40537-015-0020-5#Fig2
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR43
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR43
http://link.springer.com/article/10.1186/s40537-015-0020-5#Fig3
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR44

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19435

terms. Each topic is presented as a vector of terms with

the probability between 0 and 1. A document is

modeled as a probability distribution over topics In

LDA, the topic mixture is drawn from a conjugate

Dirichlet prior that is the same for all documents. The

topic modeling for text collection using LDA is

performed in four steps. In the first step a

multinomial distribution for each topic tt is selected

from a Dirichlet distribution with parameter ββ. In

second step for each document d, a multinomial

distribution θbθb is selected from a Dirichlet

distribution with parameter αα. In third step for each

word w in document s a topic t from θbθb is selected.

And finally in fourth step a word w from θtθt is

selected to represent the topic for the text document.

The probability of generating a corpus is given by the

equation (4) [44].

 ∬∏t=1KP(θt|β)∏b=1NP(θb|α)(∏t=1Nb∑b=1KP(ti|θ)P(wi|t,∅))dθd∅ ∬∏t=1KP(θt|β)∏b=1NP(θb|α)(∏t=1Nb∑ b=1KP(ti|θ)P(wi|t,∅))dθd∅

used for clustering. It is a simple, low complexity and a

very popular clustering algorithm.

The k-means algorithm [45] is a partitioning based

clustering algorithm. It takes an input parameter, k

i.e. the number of clusters to be formed, which

partitions a set of n objects to generate the k clusters.

The algorithm works in three steps. In the first

step, k number of the objects is selected randomly, each

of which represents the initial mean or center of the

cluster. In the second step, the remaining objects are

assigned to the cluster with minimum distance from

cluster center or mean. In the third step, the new mean

for each cluster is computed and the process iterates

until the criterion function converges. The algorithm is

presented in the Fig. 6 and the performance of k-means

is measured using the square-error function defined in

the equation (5).

LDA estimates the topic-term distribution and the

document topic distribution from an unlabelled collection

of documents using Dirichlet priors for the distributions

over a fixed number of topics. Graphical representation

of LDA topic modeling technique is presented in the Fig.

5.

Fig. 6

K-Means clustering algorithm
E=∑i=1k∑p∈ Ci∣ ∣ p−mi∣ ∣ 2E=∑i=1k∑p∈ Ci|p−mi|2

Where E is the sum of the square error, p is the point in

space representing a given object and mi is the mean of

cluster Ci. This criterion tries to make the resulting k

clusters as compact and as separate as possible. The

algorithm is consisting of five major steps which are

summarizes as given below.

Fig. 5

Graphical representation of LDA process

K-means clustering algorithm

Clustering is a process of creating groups of similar

objects. Clustering algorithms are categorized into five

major categories namely, Partitioning techniques,

Hierarchical techniques, Density Based techniques,

Grid Based techniques and Model based techniques.

Partitioning techniques are the simplest techniques

which creates K number of disjoint partitions to create K

number of clusters. These partitions are created using

certain statistical measures like mean, median etc. K-

means is a classical unsupervised learning algorithms

Result analysis

The scalability of the proposed work in MapReduce

framework up to four nodes is shown in the Fig.7. The

scalability is calculated using different nodes and

different numbers of text document reports for

generating the summary using the proposed MapReducer

based summarizer. Scalability tends to increase in

proportion to the number of text documents with

maximum numbers of nodes. The scalability of the

proposed work is also supported by the Amdahl’s law.

As per the Amdahl’s law [57], the optimal speedup

possible for a computation is limited by its sequential

components. If f is the fraction of the computational task

http://link.springer.com/article/10.1186/s40537-015-0020-5#CR44
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR45
http://link.springer.com/article/10.1186/s40537-015-0020-5#Fig6
http://link.springer.com/article/10.1186/s40537-015-0020-5#Fig5
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR57

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19436

 Fig. 8

Time in ms for summarizing the text reports

The performance parameters of proposed

summarizers i.e. compression ratio, retention ratio,

ROUGE and Pyramid scores are evaluated for three

different scenarios. The summarizers are evaluated for

the following three cases:

∑ Case 1: Summarization without performing clustering

and semantic similarity.

∑ Case 2: Summarization with clustering but without

considering semantic similarity.

∑ Case 3: Summarization by considering both clustering

and semantic similarity.

The compression ratio for different number of nodes for

the three different scenarios is shown in the Fig.9.

Similarly, the retention for the possible three cases is

presented in the Fig. 10. It is apparent from the graphs

that considering the semantic similarity (Case 3) will

definitely give better results for generating effective

and meaningful summary of text document collections.
These results clearly indicates that semantic similarity

along with the clustering gives better summarization

results as compared to the summarization without

semantic similarity and clustering. Semantic similarity

provides meaningful grouping of similar text segments
as summarization content units for generating summary

of the text collections. Semantic similarity ensures

better chunking of meaningful text groups as compared

to the plain clustering of text documents (Case 2).

Semantic similarity along with clustering provides a

mechanism of participation of the different
summarization content units from the different groups

of text documents.

then the theoretically maximum possible speedup for N

parallel resources is SN=1(f+1−fN)SN=1(f+1−fN).

Fig. 7

Scalability of MapReducer based summarizer

The time required for generating summary from the text

collection of different size and for different nodes in

MapReduce

framework is also shown in the Fig.8. Time to compute

the summary tends to decrease with increase in number

of nodes. As the nodes increases the computation time

tends to linear and up to four nodes it becomes just

linear in proportionate to the number of text documents

participating in summary. When the number of nodes
are changed from one to two the computational time

downfall in exponential manners and when the nodes

reaches up to four the computational time becomes

linear with proportionate to the number of text

document collection.

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19437

maximum pyramid score is achieved for the case III, where

both semantic and textual similarity (clustering) is

considered for summarizing the text collections. It is also
shown that clustering (grouping the similar text segments)

provides better summarization in context to the

summarization performed with non-clustered text

collections. Clustering provides better summarization units

(text segments) for summarizing the text collections. It is

also clear that clustering along with the semantic similarity
provides better summarization content units for generating

summary from the text collections. To better demonstrate

the results of the different cases, Fig:11 visually illustrate

the comparison. Figure 11 demonstrates spider chart

showing the comparisons of the three different cases, it is

clearly visible from the chart that the values of
performance parameters for case-III (considering both the

clustering with semantic similarity) gives better results as

compared to the rest of the two cases.

The rouge and pyramid scores of the presented

summarization approaches are tabulated for the three different

cases in the Table 1. ROUGE unigram and bigram scores are

calculated for the presented work. ROUGE unigram gives
better results for summarization as compared to the ROUGE

bigram approach. The pyramid score gives a normalized score

in the range of 0 to 1 in order to evaluate the summary.
As expected from the results the ROUGE and Pyramid

scores are found higher for the case III than the other two

cases. Case III consider both the textual similarity (using

clustering) and semantic similarity which makes sure that best

summarization content units participate in the summary

generation. Case II gives better results than the Case I results,

in other words summarization using clustering gives better

summarization results as compared to the summarization
performed without performing clustering. It indicates that

summarization performed on the clustered text documents is

more accurate since similar text information is grouped within

the same clusters.

 Higher pyramid scores indicating that relatively
more of the content is as highly weighted as possible. High

pyramid score reflects the greater likelihood that more

SCUs (Summarization Content Units) in the summary

appear in the pyramid [53]. Just like the ROUGE score,

Fig.9

Compression ratio for different cases

Fig. 10

Retention ratio for different

cases

Comparison of ROUGE and pyramid scores

 Conclusion and Future enhancements

A multi-document text summarizer based on

MapReduce framework is presented in this work.

Experiments are carried using up to four

nodes in MapReduce framework for a large text

collection and the

summarization performance parameters compression

ratio, retention ratio and computation timings are

evaluated for a large text collection. It is also shown

experimentally that MapReduce framework provides

better scalability and reduced time complexity while

considering large number of text documents for

summarization. Three possible cases of summarizing

the multiple documents are also studied

comparatively. It is shown that effective

summarization is performed when both clustering and

semantic similarity are considered. Considering

semantic similarity gives better retention ratio,

ROUGE and pyramid scores for summary. Future

work in this direction can be providing the support

http://link.springer.com/article/10.1186/s40537-015-0020-5#Tab1
http://link.springer.com/article/10.1186/s40537-015-0020-5#CR53

DOI: 10.18535/ijecs/v5i12.29

N.Prameela, IJECS Volume 05 Issue 12 Dec., 2016 Page No.19432-19438 Page 19438

for multi lingual text summarization over the

MapReduce framework in order to facilitate the

summary generation from the text document

collections available in different languages.

Referen

ces

[1] Turpin A, Tsegay Y, Hawking D, Williams H

(2007) Fast generation of result snippets in web

search. Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in

information retrieval, Amsterdam, Canada, pp 127–

134Google Scholar

ACM, New York, USA, pp 681–689CrossRefGoogle

Scholar

[11] Kolb L, Thor A, Rahm E (2013) Don’t Match Twice:

Redundancy-free Similarity Computation with MapReduce.

Proc. of the Second Workshop on Data Analytics in the

Cloud, ACM, New York, USA, pp 1–5Google Scholar

Management Revolution. Harv Bus Rev 90(10):60–

68Google Scholar

[9] Shim K (2013) MapReduce Algorithms for Big Data
Analysis. Databases in Networked Information Systems,
Springer, Berlin, Heidelberg, Germany, pp 44–
48Google Scholar [10] Ene A, Im S, Moseley B (2011)
Fast Clustering using MapReduce. Proc. of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data minin

[2] Sampath G, Martinovic M (2002) Proceedings of

the

6th International Conference on Applications of Natural

Language to Information Systems, NLDB 2002,

2002nd edn. Proceedings of the 6th International

Conference on Applications of Natural Language to

Information Systems,

Stockholm, Sweden, pp 208–212Google
Scholar

[3] Dean J, Ghemawat S (2004) MapReduce: Simplified

data processing on large clusters. Proc. of the

6th Symposium on Operating System Design and

Implementation (OSDI 2004). San Francisco, California,

pp

137–150Google
Scholar

[4] Dean J, Ghemawat S (2010) MapReduce: A

flexible data processing tool. Commun ACM

53(1):72–

77CrossRefGoogle Scholar

[5] Borthakur, D. (2007) The hadoop distributed

file system: Architecture and design. Hadoop Project

Website (Availableonlineat-

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf). p

1–

14 Accessed 15 April 2014

[6] Steve L (2012) The Age of Big Data. Big Data’s

Impact in the World, New York, USA, pp 1–5Google

Scholar

[7] Russom P (2011) Big Data Analytics. TDWI Research

Report, US, pp 1–38Google Scholar

http://scholar.google.com/scholar_lookup?title=Fast%20generation%20of%20result%20snippets%20in%20web%20search&author=A.%20Turpin&author=Y.%20Tsegay&author=D.%20Hawking&author=H.%20Williams&publication_year=2007
http://dx.doi.org/10.1145/2020408.2020515
http://dx.doi.org/10.1145/2020408.2020515
http://scholar.google.com/scholar_lookup?title=Fast%20Clustering%20using%20MapReduce.%20Proc.%20of%20the%2017th%20ACM%20SIGKDD%20international%20conference%20on%20Knowledge%20discovery%20and%20data%20mining&author=A.%20Ene&author=S.%20Im&author=B.%20Moseley&publication_year=2011
http://scholar.google.com/scholar_lookup?title=Don%E2%80%99t%20Match%20Twice%3A%20Redundancy-free%20Similarity%20Computation%20with%20MapReduce&author=L.%20Kolb&author=A.%20Thor&author=E.%20Rahm&publication_year=2013
http://scholar.google.com/scholar_lookup?title=Big%20Data%3A%20The%20Management%20Revolution&author=A.%20McAfee&author=E.%20Brynjolfsson&journal=Harv%20Bus%20Rev&volume=90&issue=10&pages=60-68&publication_year=2012
http://scholar.google.com/scholar_lookup?title=MapReduce%20Algorithms%20for%20Big%20Data%20Analysis&author=K.%20Shim&publication_year=2013
http://scholar.google.com/scholar_lookup?title=MapReduce%20Algorithms%20for%20Big%20Data%20Analysis&author=K.%20Shim&publication_year=2013
http://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%206th%20International%20Conference%20on%20Applications%20of%20Natural%20Language%20to%20Information%20Systems%2C%20NLDB%202002&author=G.%20Sampath&author=M.%20Martinovic&publication_year=2002
http://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%206th%20International%20Conference%20on%20Applications%20of%20Natural%20Language%20to%20Information%20Systems%2C%20NLDB%202002&author=G.%20Sampath&author=M.%20Martinovic&publication_year=2002
http://scholar.google.com/scholar_lookup?title=MapReduce%3A%20Simplified%20data%20processing%20on%20large%20clusters.%20Proc.%20of%20the%206th%20Symposium%20on%20Operating%20System%20Design%20and%20Implementation%20%28OSDI%202004%29&author=J.%20Dean&author=S.%20Ghemawat&publication_year=2004
http://scholar.google.com/scholar_lookup?title=MapReduce%3A%20Simplified%20data%20processing%20on%20large%20clusters.%20Proc.%20of%20the%206th%20Symposium%20on%20Operating%20System%20Design%20and%20Implementation%20%28OSDI%202004%29&author=J.%20Dean&author=S.%20Ghemawat&publication_year=2004
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/1629175.1629198
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
http://scholar.google.com/scholar_lookup?title=The%20Age%20of%20Big%20Data&author=L.%20Steve&publication_year=2012
http://scholar.google.com/scholar_lookup?title=The%20Age%20of%20Big%20Data&author=L.%20Steve&publication_year=2012
http://scholar.google.com/scholar_lookup?title=Big%20Data%20Analytics&author=P.%20Russom&publication_year=2011

