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Abstract: Cloud computing has enabled entirely new business models for high-performance computing. It is a dedicated local high-

performance computer is still an option for some, but more are turning to cloud computing resources to fulfil their high-performance 

computing needs. With cloud computing it is possible to tailor your computing infrastructure to perform best for your particular type of 

workload by selecting the correct number of machines of each type. This paper presents an efficient algorithm to find the best set of 

computing resources to allocate to the workload. This research is applicable to users provisioning cloud computing resources and to 

datacenter owners making purchasing decisions about physical hardware. Studies have shown that cloud computing machines have 

measurable variability in their performance. Some of the causes of performance variability include small changes in architecture, location 

within the datacenter, and neighboring applications consuming shared network resources. The proposed algorithm models the uncertainty in 

the computing resources and the variability in the tasks in a many-task computing environment to find a robust number of machines of each 

type necessary to process the workload. In addition, reward rate, cost, failure rate, and power consumption can be optimized, as desired, to 

compute Pareto fronts. 
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1.INTRODUCTION 

Some high-performance computing users are turning to 

cloud providers to complete their work due to the potential 

cost effectiveness and/or ease of use of cloud computing. The 

ability to provision hardware on-demand from a pre-defined 

set of different machine types, known as instance types, is 

very powerful. In fact, a proof of concept cluster was built by 

Amazon Web Services from their high performance instance 

types composed of over 26,000 cores with nodes connected 

via 10G Ethernet. This cluster ranked 101 on the Top 500 list 

for November 2014 [1]. The cloud has been successfully 

employed to process HPC jobs for actual scientific 

experiments [2]. Recent studies have shown that the 

performance of small and medium virtual clusters can compete 

with physical hardware. Cloud infrastructure as a service 

(IaaS) providers charge for the amount of time a virtual 

machine, known as an instance, is allocated (idle or active). 

This means that it is advantageous to terminate some or all 

instances once the workload has been processed. Leaving 

instances idle in the cloud is usually not cost effective. Once a 

new set of work needs to be processed, the decision of what 

instance types to start can be re-evaluated each time, 

considering the size and Sciences and Engineering instance 

types. Selecting the ideal number of instances of each instance 

type a user needs is challenging. The approach to provisioning 

computational resources given in this paper not only applies to 

cloud resource provisioning but also to selecting physical 

machines to purchase for use within HPC systems. The goal 

for provisioning HPC systems is to determine how to 

originally select or upgrade a system in such a way that 

maximizes the performance of the resultant system while 

meeting specific requirements that often include a budget 

constraint. The instance types available in the cloud have 

widely varying capabilities, by design, so that users can 

choose the resources that best match their workload and in 

doing so minimize the cost. For example, there is no need to 

provision high memory instance types if the workload does not 

require large amounts of memory. The cost for the smaller 

memory instance type will often be significantly less and 

provide nearly identical performance assuming all else is 

equal. Within a single IaaS  provider, instance types vary in 

the amount of memory, number and type of CPUs, disk 

capacity and performance, and network performance. All of 

these properties of instance types affects the performance of 

the workload executing on the instances [5]. Due to the 

availability of heterogeneous resources, IaaS is inherently a 

heterogeneous computing system. 

 

2.DESIGN AND IMPLEMENTATION 
 

A. Performance Results 

Stochastic linear programming is an extension of 

linear programming, where some of the coefficients in the 

objective and the constraints are random variables.The 

particular stochastic program we use is the recourse problem 

(RP) given in standard form as  

minimize cT x + E [Q(x,£)] 

where £ is a random vector representing the uncertain 

parameters. For the RP in , the first stage decision variable, x 

is a flattened version of MB and MS. The second stage 

decisions, y are flattened versions of the schedule p. The 

coefficients that are deterministic are incorporated into c and 
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the coefficients that are random are incorporated into q.This 

linear RP is similar to a linear program except for the 

expectation of the value function, Q(x,£), in the objective. The 

RP in (13) is known as a two-stage RP. The optimization 

problem finds the optimal x that minimizes the sum of the 

linear function cT x and the expectation of Q.1 The second 

stage optimization problem finds optimal y given a fixed 

realization of _. The random vector y is known as the recourse 

decision vector. This RP finds a robust solution for x in the 

sense that the objective value will on average be minimal 

when the optimal value of x is used. The solution x is robust to 

unknown values of the parameters.The vector x is often 

referred to as a strategy of the RP. 

The primary issue with stochastic programming is 

accurately computing the expectation in the objective function. 

The SAA approach uses many samples of  to compute the 

expectation as a sample average. Realizations of  are called 

scenarios. The process of creating scenarios is known as 

scenario generation. When using SAA, generating a 

reasonably small set of representative scenarios is important. 

Let there be K scenarios. For scenario k, let the probability of 

occurring be given by pk. With SAA, the scenarios are 

generated by randomly sampling according to its distribution, 

thus all the samples are equally probable. The expectation 

operator is linear and is applied to a linear function, namely qT 

y(£). Each scenario (i.e., realization of the ) defines a set of 

matrices Tk andWk, and vectors qk and hk. Each scenario also 

introduces a new vector of decision variables yk into the 

problem. The SAA is an unbiased estimator of the mean. In 

practice, it converges to the mean quickly in K. The DEP can 

have a large number of variables and constraints. For very 

large problems a technique called the L-method can be used to 

exploit the block structure of the constraint matrix to distribute 

the work of solving the linear program to many nodes.The 

problem is broken into two coupled decisions. The first is what 

to provision or purchase, namelyMB andMS. Then the random 

variables in the problem are realized and the second decision, 

known as the recourse decision, can be made. For this work, 

the random variables are the arrival rates, execution times, and 

power consumption, but virtually any other parameter in the 

model can be converted to a random variable. The recourse 

decision involves selecting the schedule p that is optimal for 

the actual arrival rates, execution times, and power 

consumption of the tasks. 

 

 

            
Multi-objective optimization is challenging because there is 

usually no single solution that is superior to all others. Instead, 

there is a set of superior feasible solutions that are referred to 

as the non-dominated solutions [31]. When all objectives are 

to be minimized, a feasible solution x1 dominates a feasible 

solution x2 where dth objective function. Feasible solutions 

that are dominated are generally of little interest because one 

can always find a better solution from the non dominated set. 

The non-dominated solutions, also known as outcomes and 

efficient points, compose the Pareto front. There are many 

techniques for solving multi-objective optimization problems. 

For linear optimization problems, there are two primary 

approaches. The first is known as Benson’s algorithm that 

iteratively refines the Pareto front. The second is a technique 

that converts the multi-objective problem into a set of scalar 

optimization problems through a process called scalarization. 

There are many scalarization techniques but most are 

specializations of Pascoletti-Serafini scalarization  such as the 

weighted sum algorithm.  

  

 
Three very different environments are used to analyze 

the behavior of the proposed algorithms for resource 

provisioning. The heuristic-based algorithms H1, H2, and H3, 

and the RP that uses stochastic programming are compared. 

The first environment is a small example used to illustrate the 

behavior of the algorithms. The second environment is a larger 

environment. The third environment was built based on 

benchmark data. A complete description of the sourc code, 

system parameters, and simulation results are available in the 
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supplementary material to aid in reproducibility. The data is 

provided as CSV and JSON files with further 

details available in the accompanying README.txt file. 

The steady-state model and the scenario generation 

are written in C++. To generate the DEP in (14) the Coin-OR 

Stochastic Modeling interface (SMI) is used [38]. The 

underlying linear programming problem is solved with the 

Coin-OR Linear Programming (CLP) solver [39]. CLP is a 

high quality open-source solver written in C++. All the 

simulations where run on an Apple MacBook Pro Mid 2014, 

2.2 GHz Intel Core i7. The solver is single threaded so timing 

results are for one core.To compare MVP, RP, and WS against 

the heuristics described in Section 7, one must be able to 

compute all the objectives including reward rate. The reward 

rate is a function of the steady-state schedule. To allow 

heuristics to perform as best as possible we use the optimal 

schedule from the steady-state model by solving a linear 

programming problem where the MB is fixed by the heuristic 

and MS = 0. When computing the expected objective values 

the optimal schedule is used for each scenario. 

 

 
 

 

 (a) Shows the reward rate computed with the mean of the 

parameters. 

(b) Shows the expected reward rate over all uncertainty in the 

parameters 

 

Fig. 3: Expected reward rate for different budgets for the E1 

environment: The reward rate asymptotes at 2:0 with RP 

approaching WS. The other algorithms never reach the 

maximum reward rate. 

3.CONCLUSION 

Stochastic programming is a powerful tool that can be 

applied to make robust decisions in the midst of the inherit 

uncertainty in computing systems in both IaaS provider clouds 

and traditional environments. The linear steady-state model and 

representative stochastic model enables the use of an efficient 

two-stage stochastic program for solving the machine 

provisioning problem. 
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