
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 8 Aug 2015, Page No. 13977-13980

Vandana Sahu, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13977-13980 Page 13977

Implementation of mobile crowd network for equalized distribution of work

processing

 Vandana Sahu#1, Prof. Santosh Tamboli*2

Department of Information technology

 VIDYALANKAR INSITUTE OF TECHNOLOGY, MUMBAI UNIVERSITY

Vandana.sahu@vit.edu.in

santosh.tamboli@vit.edu.in

ABSTRACT

In this paper we are going to implement distributed framework for performing a simple computation, on mobile computing devices. A central

server should take a large computation and decompose it. Mobile computing devices will then be allowed to connect to the server. Connecting,

the devices will assign tasks to complete, and upon completing the tasks, the results will be sent back to the server to be mapped.

The inherent problems of mobile computing such as resource scarcity, security and low connectivity pose problems for most applications.

However, the dynamic nature of mobile computing makes sharing and coordinating work difficult.

We help by pooling together the processing power of mobile devices within a crowd to form mobile cloud. We explore this concept of ‘work

stealing’ crowd computing in a distributed processing on an opportunistic network and focus on the optimized processing of work. Current work

stealing mechanism, security can be specified wherein the data transmitted across the crowd network will be secured using encryption

techniques and the system Algorithm is generated which states the techniques and working.

Keywords: Crowd computing, work distribution, Mobile

computing.

I. INTRODUCTION

Crowd computing is a term that has been used only recently in

the literature, and has been conceptualized in various ways as

being related to crowd sourcing, human computation, social

computing, mobile computing

As such different application is in process in different domain

like distributed Processing, Vehicular networking and

Congestion mitigation. This literature lacks a common

definition of crowd computing, and emerging technologies with

somewhat similar uses have added to the conceptual confusion.

Some authors have referenced work by other scholars and a

few have attempted to provide a definition of crowd computing,

it appears that the multiple streams of research and definitions

have evolved somewhat independently

This project focus on Mobile crowd computing within the

extant literature, in order to propose a definition of crowd

Computing in terms of optimization of the work and security

focus in term of encryption which can be used to Position the

research already conducted on this subject, and can be used as

a starting point for further research.

In this project we focus to make Distributed work scheduling

to worker and see the optimization of the work of each worker

Work stealing has proven to be an effective method for

scheduling. Fine-grained parallel programs on multi-core

computers. To achieve high performance [1]

II. BACKGROUND OVERVIEW

A. Existing System

Mobile computing can provide a computing tool when and

where it is needed irrespective of user movement, thereby

supporting location independence. However, the inherent

problems of mobile computing such as resource scarcity, finite

energy and low connectivity pose problems for most

applications. These problems can be addressed by ‘sharing’

resource intensive work with a resource rich server. However

in situations concerning mobile devices, connecting to a remote

resource cloud via Wi-Fi or 3G is not feasible because of

bandwidth issues, data access fees, and the battery drain.

Increasing usage and capabilities of smart phones, combined

with the potential of crowd computing can provide a

collaborative opportunistic resource pool to solve these

problems these distribution work stealing focus on the security

in that encryption techniques.[2]

Crowd computing has been described in various ways

including distribution of human intelligence tasks to mobile

devices, cloud computing with humans, human problem

solving with large numbers of people using computers, and

broadly as a set of human interaction tools for idea exchange

and non-hierarchical decision making. From the literature four

common characteristics can be identified to define the

boundaries of the term, i.e.: participation by a crowd of humans,

interaction with computing technology, activity that is

predetermined by the initiator or application itself and the

execution of tasks by the crowd utilising innate human

capabilities[3].

Volunteer computing is a paradigm in which large

Numbers of computers, volunteered by members of the
general public, provide computing and storage
resources. Early volunteer computing projects include
the Great Internet Prime Search.

http://www.ijecs.in/
mailto:Vandana.sahu@vit.edu.in
mailto:santosh.tamboli@vit.edu.in

DOI: 10.18535/ijecs/v4i8.62

Vandana Sahu, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13977-13980 Page 13978

LU Decomposition:

BOINC (Berkeleyopen infrastructure for Network Computing)

is a middleware system for volunteer computing.

Boing is being used by a number of projects, including

SETI@home , and others.

Volunteers participate by running a BOINC client program on

there computers.

BOINC-based projects are autonomous. Each project operates

a server consisting of several components.

WebInterface for account and team management, message

board.

Task server that creates task, dispatches them to client

 Data server that downloads input files and Execute and upload.

 III. Proposed System

We are focusing on the work distribution of the crowd Network

and going to implement distributed framework for performing

computation. We are utilizing the work distribution concept

and can analysis the time and management

 Decomposition Techniques

In LU Decomposition, the matrix is decomposed in iterations

(See Appendix for description of LU Decomposition) within

each iteration, the pivot row (at iteration i, this represents row i)

remains constant, while the calculation of all subsequent rows

is dependent on the pivot row, and the pivot column. As such, a

natural parallelisation scheme is to calculate all rows in parallel.

Further parallelisation may be achieved, by parallelising not

only the rows, but the columns in each row as well, however

this level of granularity was detrimental.

As described in class, the communication time may be

modelled as:

Communication Time = T o + n/B

Where,

T o = the time to send an empty message.

n = the message size

B = the link bandwidth

 In distributed computing, T is relatively large, while B is

relatively small. As such, it is desirable to reduce

the number of messages required. Which in this case, requires

increasing the message size, and not using the full

Parallelization scheme.

Thus, it was decided that each row in the matrix, be a single

task. All processes must wait for all rows to be

Computed, before continuing to the next iteration

Lower Upper (LU) decomposition is a form of Gaussian

elimination that factors a square matrix as the product of an

upper triangular matrix and a lower triangular matrix.

Forward elimination will be used to find the Lower and Upper

values of the matrix.

For the Lower:

1 11 = a 11/ a11= 1

1 21 = a 21 /a 11

1 31 = a 31 /a 11

...

For the Upper for the first iterations (to reduce first columns 0)

U= A

U 2 = u 2 − u 1 ∗ l 21

u 3 = u 3 − u 1 ∗ l 31

For the next iterations:

U 3 = u 3 − u 2 ∗ l 32

....

Eventually we lead to

IV. System Architecture

The concept of Work Stealing on multi processors was

first introduced. Each process maintains a double ended

queue containing the jobs. Each process Executes jobs

from the head of the queue, and when the queue is

empty, attempts to steal jobs from the tail of a queue

that belongs to another process.

DOI: 10.18535/ijecs/v4i8.62

Vandana Sahu, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13977-13980 Page 13979

V. MODULES

Delegator Module

1) Supervision Module

In this module the delegator will assign the work equally from

his input job list to his assigned workers group.

2) Monitoring Module

In this module delegator will monitor the workers and if worker

device want to steal the job after completion of his job then at

that time delegator will be the ‘victim’ and the worker will be

‘Steal’.

3) Work Stealing Module

If delegators own job list is empty, assume the role of ‘thief’,

select a worker device and try to steal jobs. If stealing attempt

is successful, run acquired jobs. If not, select a different

worker.

Workers Module

 If own job list is empty, assume the role of ‘thief’,

select a worker device and try to steal jobs. If stealing

attempt is successful, run acquired jobs. If not select a

different worker

 Continue this process until the conditions of job

completion are met. Upon completion, signal to all

workers that the job has been completed and

terminate.

 In a worker device,

1) Connect to a delegating device, and receive job list in

secure format.

2) Start executing the job list. Store the results in the

completed buffer.

3) If the completed buffer is full, transmit the completed

list to the delegator.

4) If the delegator signals it want to steal, examine the

stealing condition. If met assume role of ‘victim’.

1) Login & Registration

 Work Process of the system.

This is the authentication module of the system facilitating

users to add themselves to the system as well as authenticate

and utilize the system, thereby providing access to valid

registered users in the system.

2) Receiving and Working on Job List

Connect to a delegating device, and receive job list and Start

executing the job list. Store the results in the completed buffer.

VI. Algorithm and techniques

Input: A non-empty list of job parameters. This shall be

referred to as the ‘Job list’.

Output: An array of computed results corresponding to each

job.

In the device where the jobs originate from (delegator)

 Construct job list, and connect to workers.

 Distribute jobs equally among node in secure format

 Start executing the remaining jobs on the list, while

 listening for incoming result from worker

 If a worker device signals that it want to steal examine

stealing condition. If met, assume the role of ‘victim’

and let the worker ‘steal’.

This framework is to envision a future of crowd work that can

support more complex, creative, and highly valued work. At

the highest level, a platform is needed for managing pools of

tasks and workers. Complex tasks must be decomposed into

smaller subtasks, each designed with particular needs and

characteristics which must be assigned to appropriate groups of

workers who themselves must be properly motivated, selected,

and organized Tasks may be structured through multi-stage

workflows in which workers may collaborate either

DOI: 10.18535/ijecs/v4i8.62

Vandana Sahu, IJECS Volume 4 Issue 8 Aug, 2015 Page No.13977-13980 Page 13980

synchronously or asynchronously. Finally, quality assurance is

needed to ensure each worker’s output is of high quality and

fits together.

CONCLUSION & FUTURE SCOPE

 We are focusing on the work distribution of the crowd

Network. In our future work, we hope to address security

guarantee and integrity. Device participation is an important

factor to the success of mobile crowd, and participation

depends on the incentives. We hope to include incentive

management in our framework in future work, where

incentives could be in the form of social contract such as in a

group of friends, common goals such as discussed in or

monetary as in the case of crowd Sourcing done in it.

 We are going to implement distributed framework for

performing computation, on Mobile computing devices.

Central server should take a large computation and decompose

it. Mobile computing device will then be allowed to connect to

the server. Upon connecting the devices will be assigned tasks

to complete, and upon completing the task, the result will be

sent back to the server to be mapped. Here are we are utilizing

the work distribution concept and can analysis the time and

management.

 REFERENCES

[1] “Scheduling Parallel Programs by Work Stealing with

Private deques”, IEEE Transactions On Information Forensics

and Security, Vol. 9, No. 4, April 2014

[2] “Mobile Crowd Computing with Work Stealing”, IEEE

Transactions on network based information system Vol.15,

2012

[3] Crowd computing: a literature review- Kalpana Parshotam

(University of Witwatersrand, Johannesburg, South Africa)

[4] High-Performance Task Distribution for Volunteer

Computing- space Sciences Laboratory-University of

California, Berkeley

[5]http://www.researchgate.net/publication/234113867_Crowd

_computing_a_survey

[6]”Adaptive Work Stealing with Parallelism Feedback”

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology Cambridge, MA 02139

[7]” Honeybee: A Programming Framework for Mobile Crowd

Computing” Niroshinie Fernando, Seng W Loke, Wenny

Rahayu

[8] The case for crowd computing –computer laboratory

Cambridge united- kingdom.

http://www.researchgate.net/publication/258048918_Honeybee_A_Programming_Framework_for_Mobile_Crowd_Computing
http://www.researchgate.net/publication/258048918_Honeybee_A_Programming_Framework_for_Mobile_Crowd_Computing

