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ABSTRACT 

Software maintenance is very important and time consuming task which require a lot of parameters to be 

taken care during the whole cycle of maintenance of software. The software maintenance engineer has 

used various cost estimation models in their research work like COCOMO-I, COCOMO-II, SLIM, SEER-

SEM and FP.  The problem with these models is that they require the complete data and information 

making any decision and benchmark. Therefore the cost of software maintenance varies with types and 

complexity of the software under the maintenance. We have identified the various factors which effects the 

cost of the software maintenance. The various cost estimation models require a lots of metrics and only 

after calculating the complete parameters, then only the software cost can be determined.  

 

To reduce the software maintenance cost the proposed model has been introduce which can overcome the 

cost even there is missing information.  The Probability factor (PF) method has been used which can 

overcome the cost.  The proposed model used the various factors as input and accordingly the probability 

of each factors has been calculated.  

 

 Some of quality factor (in different software) can't be computed 

 Sometimes cost of compute all of quality factors are very high 

 We need long time for compute all of quality factors 

 In some cases we need to a lot of people (user, quality manager, member of quality assurance's team) 

to compute quality factors 

 

Some other researchers have also deal with uncertainty in quality factor and matrices. Motameni et 

al. (2010) proposed a model for software quality with BNs and ISO9126 quality model. There model doesn't 

have last quality model's problems and can predict software quality with incomplete and uncertain data. Also 

by this model the time and cost of calculating software quality is reduced.  

  

1. Introduction 
 

Software maintenance is the very crucial activity which requires a lot of time and cost. Software cost 

estimation models attempt to estimate the effort required to develop a software project more accurately by 

using a mathematical formula of expected project inputs. Boehm’s maintenance model consists of three 
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major phases: understanding, modifying and validating the software [93]. Software maintenance is the 

recurring process of any software product during its life cycle [Mishra]. When a scratch of the new software 

products comes into the human mind, the maintenance aspects should also come with its significance. In this 

paper we have identified the software cost estimation factors, which can effects the cost of software 

maintenance if during development these factors taken care.  .  From the literature review we have identified 

various factor which affects the cost of program comprehension if they are taken during software 

development. 

 

2.  Problem Description 

 

The software maintenance activity is the most time consuming activity and even 50-60% time is consumed 

in program comprehension [93]. Till date there are no empirical models and theories which can estimate the 

cost of maintenance. In the review of program comprehension, the various cost factors has been identified. 

These factors are the most significant, while going for development of software application and software 

maintenance.  

 

We have created a problem description table (Table 1) for the cost estimation on the basis of three important 

parameters: human factor, cognitive factors and technical factors. The human factors are Bugs (BG), Cloned 

Code (CC), Dead Code (DC), Re-Documentation (REDUC), Total Experience (TEXP), Language 

Experience (LEXP), System OS Experience (SYSEXP), Hardware Experience (HWEXP), Programmer 

ability (PAVA) and Education (EDUC). The Cognitive factors are Attitude of programmer (AP), 

Techniques used (TU), Comment to code ratio (CTC) and Number of changes (NOC). The technical factors 

are Complexity (CR), Line of Code (LOC), Code relations (CR), Concern Attributes (CA), Depth of 

inheritance Tree (DIT), Response for a Class (RESCL), Weighted Method per class (WEPM), Message 

Passing Coupling (MEPM), Lack of Cohesion in methods (LOCM), Data Abstraction Coupling (DAC), 

Number of operators and operands (NOOP),  Task Magnitude (TASK), Time (TIME), , Maintainability 

(MT), Level of understandability (LOU), Cyclcomatic Complexity (CMC) and Tool used (TLU).  

 

 
 

Table-1 Problem Description table 

SNO. Factor Affective PC  

Cognitive 

factor  

Human 

factors 

Technical 

factors 

1 Bugs [86]   Y   

2 Colned Code  [86]   Y   

3 Dead Code  [86]   Y   

4 Re-Documentation [86]   Y   

5 Complexity [86]     Y 

6 Attitude of programmer  [89] Y     

7 Line of Code [89]     Y 
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Table-2 Program comprehension factors affecting cost. 
 

 
 

Figure 1- Bayesian network model for program comprehension cost factors (Montani et al., 2010) 

8 Code relations [89]     Y 

9 Concern Attributes [89]     Y 

10 Depth of inheritance Tree [89]     Y 

11 Response for a Class  [89]     Y 

12 Weighted Method per class [89]     Y 

13 Message Passing Coupling [89]     Y 

14 Lack of Cohesion in methods [89]     Y 

15 Data Abstraction Coupling [89]     Y 

16 Number of operators and operands [86]      Y 

17 Total Experience [86]   Y   

18 Language Experience [87]   Y   

19 System OS Experience [87]   Y   

20 Hardware Experience  [87]   Y   

21 Programmer ability [87]   Y   

22 Education [87]   Y   

23 Task Magnitude [86]     Y 

24 Time [89]     Y 

25 Techniques used [89] Y     

26 Maintainability [89]     Y 

27 Level of understandability [87]     Y 

28 Comment to code ratio  [89] Y     

29 Number of changes [89] Y     

30 Cyclcomatic Complexity [86]     Y 
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Figure 2 - Hierarchical Correlation of Cost Factors and program comprehension 

 

 

Rule Base 

 

The basic rules for the cost comprehension is depends on the various parameters. The different parameters 

which are present in the software accordingly the cost will be varies. If (condition) of a rule relates 

characteristics by means of the logical operators (and). These characteristics are the branches that arrive to a 

node, that is, the evidences and the result of previous nodes. The system works with probability factors (PF) 

which are equivalent to values associated to nodes and evidences represented on the graph. When a 

condition is satisfied, a resulting CPF is obtained from the PF of each entry parameter. The value attained to 

a node represent the maximum PCF that may be achieve by this node, that is, when all parameters are 

satisfied in a particular disease. The final result is obtained by the execution of all the pertinent rules. The 

rules build from hierarchical model are given below: 

 

 

 

Parameter Weight (W) Prior 

probabilit

ies (P) 

W*P Parameter Weight 

(W) 

Prior 

probabil

ities (P) 

W*P 

COMPLEXITY EXPERIENCE 

BG 0.07 0.5 0.035 TEXP 0.12 0.5 0.06 

CC 0.07 0.5 0.035 LEXP 0.12 0.5 0.06 

DC 0.07 0.5 0.035 SYSEXP 0.12 0.5 0.06 

REDUC 0.07 0.5 0.035 HWEXP 0.12 0.5 0.06 

LOC 0.07 0.5 0.035 PAVA 0.12 0.5 0.06 

CR 0.07 0.5 0.035 EDUC 0.12 0.5 0.06 

COA 0.07 0.5 0.035 TASK 0.12 0.5 0.06 

DPINH 0.07 0.5 0.035 TIME 0.12 0.5 0.06 

RESCL 0.07 0.5 0.035 MAINTAINABILITY 
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WEPM 0.07 0.5 0.035 NOOP 0.2 0.5 0.1 

LOCM 0.07 0.5 0.035 MTC 0.2 0.5 0.1 

DAC 0.07 0.5 0.035 LEVUND 0.2 0.5 0.1 

TLU 0.07 0.5 0.035 CC 0.2 0.5 0.1 

MEP 0.07 0.5 0.035 NOC 0.2 0.5 0.1 

TASK 

TEXP 0.14 0.5 0.07 EDUC 0.14 0.5 0.07 

LEXP 0.14 0.5 0.07 TASK 0.14 0.5 0.07 

PAVA 0.14 0.5 0.07 TIME 0.14 0.5 0.07 

    TLU 0.14 0.5 0.07 

Table1 Probabilities of cost matrix 

 

 

Rules for cost estimation 

 

R11: IF BG(p1) & CC(p2) & DC(p3) & REDUC(p4) & LOC(p5) & CR(p6) & COA(p7) & DPINH(p8) & 

RESCL(p9) & WEPM(p10) & MEP(p11) & LOCM(p12) & DAC(p13) & TLU(p14) THEN 

COMPLEXITY 
 

R12: IF TEXP(p1) & LEXP(p2) & SYSEXP(p3) & HWEXP(p4) & PAVA(p5) & EDUC(p6) & TASK(p7) 

& TIME(p8) THEN EXPERIENCE 

 

R13: IF TEXP(p1) & LEXP(p2) & PAVA(p3) & EDUC(p4) & TASK(p5) & TIME(p6) & TLU(p7) THEN 

TASK 
 

R14: IF NOOP(p1) & MTC(p2) & LEVUND(p3) & CC(p4) & NOC(p5) THEN MAINTAINABILITY 

 

R1: IF COMPLEXITY(p1) & IF EXPERIENCE(p2) & IF TASK(p3) & IF MAINTAINABILITY 

THEN PROGRAM COMPREHENSION COST (P) 

 

The value given in brackets in left hand side is Probability factor of the corresponding parameters whereas 

the value given in the bracket in right hand side is probability factor of the rule.  

 

Probability Factor 

 

The probability-factor (PF) model is a method for managing uncertainty in rule-based systems which is 

developed by managing uncertainty in rule-based systems which is developed by Shortliffe and Buchanan 

(1975).  The formula is as follows: 

 

MB(h, e1 & e2) =MB(h, e1) + MB(h,e2) * (1-MB (h, e1)……………(1) 

MD(h, e1 & e2) =MD(h, e1) + MD(h,e2) * (1-MB (h, e1)……………(2) 

MD(h, e1 & e2) = 0 , IF MB(h, e1 & e2) = 1 i.e. all the evidences (e1 &e2) approves the hypothesis (h). 

CCF= MB(h, e1 & e2) + MD(h, e1 & e2)                        ……………..(3) 

Where MB is Measure of Belief and MD is measure of disbelief and CPF id is Cumulative Probability-

Factor. 

Bayesian Network  

Bayesian network graph is implemented by Homayun et al., (2010) on software quality model. Bayesian 

network graph for software quality has shown in Figure 2. It has three levels. First level has cost 
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comprehension and their arcs go to metrics in second level.  Cost factor's arcs go to third level in code 

comprehension node. Each node (cost, cost factors, metric) has five states: Very High (degree =5), High 

(degree =4), Medium (degree =3), Low (degree =2) and Very Low (degree =1).  The value in bracket is 

degree associated with the level. The data (probability) for first level (quality metric) is varies from 

company to company or organization to organization. For example security in a company is more important 

than another one. Therefore the quality experts of each company can fill them in conditional probability 

table (CPT) according to their quality metrics, knowledge, and experience of previous software in their 

Company. Using the previous knowledge of the similar project and software is one of the most important 

factors to filling CPT. The formula used for computing the probability of each quality factor is given below: 

 

P=  -------------------(4) 

Where pi and
 
di are probability (as shown in Table 1)

 
and degree of ith

 
quality matrix. L is number of 

level (i.e. 14).  

For example 'TASK’ and its seven metrics are: TEXP (M with degree= 7), LEXP (M with degree= 7), PAVA 

(M with degree= 7), EDUC (M with degree= 7), TASK (M with degree= 7), TIME (M with degree= 7) & 

TLU (M with degree= 7). 

  

d = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 49 

  

p = (0.07* 7 + 0.07* 7 + 0.07* 7 +0.07* 7 + 0.07* 7 + 0.07* 7 + 0.07* 7) / 14 * (0.07+0.07+ 0.07+ 0.07+0.07+ 0.07+ 0.07) = 

0.44 using formula 4. 

Calculating in percentage we get 44%. It means we have Task in this example by probability of 44 percent. Similarly, for other 

quality factor CPT.  

RESULT AND DISSCUSION  

In the hierarchal tree shown in figure 1, we assume that the cost factor equally depends upon Complexity, Task, Maintainability 

and Experience. Therefore, equal weights ¼ is assigned to each parameter. For different organization the weight is different for 

different parameters. Further these quality factors depends equally of upon quality matrix. For example task depends upon seven 

quality matrix as   shown in figure 1. We assume that functionality equally depends upon the fourteen quality matrix (the 

dependencies varies from company to company) therefore equal weights i.e. 1/14 is assigned to each quality matrix.  

In the hierarchal tree (Figure 3) the evidence in the support of level one i.e. Task are e1: TEXP (p1=0.5), e2: LEXP 

(p2=0.5), e3: PAVA (p3=0.5), e4: EDUC (p4=0.5), e5: TASK (z5=0.5), e6: TIME (z6=0.5) & e7: TLU 

(z7=0.5). Where p1, p2, p3, p4, p5, p6 and p7 are PF. Therefore the CPF for rule 1 is calculated as follows. 

For e2 

MB=0.5 + 0.5 (1-0.5) =0.75, MD=0.0 

CPF= 0.75  

For e3 

MB=0.75 + 0.5 (1-0.75) =0.825, MD=0.0 

CCF= 0.825 

For e4 

MB=0.825 + 0.5 (1-0.825) =0.9125, MD=0.0 

CCF= 0.9125 

For e5 
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MB=0.9125 + 0.5 (1-0.9125) =0.956, MD=0.0 

For e6 

MB=0.956 + 0.5 (1-0.956) =0.978, MD=0.0 

For e7 

MB=0.978 + 0.5 (1-0.978) =0.989, MD=0.0 

5. Conclusion 

The proposed model used the various factors as input and accordingly the probability of each factor has 

been calculated.  

 

 Some of quality factor (in different software) can't be computed 

 Sometimes cost of compute all of quality factors are very high 

 We need long time for compute all of quality factors 

 In some cases we need to a lot of people (user, quality manager, member of quality assurance's team) 

to compute quality factors 
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