
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 5 May 2017, Page No. 21245-21257

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21245

Intelligent Method for Cost Estimation during Software

Maintenance

Durga Puja, Raghav Mehra, BD Mazumdar

Dept. of CSE

Bhagvant University Ajmer,Rajasthan

durgapuja10@gmail.com

Dept. of CSE Bhagvant University

Ajmer,Rajasthan

raghav.mehrain@gmail.com

Dept. of CSE ICST SHEPA

Varanasi,UP

bireshwardm@gmail.com

ABSTRACT

Software maintenance is very important and time consuming task which require a lot of parameters to be

taken care during the whole cycle of maintenance of software. The software maintenance engineer has

used various cost estimation models in their research work like COCOMO-I, COCOMO-II, SLIM, SEER-

SEM and FP. The problem with these models is that they require the complete data and information

making any decision and benchmark. Therefore the cost of software maintenance varies with types and

complexity of the software under the maintenance. We have identified the various factors which effects the

cost of the software maintenance. The various cost estimation models require a lots of metrics and only

after calculating the complete parameters, then only the software cost can be determined.

To reduce the software maintenance cost the proposed model has been introduce which can overcome the

cost even there is missing information. The Probability factor (PF) method has been used which can

overcome the cost. The proposed model used the various factors as input and accordingly the probability

of each factors has been calculated.

 Some of quality factor (in different software) can't be computed

 Sometimes cost of compute all of quality factors are very high

 We need long time for compute all of quality factors

 In some cases we need to a lot of people (user, quality manager, member of quality assurance's team)

to compute quality factors

Some other researchers have also deal with uncertainty in quality factor and matrices. Motameni et

al. (2010) proposed a model for software quality with BNs and ISO9126 quality model. There model doesn't

have last quality model's problems and can predict software quality with incomplete and uncertain data. Also

by this model the time and cost of calculating software quality is reduced.

1. Introduction

Software maintenance is the very crucial activity which requires a lot of time and cost. Software cost

estimation models attempt to estimate the effort required to develop a software project more accurately by

using a mathematical formula of expected project inputs. Boehm’s maintenance model consists of three

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21246

major phases: understanding, modifying and validating the software [93]. Software maintenance is the

recurring process of any software product during its life cycle [Mishra]. When a scratch of the new software

products comes into the human mind, the maintenance aspects should also come with its significance. In this

paper we have identified the software cost estimation factors, which can effects the cost of software

maintenance if during development these factors taken care. . From the literature review we have identified

various factor which affects the cost of program comprehension if they are taken during software

development.

2. Problem Description

The software maintenance activity is the most time consuming activity and even 50-60% time is consumed

in program comprehension [93]. Till date there are no empirical models and theories which can estimate the

cost of maintenance. In the review of program comprehension, the various cost factors has been identified.

These factors are the most significant, while going for development of software application and software

maintenance.

We have created a problem description table (Table 1) for the cost estimation on the basis of three important

parameters: human factor, cognitive factors and technical factors. The human factors are Bugs (BG), Cloned

Code (CC), Dead Code (DC), Re-Documentation (REDUC), Total Experience (TEXP), Language

Experience (LEXP), System OS Experience (SYSEXP), Hardware Experience (HWEXP), Programmer

ability (PAVA) and Education (EDUC). The Cognitive factors are Attitude of programmer (AP),

Techniques used (TU), Comment to code ratio (CTC) and Number of changes (NOC). The technical factors

are Complexity (CR), Line of Code (LOC), Code relations (CR), Concern Attributes (CA), Depth of

inheritance Tree (DIT), Response for a Class (RESCL), Weighted Method per class (WEPM), Message

Passing Coupling (MEPM), Lack of Cohesion in methods (LOCM), Data Abstraction Coupling (DAC),

Number of operators and operands (NOOP), Task Magnitude (TASK), Time (TIME), , Maintainability

(MT), Level of understandability (LOU), Cyclcomatic Complexity (CMC) and Tool used (TLU).

Table-1 Problem Description table

SNO. Factor Affective PC

Cognitive

factor

Human

factors

Technical

factors

1 Bugs [86] Y

2 Colned Code [86] Y

3 Dead Code [86] Y

4 Re-Documentation [86] Y

5 Complexity [86] Y

6 Attitude of programmer [89] Y

7 Line of Code [89] Y

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21247

Table-2 Program comprehension factors affecting cost.

Figure 1- Bayesian network model for program comprehension cost factors (Montani et al., 2010)

8 Code relations [89] Y

9 Concern Attributes [89] Y

10 Depth of inheritance Tree [89] Y

11 Response for a Class [89] Y

12 Weighted Method per class [89] Y

13 Message Passing Coupling [89] Y

14 Lack of Cohesion in methods [89] Y

15 Data Abstraction Coupling [89] Y

16 Number of operators and operands [86] Y

17 Total Experience [86] Y

18 Language Experience [87] Y

19 System OS Experience [87] Y

20 Hardware Experience [87] Y

21 Programmer ability [87] Y

22 Education [87] Y

23 Task Magnitude [86] Y

24 Time [89] Y

25 Techniques used [89] Y

26 Maintainability [89] Y

27 Level of understandability [87] Y

28 Comment to code ratio [89] Y

29 Number of changes [89] Y

30 Cyclcomatic Complexity [86] Y

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21248

Figure 2 - Hierarchical Correlation of Cost Factors and program comprehension

Rule Base

The basic rules for the cost comprehension is depends on the various parameters. The different parameters

which are present in the software accordingly the cost will be varies. If (condition) of a rule relates

characteristics by means of the logical operators (and). These characteristics are the branches that arrive to a

node, that is, the evidences and the result of previous nodes. The system works with probability factors (PF)

which are equivalent to values associated to nodes and evidences represented on the graph. When a

condition is satisfied, a resulting CPF is obtained from the PF of each entry parameter. The value attained to

a node represent the maximum PCF that may be achieve by this node, that is, when all parameters are

satisfied in a particular disease. The final result is obtained by the execution of all the pertinent rules. The

rules build from hierarchical model are given below:

Parameter Weight (W) Prior

probabilit

ies (P)

W*P Parameter Weight

(W)

Prior

probabil

ities (P)

W*P

COMPLEXITY EXPERIENCE

BG 0.07 0.5 0.035 TEXP 0.12 0.5 0.06

CC 0.07 0.5 0.035 LEXP 0.12 0.5 0.06

DC 0.07 0.5 0.035 SYSEXP 0.12 0.5 0.06

REDUC 0.07 0.5 0.035 HWEXP 0.12 0.5 0.06

LOC 0.07 0.5 0.035 PAVA 0.12 0.5 0.06

CR 0.07 0.5 0.035 EDUC 0.12 0.5 0.06

COA 0.07 0.5 0.035 TASK 0.12 0.5 0.06

DPINH 0.07 0.5 0.035 TIME 0.12 0.5 0.06

RESCL 0.07 0.5 0.035 MAINTAINABILITY

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21249

WEPM 0.07 0.5 0.035 NOOP 0.2 0.5 0.1

LOCM 0.07 0.5 0.035 MTC 0.2 0.5 0.1

DAC 0.07 0.5 0.035 LEVUND 0.2 0.5 0.1

TLU 0.07 0.5 0.035 CC 0.2 0.5 0.1

MEP 0.07 0.5 0.035 NOC 0.2 0.5 0.1

TASK

TEXP 0.14 0.5 0.07 EDUC 0.14 0.5 0.07

LEXP 0.14 0.5 0.07 TASK 0.14 0.5 0.07

PAVA 0.14 0.5 0.07 TIME 0.14 0.5 0.07

 TLU 0.14 0.5 0.07

Table1 Probabilities of cost matrix

Rules for cost estimation

R11: IF BG(p1) & CC(p2) & DC(p3) & REDUC(p4) & LOC(p5) & CR(p6) & COA(p7) & DPINH(p8) &

RESCL(p9) & WEPM(p10) & MEP(p11) & LOCM(p12) & DAC(p13) & TLU(p14) THEN

COMPLEXITY

R12: IF TEXP(p1) & LEXP(p2) & SYSEXP(p3) & HWEXP(p4) & PAVA(p5) & EDUC(p6) & TASK(p7)

& TIME(p8) THEN EXPERIENCE

R13: IF TEXP(p1) & LEXP(p2) & PAVA(p3) & EDUC(p4) & TASK(p5) & TIME(p6) & TLU(p7) THEN

TASK

R14: IF NOOP(p1) & MTC(p2) & LEVUND(p3) & CC(p4) & NOC(p5) THEN MAINTAINABILITY

R1: IF COMPLEXITY(p1) & IF EXPERIENCE(p2) & IF TASK(p3) & IF MAINTAINABILITY

THEN PROGRAM COMPREHENSION COST (P)

The value given in brackets in left hand side is Probability factor of the corresponding parameters whereas

the value given in the bracket in right hand side is probability factor of the rule.

Probability Factor

The probability-factor (PF) model is a method for managing uncertainty in rule-based systems which is

developed by managing uncertainty in rule-based systems which is developed by Shortliffe and Buchanan

(1975). The formula is as follows:

MB(h, e1 & e2) =MB(h, e1) + MB(h,e2) * (1-MB (h, e1)……………(1)

MD(h, e1 & e2) =MD(h, e1) + MD(h,e2) * (1-MB (h, e1)……………(2)

MD(h, e1 & e2) = 0 , IF MB(h, e1 & e2) = 1 i.e. all the evidences (e1 &e2) approves the hypothesis (h).

CCF= MB(h, e1 & e2) + MD(h, e1 & e2) ……………..(3)

Where MB is Measure of Belief and MD is measure of disbelief and CPF id is Cumulative Probability-

Factor.

Bayesian Network

Bayesian network graph is implemented by Homayun et al., (2010) on software quality model. Bayesian

network graph for software quality has shown in Figure 2. It has three levels. First level has cost

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21250

comprehension and their arcs go to metrics in second level. Cost factor's arcs go to third level in code

comprehension node. Each node (cost, cost factors, metric) has five states: Very High (degree =5), High

(degree =4), Medium (degree =3), Low (degree =2) and Very Low (degree =1). The value in bracket is

degree associated with the level. The data (probability) for first level (quality metric) is varies from

company to company or organization to organization. For example security in a company is more important

than another one. Therefore the quality experts of each company can fill them in conditional probability

table (CPT) according to their quality metrics, knowledge, and experience of previous software in their

Company. Using the previous knowledge of the similar project and software is one of the most important

factors to filling CPT. The formula used for computing the probability of each quality factor is given below:

P= -------------------(4)

Where pi and

di are probability (as shown in Table 1)

and degree of ith

quality matrix. L is number of

level (i.e. 14).

For example 'TASK’ and its seven metrics are: TEXP (M with degree= 7), LEXP (M with degree= 7), PAVA

(M with degree= 7), EDUC (M with degree= 7), TASK (M with degree= 7), TIME (M with degree= 7) &

TLU (M with degree= 7).

d = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 49

p = (0.07* 7 + 0.07* 7 + 0.07* 7 +0.07* 7 + 0.07* 7 + 0.07* 7 + 0.07* 7) / 14 * (0.07+0.07+ 0.07+ 0.07+0.07+ 0.07+ 0.07) =

0.44 using formula 4.

Calculating in percentage we get 44%. It means we have Task in this example by probability of 44 percent. Similarly, for other

quality factor CPT.

RESULT AND DISSCUSION

In the hierarchal tree shown in figure 1, we assume that the cost factor equally depends upon Complexity, Task, Maintainability

and Experience. Therefore, equal weights ¼ is assigned to each parameter. For different organization the weight is different for

different parameters. Further these quality factors depends equally of upon quality matrix. For example task depends upon seven

quality matrix as shown in figure 1. We assume that functionality equally depends upon the fourteen quality matrix (the

dependencies varies from company to company) therefore equal weights i.e. 1/14 is assigned to each quality matrix.

In the hierarchal tree (Figure 3) the evidence in the support of level one i.e. Task are e1: TEXP (p1=0.5), e2: LEXP

(p2=0.5), e3: PAVA (p3=0.5), e4: EDUC (p4=0.5), e5: TASK (z5=0.5), e6: TIME (z6=0.5) & e7: TLU

(z7=0.5). Where p1, p2, p3, p4, p5, p6 and p7 are PF. Therefore the CPF for rule 1 is calculated as follows.

For e2

MB=0.5 + 0.5 (1-0.5) =0.75, MD=0.0

CPF= 0.75

For e3

MB=0.75 + 0.5 (1-0.75) =0.825, MD=0.0

CCF= 0.825

For e4

MB=0.825 + 0.5 (1-0.825) =0.9125, MD=0.0

CCF= 0.9125

For e5

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21251

MB=0.9125 + 0.5 (1-0.9125) =0.956, MD=0.0

For e6

MB=0.956 + 0.5 (1-0.956) =0.978, MD=0.0

For e7

MB=0.978 + 0.5 (1-0.978) =0.989, MD=0.0

5. Conclusion

The proposed model used the various factors as input and accordingly the probability of each factor has

been calculated.

 Some of quality factor (in different software) can't be computed

 Sometimes cost of compute all of quality factors are very high

 We need long time for compute all of quality factors

 In some cases we need to a lot of people (user, quality manager, member of quality assurance's team)

to compute quality factors

6. References:

 Scott R. Tilley Dennis B. Smith “Coming Attractions in Program Understanding” Technical Report

CMU/SEI-96-TR-019, ESC-TR-96-019 December 1996.

 Michael P. O’Brien “Software Comprehension – A Review & Research Direction" ,2003.

 Cain, J.W., & McCrindle, R.C., “Software Visualisation using C++ Lenses”, 1998

 A.v. Mayrhauser and M. Vans, “Program Comprehension during Software Maintenance and

Evolution,” IEEE Computer, vol. 12, pp. 44-55, 1995.

 M. Koch, “Introduction to CSCW,” Technical University of Munich, Germany

http://www11.informatik.tu-muenchen.de/cscw/, 1996.

 Landauer, T. K., Foltz, P. W., & Laham, D. (1998). “Introduction to Latent Semantic Analysis” .

Discourse Processes, 25, 259-284

 Dunsmore A. “Comprehension and Visualisation of Object-Oriented Code for Inspections

“Empirical Foundations of Computer Science (EFoCS) EFoCS-33-98, 1998.

 Sneed,H. M., & Bavaria,A., "Source Animation as a means of Program Comprehension for object-

oriented System" IEEE, 2000.

 Deimel, L., Naveda, J., (1990), “Reading Computer Programs: Instructor’s Guide and Exercises”,

Technical Report CMU/SEI-90-EM-3, Software Engineering Institute,Carnegie Mellon University.

 Burd, L., Munro, M., & Young, P., (2000), “Using Virtual Reality to Achieve Program

Comprehension”, http://www.year2000.co.uk/munro.html.

 Margaret-Anne Storey, “Theories, tools and research methods in program comprehension: past,

present and future” Springer Science + Business Media, LLC 2006. Software Qual J (2006) 14:187–

208 DOI 10.1007/s11219-006-9216-4.

http://www.year2000.co.uk/munro.html

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21252

 Wang Kechao, “Overview of Program Comprehension” 2012 International conference on Computer

Science and Electronics Engineering. 978-0-7695-4647-6/12 $26.00 © 2012 IEEE. DOI

10.1109/ICCSEE.2012.285.

 Letovsky, S., (1986), "Cognitive Processes in Program Comprehension", Empirical Studies of

Programmers: 1st Workshop, p 58.

 Michael P. O’Brien “Expectation-based, inference-based, and bottom-up software comprehension”

JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND

PRACTICE J. Softw. Maint. Evol.: Res. Pract. 2004; 16:427–447 Published online in Wiley Inter

Science (www.interscience.wiley.com). DOI: 10.1002/smr.307

 Collard,M.L., Kagdi, H.H., & Maletic., J.I., "An XML-Based Lightweight C++ Fact Extractor"

IEEE,2002

 Biggerstaff T.J., Mitbander B.W. and Webster D. 1993. The concept assignment problem in program

understanding. In Proceedings of the 15th international conference on Software Engineering, pp.

482–498.

 Soloway, E., Ehrlich, K., (1984), "Empirical Studies of Programming Knowledge", IEEE

Transactions on Software Engineering, IEEE Computer Society, Vol. SE-10, No. 5, September

 Chen Peter & Xiaolei, Du “Improving software comprehension process by adoption of cognitive

theories in large scale complex software maintenance”, University of Gothenburg Chalmers

University of Technology, Department of computer science and engineering, Goteborg, Sweden,

June 2012.

 Simon, H “Cognitive Models Bottom-up”, Seminar on program analysis and program

comprehension, June 23, 2014.

 Wei, S., " A survey and categorization of program comprehension Techniques", IEEE,2002

 D. F. Jerding, ISVis, http://www.cc.gatech.edu/morale/tools/isvis/isvis.html

 P. K. Linos, A Preliminary Report on Program Comprehension Tools (PCT's), Tennessee

Technological University, http://www.csc.tntech.edu/~linos/pcts.html

 MicroGold Software Inc., With Class 98, http://www.microgold.com

 Program Comprehension Tools Bibliography: http://www.csc.tntech.edu/~linos/pctinfo.html

 TakeFive Software, SNiFF+, http://www.takefive.com

 Yin.,M., Li.,B., & Tao., C., "Using Cognitive Easiness Metric for Program Comprehension"

IEEE,2008

http://www.cc.gatech.edu/morale/tools/isvis/isvis.html
http://www.microgold.com/
http://www.csc.tntech.edu/~linos/pctinfo.html
http://www.takefive.com/

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21253

 P. Young, “Program Comprehension”, Visualisation Research Group, Center for Software

Maintenance, University of Durham, 1996.

 P. Young, Software Visualisation, Visualisation Research Group, Centre for Software Maintenance,

University of Durham, 1996

 LOOK!, Objective Software Ltd, 1 Michaelson Square, Kirkton Campus, Livingston, EH54 7DP,

UK.

 A.Dunsmore, “Survey of Object-Oriented Defect Detection Approaches and Experiences in

Industry”, Technical Report – EFoCS-36-2000, Computer Science Department, Strathclyde

University, August 2000.

 Alastair Dunsmore, Marc Roper, and Murray Wood "Practical Code Inspection for Object-Oriented

Systems" 2000, IEEE

 Von Mayrhauser, A. and Vans, A. M., "Program understanding behavior during debugging of large

scale software", in Proceedings of Seventh workshop on Empirical studies of programmers, 1997,

pp. 157–179.

 Shneiderman, B. and Mayer, R., "Syntactic / semantic interactions in programmer behaviour: a

model and experimental results", International Journal of Computer and Information Sciences, vol. 8,

no. 3, 1979, pp. 219 - 238.

 Pennington, N., (1987), "Comprehension Strategies in Programming", Empirical Studies of

Programmers: 2nd Workshop, p 100.

 Von Mayrhauser, A. and Vans, A. M., "From program comprehension to tool requirements for an

industrial environment", in Proceedings of Second Workshop on Program Comprehension, Capri,

Italy, 1993, pp. 78-86.

 Sim, S. E. and Storey, M.-A. A Structured Demonstration of Program Comprehension Tools. In

Proceedings of Seventh Working Conference on Reverse Engineering (Toronto, Ontario, Canada,

1999), IEEE Computer Society, 184.

 Mayrhauser, A. v. and Lang, S. On the Role of Static Analysis during Software Maintenance. In

Proceedings of 7th International Conference on Program Comprehension (Pittsburgh, PA, 1999),

IEEE Computer Society, 170-177.

 Knight, C.(1998) Visualization for Program Comprehension: Information and Issues.

 K. Chen, V. Rajlich, “Case Study of Feature Location Using Dependence Graph,” In Proceedings of

the 9th IEEE International Workshop on Program Comprehension, Los Alamitos, 2000, pp 241-249.

 A. Kohler. Der C/C++-Projektbegleiter. dpunkt.verlag, 69115 Heidelberg, 2007.

 Schauer, R and Keller, R. K. Integrative Levels of Program Comprehension, 2008 15th Working

Conference on Reverse Engineering.

 Deng, F. and Jones, A. J, Weighted System Dependence Graph, 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation.

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21254

 Tilley, S. R., Paul, S., & Smith, D. B., 1996 “Towards a Framework for Program Understanding”,

4th International Workshop on Program Comprehension.

 Tjortjis, C., Sinos, L., & Layzell, P. (2003). Facilitating Program Comprehension by Mining

association Rules from Source Code, Proceedings of the 11th IEEE International Workshop on

Program Comprehension (IWPC'03), pp. 125-132.

 Tsarkov, D., & Horrocks, I. (2006). FaCT++ Description Logic Reasoner: System

Description, International Joint Conference on Automated Reasoning (IJCAR 2006).

 Von Mayrhauser, A., & Vans, A. M. (1994). Comprehension Processes During Large Scale

Maintenance, 16th International Conference on Software Engineering.

 Walenstein, A. (2002). Cognitive Support in Software Engineering Tools: A Distributed Cognition

Framework. PhD thesis. Simon Fraser University.

 Walkinshaw, N., Roper, M., & Wood, M. (2005). Understanding Object-oriented Source Code from

the Behavioral Perspective, Proceedings of the 13th IEEE International Workshop on Program

Comprehension (IWPC'05), pp. 215-224.

 Rajlich, V., & Wilde, N.(2002). The Role of Concepts in Program Comprehension, Proceedings of

the 10th IEEE International Workshop on Program Comprehension (IWPC'02), pp. 271-278.

 Haarslev, V., Moller, R., & Wessel, M. (2004). Querying the Semantic Web with Racer+ nRQL, KI-

2004 International Workshop on Applications of Description Logics (ADL'04).

 Devanbu, P. T., Brachman, R. J., Selfridge, P. G., & Ballard, B. W. (1990). LaSSIE - a Knowledge-

based Software Information System, Proceedings of the 12th international conference on Software

engineering. Nice, France.

 Brooks, R. (1983). Towards a Theory of the Comprehension of Computer Programs. International

Journal of Man-Machine Studies, 18(6), pp. 542-554.

 Weinand A., Gamma E., Marty R.: Design and Implementation of ET++, a Seamless Object-

Oriented application Framework. Structured Programming Vol. 10, No. 2, 1989.

 Sametinger. J, “Improving program comprehension of object oriented software with object-oriented

documentation” 1993.

 Vinz.,B.L., & Etzkorn., L.H., "Improving program comprehension by combining code understanding

with comment understanding" IEEE,2008.

 Kadar., R., & Sulaiman., S., "The Effectiveness of Zoom Visual Flow (ZViF) Technique in Program

Comprehension Activities" IEEE, 2010.

 Kothari., S.C., "Scalable Program Comprehension for Analyzing Complex Defects”, IEEE,2008.

 Cséri.,T., ugyi., Z.S., & Porkoláb.,Z. "Rule-Based Assignment of Comments to AST Nodes in C++

Programs" , IEEE,2012. ACM 978-1-4503-1240-0/12/09

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21255

 Paydar. S, et. al. “A Semantic Web Based Approach for Design Pattern Detection from Source

Code” 2012, 2nd International eConference on Computer and Knowledge Engineering (ICCKE),

October 18-19, 978-1-4673-4476-0/12/$31.00 ©2012 IEEE. Page 289-294.

 Aris.,T.N.M., & Nazeer., S.N., "Object-Oriented Programming Semantics Education based on

Intelligent Agents" , IEEE, 2011, pp. 404-407.

 Ala Abuthawabeh.,A., & Zeckzer., D., "IMMV: An Interactive Multi-Matrix Visualization for

Program Comprehension" IEEE, 2013.

 Blinman, S. et, al. “Program Comprehension: Investigating effects of naming styles and

documentation” Copyright © 2005, Australian Computer Society, Inc. This paper appeared at the 6th

Australasian User Interface Conference (AUIC2005), Newcastle. Conferences in Research and

Practice in Information Technology, Vol. 40. M. Billinghurst and A. Cockburn, Eds. Reproduction

for academic, not-for profit purposes permitted provided this text is included.

 Dunsmore, A. “Comprehension and Visualisation of Object-Oriented Code for Inspections”

Empirical Foundations of Computer Science (EFoCS) Department of Computer Science University

of Strathclyde Livingstone Tower Glasgow G1 1XH, U.K. August 1998.

 Singh, R., et al “Dependence cache slicing - A case study” published in Computing Trendz Journal

of SMS Varanasi. Vol. III, No. 2, July 2013.ISSN 2230-9152.

http://www.smsvaranasi.com/Computing_Trendzt_journal.htm.

 Sneed, M. H et, al. “Source Animation as a means of Program Comprehension for object-oriented

Systems” IEEE, 2000. 0-7695-0656-9/00.

 Tjortjis, C. et, al “From System Comprehension to Program Comprehension” Proceedings of the 26

th Annual International Computer Software and Applications Conference (COMPSAC’02) 0730-

3157/02 $17.00 © 2002 IEEE.

 Rajlich, V. et, al “The Role of Concepts in Program Comprehension” Copyright 2002 IEEE.

Published in the Proceedings of IWPC 2002, IEEE Computer Society Press, Los Alamitos, CA,

ISBN 0-7695-1495-2, pp.271-278.

 Limpiyakorn, Y. et al. “Applying the signature concepts to plan-based program understanding”

Proceedings of the International Conference on Software Maintenance (ICSM’03), 1063-6773/03

$17.00 © 2003 IEEE.

 Mahmoud, A et, al. “Evaluating Software Clustering Algorithms in the Context of Program

Comprehension” ICPC 2013, San Francisco, CA, USA 978-1-4673-3092-3/13/$31.00 c 2013 IEEE

pp. 162-171.

 Kanellopoulos, Y. et, al “Data Mining Source Code to Facilitate Program Comprehension:

Experiments on Clustering Data Retrieved from C++ Programs” 2003.

 Zhang, Y. et, al “An Ontology-based Approach to Software Comprehension- Reasoning about

Security Concerns” Computer Software and Applications Conference, 2006. COMPSAC '06. 30th

Annual International (Volume:1) DOI 10.1109/COMPSAC.2006.27. IEEE.

http://www.smsvaranasi.com/Computing_Trendzt_journal.htm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4020030
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4020030
http://dx.doi.org/10.1109/COMPSAC.2006.27

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21256

 J. S Sottet, F Jouault “Program comprehension” Proc. 5th Int. Workshop on Graph-Based Tools,

2009.

 Harman, M. “Search Based Software Engineering for Program Comprehension” 15th IEEE

International Conference on Program Comprehension (ICPC'07) 0-7695-2860-0/07 $20.00 © 2007.

 Dietrich, J. et, al. “Using social networking and semantic web technology in software engineering –

Use cases, patterns, and a case study” The Journal of Systems and Software 81 (2008) 2183–2193.

 Bradley L. Vinz et, al “Improving program comprehension by combining code understanding with

comment understanding” Knowledge-Based Systems 21 (2008) 813–825.

 Y. Manman, “Using Cognitive Easiness Metric for Program Comprehension” Software Engineering

and Data Mining (SEDM), 2010 2nd International Conference on 23-25 June 2010 Page(s): 134 –

139, Chengdu, China IEEE.

 S.C. Kothari “Scalable Program Comprehension for Analyzing Complex Defects” The 16th IEEE

International Conference on Program Comprehension. 978-0-7695-3176-2/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPC.2008.

 Feigenspan, J. et, al. “How to Compare Program Comprehension in FOSD Empirically – An

Experience Report” FOSD '09 Proceedings of the First International Workshop on Feature-Oriented

Software Development Pages 55-62. ACM New York, NY, USA ©2009.

 Feigenspan, J. et, al. “Program Comprehension of Feature-Oriented Software Development”

 Deng. F. et, al. “Weighted System Dependence Graph” 2012 IEEE Fifth International Conference on

Software Testing, Verification and Validation.

 Soh, Z. “Context and Vision: Studying Two Factors Impacting Program Comprehension” 2011 19th

IEEE International Conference on Program Comprehension. 1063-6897/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPC.2011.37. Pages 258-261.

 Freitas, J. L el. al. “A Comment Analysis approach for Program Comprehension” 2012 IEEE 35th

Software Engineering Workshop. 1550-6215/13 $26.00 © 2013 IEEE DOI 10.1109/SEW.2012.8.

 Haiduc, S. et. al “Supporting Program Comprehension with Source Code Summarization” 2012

 Binkley, D et. al “The impact of identifier style on effort and comprehension” Empir Software Eng

(2013) 18:219–276. DOI 10.1007/s10664-012-9201-4.

 Singh, R et. al “Dependence cache slicing –A case study” SMS Varanasi.

 Banker. D , Rajiv “Software complexity and maintainability” 1992.

 Banker. D , Rajiv “SOFTWARE COMPLEXITY AND SOFTWARE MAINTENANCE COSTS”

1992

 “How to save on software maintenance costs” Omnext while paper, March 2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5510904
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5510904

DOI: 10.18535/ijecs/v6i5.11

Durga Puja, IJECS Volume 6 Issue 5 May, 2017 Page No. 21245-21257 Page 21257

 Kasto. N et al. “Measuring the difficulty of code comprehension tasks using software metrics”

Proceedings of the fifteenth Australasian computer education conference (ACE2013), Adelaide,

Australia. Conference in research and practice in information technology (CRPIT, Vol. 136.

 Feigenspan, J. et al. “ Exploring software measures to access program comprehension”

 Hayes, J. H et al “A Metrics-Based Software Maintenance Effort Model”

 “Software Effort Estimation An Exploratory Study of Expert”

 J. C. GRANJA-ALVAREZ et al. “A Method for Estimating Maintenance Cost in a Software Project:

A Case Study” SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE, VOL. 9, 161–175.

1997 by John Wiley & Sons, Ltd.

 Welker, K.D. and Oman, P.W. Software Maintainability Metrics Models in Practice, Journal of

Defense Software Engineering, Volume 8, Number 11, November/December 1995, 19-23.

 Agent Based Code Comprehension Model Using Semantic Knowledge Base In IJERT, Volume. 3,

Issue. 05, May - 2014. (ISSN: 2278-0181) www.ijert.org

