
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 4 Issue 9 Sep 2015, Page No. 14523-14528

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14523

FPGA Implementation of Double Precision Floating Point

Arithmetic Unit

Prabhjot Kaur1, Ankur Sharma2, Raminder Preet Pal Singh3

1Arni University, Kathgarh, Indora, HP

prabhjotgoli@gmail.com

2Arni University, Kathgarh, Indora, HP

Ankur.sharma.ind@gmail.com

3Arni University, Kathgarh, Indora, HP

raminder_212003@rediffmail.com

Abstract: Every computer has a floating point processor or a dedicated accelerator that fulfils the requirements of precision using detailed

floating point arithmetic. The main applications of floating points today are in the field of medical imaging, biometrics, motion capture and

audio applications, including broadcast, conferencing, musical instruments and professional audio. Floating point representation can

support a much wider range of values than fixed point representation. In this design the complex logic operations which consist of various

multiple numbers of stages are converted into single stage implementation. Once the inputs are applied to the input terminals the final

output is obtained at the output terminals there are no intermediate stages. So now the input take less time to reach at output due to single

stage implementation and the number of flip flops and other intermediate required circuits are less as a result the area require is less in the

presented design called high throughput design. All four individual units addition, subtraction, multiplication and division are designed

using Verilog and than combined into one single unit. The code is dumped into low cost Spartan 6 FPGA.

Keywords: Floating Point, Throughput, IEEE, FPGA, Double Precision, Verilog, Arithmetic Unit

1. Introduction

A floating-point arithmetic unit designed to carry out

operations on floating point numbers. Floating point arithmetic

unit is widely used in scientific, commerce and in signal

processing applications. Floating point representation can

support a much wider range of values than fixed point

representation. To represent very large or small values, large

range is required as the integer representation is no longer

appropriate. These values can be represented using the IEEE-

754 standard based floating point representation. The overall

throughput of the design can be increased by using a single

stage implementation.

2. High Throughput Design
In this design the complex logic operations which consist of

various multiple numbers of stages are converted into single

stage implementation as shown in Fig 2. Time taken by data to

reach at Dout from Din is less in comparison to the multiple

stages design shown in Fig 1. In multiple stages design there

are many combinational delay and also the same number of flip

flop delays but in single stage implementation there is only one

combinational delay that is slightly bigger than combinational

delay in multiple stage design and also less flip flops is used in

single stage implementation so overall throughput is increased

in single stage implementation

2.1 Design with Divided Smaller Combo Delays - This

design represents a multiple stage implementation having

several small combo delays, propagation delay of in between

flip flops and set up delay of in between flip flops. Due to

multiple stage implementations it has several delays due to flip

flop. The clock time period must be greater than the sum of

time period of propagation delay due to input and in between

flip flops, time period of set up time of output and in between

flip flops and small combinational delay of each component.

Most of the work till time is based on design with divided

smaller combo delays.

Figure 1: Design with Low Throughput (Divided into Smaller

Combo Delays)

TClk ≥ (TpropFFin + TcoSMAL1 + TsetupFFInt1) + (TpropFFInt1 + TcoSMAL2

+ TsetupFFInt2) + (TpropFFInt2 + TcoSMAL3 + TsetupFFInt3) +

(TpropFFInt3 + TcoSMAL4 + TsetupFFout)

Where

TCkl= Time period of clock

TpropFFin=Propagation delay of input flip flop and in between

flip flops

http://www.ijecs.in/
mailto:raminder_212003@rediffmail.com

DOI: 10.18535/ijecs/v4i9.76

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14524

TcomboSMAL=Small Combinational delay due to in between

circuits

TsetupFFout=Setup time of output flip Flop and in between flip

flops

2.2 Design with one Bigger Combo Delay- This design

represents a single stage implementation having a bigger

combo delay, propagation delay of input flip flop and set up

delay of output flip flop. Due to single stage implementation it

has only two delays due to flip flop. The clock time period

must be greater than the sum of time period of propagation

delay due to input flip flop, time period of set up time of output

flip flop and combinational delay in between circuits. Our

design is based on this single stage design. So it has high

throughput.

Figure 2: Design with High Throughput (Bigger Combo Delay)

TClk ≥ TpropFFin + TcomboBIG + TsetupFFout

Where

TCkl= Time period of clock

TpropFFin=Propagation delay of input flip flop

TcomboBIG=Combinational delay due to in between circuits

TsetupFFout=Setup time of output flip Flop

3. Implementation of Double Precision Floating

Point Arithmetic Unit

The block diagram of the proposed arithmetic unit is given in

figure. The unit supports four arithmetic operations: Add,

Subtract, Multiply and Divide. In this design the complex logic

operations segmented and implemented into various multiple

numbers of stages are converted into single stage

implementation in simple words we can say that the multiple

stages are converted into single stage. Once the inputs are

applied to the input terminals the final output is obtained at the

output terminals there are no intermediate stages. So now the

inputs take less time to reach at output terminals and due to

single stage implementation the number of flip flops and other

intermediate required circuits are less as a result the area

require is less in the presented design.

Figure 3: Block diagram of double precision floating point

arithmetic unit

All arithmetic operations have been carried out in four separate

modules one for addition, one for subtraction, one for

multiplication and one for division as shown in figure 3. In this

unit one can select operation to be performed on the 64-bit

operands by a 3-bit op-code and the same op-code selects the

output from that particular module and connects it to the final

output of the unit. Particular exception signal will be high

whenever that type of exception will occur.

3.1 Fpu_Add- Floating Point adder

 In order to add two fractions, the associated

exponents must be equal. Thus, if the two exponents are

different, we must un normalize one of the fractions and adjust

the exponents accordingly. The smaller number is the one that

should adjusted so that if significant digits are lost, the effect is

not significant.

3.2 Floating Point Subtraction

 In order to subtract two fractions, the associated

exponents must be equal. Thus, if the two exponents are

different, we must un normalize one of the fractions and adjust

the exponents accordingly. The smaller number is the one that

should adjusted so that if significant digits are lost, the effect is

not significant.

3.3 Floating Point Multiplication:

 There are two operand named operand A and

operand B to be multiplied. The mantissa of operand A and the

leading ‗1‘ (for normalized numbers) are stored in the 53-bit

register (mul_a). The mantissa of operand B and the leading

‗1‘ (for normalized numbers) are stored in the 53-bit register

(mul_b). Multiplying all 53 bits of mul_a by 53 bits of mul_b

would result in a 106-bit product. Depending on the synthesis

tool used, this might be synthesized in different ways that

would not take efficient advantage of the multiplier resources

in the target device. 53 bit by 53 bit multipliers are not

available in the most popular Xilinx and Altera FPGAs, so the

multiply would be broken down into smaller multiplies and the

results would be added together to give the final 106-bit

product. Instead of relying on the synthesis tool to break down

the multiply, which might result in a slow and inefficient layout

of FPGA resources, the module (fpu_mul) breaks up the

multiply into smaller 24-bit by 17-bit multiplies.

3.4. Floating Point Division

DOI: 10.18535/ijecs/v4i9.76

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14525

The leading ‘1’ (if normalized) and mantissa of operand A is

the dividend, and the leading ‘1’ (if normalized) and mantissa

of operand B is the divisor. The divide is executed long hand

style, with one bit of the quotient calculated each clock cycle

based on a comparison between the dividend register

(dividend_reg) and the divisor register (divisor_reg). If the

dividend is greater than the divisor, the quotient bit is ‘1’, and

then the divisor is subtracted from the dividend, this difference

is shifted one bit to the left, and it becomes the dividend for the

next clock cycle. If the dividend is less than the divisor, the

dividend is shifted one bit to the left, and then this shifted value

becomes the dividend for the next clock cycle. The exponent

for the divide operation is calculated from the exponent fields

of operands A and B. The exponent of operand A is added to

1023, and then the exponent of operand B is subtracted from

this sum. The result is the exponent value of the output of the

divide operation. If the result is less than 0, the quotient will be

right shifted by the amount.

3.5 Rounding

Rounding takes a number regarded as infinitely precise and, if

necessary, modifies it to fit in the destination’s format while

signalling the inexact exception, underflow, or overflow when

appropriate.

Round to nearest even: This is the standard default rounding.

The value is rounded up or down to the nearest infinitely

precise result. If the value is exactly halfway between two

infinitely precise results, then it should be rounded up to the

nearest infinitely precise even.

Round-to-Zero: Basically in this mode the number will not be

rounded. The excess bits will simply get truncated, e.g. 3.47

will be truncated to 3.5

Round-Up: In this mode the number will be rounded up

towards +∞, e.g. 5.2 will be rounded to 6, while -4.2 to -4

Round-Down: The opposite of round-up, the number will be

rounded up towards -∞, e.g. 5.2 will be rounded to 5, while -

4.2 to -5

3.6 Exceptions

Exception is an event that occurs when an operation on some

particular operands has no outcome suitable for a reasonable

application.

The five possible exceptions are:

Invalid: Operation are like square root of a negative number,

returning of NaN by default, etc., output of which does not

exist.
Division by zero: It is an operation on a finite operand which

gives an exact infinite result for e.g., 1/0 or log (0) that returns

positive or negative infinity by default.

Overflow: It occurs when an operation results a very large

number that can’t be represented correctly i.e. which returns

±infinity by default (for round-to-nearest mode).

Underflow: It occurs when an operation results very small i.e.

outside the normal range and inexact by default.

Inexact: It occurs whenever the result of an arithmetic

operation is not exact due to the restricted exponent or

precision range.

4. Synthesis, Timing and Simulation Result

4.1. Synthesis Result

Logic Utilization Used

Number of Slice Registers 4463

Number of Slice LUTs 6204

Number of fully used LUT-FF pairs 2999

Number of bonded IOBs 206

Number of BUFG/BUFGCTRLs 1

Number of DSP48Es 12

4.2 Timing Result

4.3 . Simulation Result

The simulation results of double precision floating point

arithmetic unit (Addition, Subtraction, Multiplication and

Division) is shown in fig 3, fig 4, fig 5, fig 6 respectively. In

the waveforms clock defines the applied frequency to the

signals. Fpu_op defines the operation to be preformed that is

0=addition,1=subtraction, 2=multiplication and 3=division.

Opa1 and Opa1 defines the input operand one and input

operand two respectively. The r_mode signal defines the

various rounding modes (00=Round to nearest even,

01=Round-to-Zero, 10=Round-Up, 11=Round-Down. Fpu_out

defines the final output of the signals.

Simulation Result of floating point addition- It is calculated for

the two operands of 64 bits each. The reset signal is kept low

throughout the simulation, so that operands are initialised all at

once. With always combinational block all registers values are

initialised first, then at the high of enable signal, addition of the

two operands are calculated. First, after calculating the result,

the result goes into fpu_round and then goes into

fpu_exceptions. From fpu_exceptions the out signal gives the

output. This module passes the sign, exponent and mantissa to

the rounding module. As frequency is 112.284 MHz so one

clock cycle completes 8.906 ns and 20 clock cycles completes

in 8.906ns x 20 =178.12ns. Therefore the addition process

completes in 178.12ns.

 Minimum Period 8.906ns (Max frequency:

112.284 MHz)

Minimum Input arrival time

before clocks

5.729ns

Maximum output required

time after clocks

3.597ns

DOI: 10.18535/ijecs/v4i9.76

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14526

Figure 3: Simulation Result of Floating Point Addition

Simulation result of floating point subtraction- In case of

subtraction, if operand b is bigger than operand a, then the

result is routed to the following. Take the smaller number and

subtract it from bigger number and invert the sign of the result.

At the clk, the reset is provided and singals are made to zero.

With the help of combinational logic is applied and all the

register values are initialised to zero and after that at the high

of enable signal the subtraction is performed. As with the

fpu_add module, the fpu_sub module passes on the sign,

exponent, and mantissa signals to the rounding module. There

are 2 extra remainder bits at the end of the mantissa that

determine if rounding will be performed, with the least

significant remainder bit calculated by performing an OR on

any bits that were shifted out of the mantissa due to the

difference in exponents. As frequency is 112.284 MHz so one

clock cycle completes 8.906 ns and 20 clock cycles completes

in 8.906ns x 20 =178.12ns. Therefore the addition process

completes in 178.12ns.

Figure 4: Simulation Result of Floating Point Subtraction

Simulation result of floating point multiplication- It is

calculated for the two operands of 64 bits each. The reset signal

is kept low throughout the simulation, so that operands are

initialised all at once. With always combinational block all

registers values are initialised first, then at the high of enable

signal, multiplication of the two operands are calculated first,

after calculating the result, the result goes into fpu_round and

then goes into fpu_exceptions. From fpu_exceptions the out

signal gives the output. As frequency is 112.284 MHz so one

clock cycle completes 8.906 ns and 24 clock cycles completes

in 8.906ns x 24 =213.75ns. Therefore the addition process

completes in 213.75ns.

Simulation result of floating point division- It is calculated for

the two operands of 64 bits each. The reset signal is kept low

throughout the simulation, so that operands are initialised all at

once. With always combinational block all registers values are

initialised first, then at the high of enable signal, division of the

two operands are calculated first, after

calculating the result, the result goes into fpu_round and then

goes into fpu_exceptions. From fpu_exceptions the out signal

gives the output. As frequency is 112.284 MHz so one clock

cycle completes 8.906 ns and 74 clock cycles completes in

8.906ns x 74 =610ns. Therefore the addition process completes

in 610ns.

DOI: 10.18535/ijecs/v4i9.76

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14527

Figure 5: Simulation Result of Floating Point Multiplication

Figure 6: Simulation Result of Floating Point Divisio

5. Conclusion

This paper presents a single stage implementation of double

precision floating point arithmetic unit. The complete design is

captured in Verilog Hardware description language (HDL),

tested in simulation using Questa Sim, placed and routed on a

Spartan 6 FPGA from Xilinx. When synthesized, this module

used 4463 number of slice registers and 6204 number of slice

LUTs. The overall throughput is increased in this design.

References

[1] Deepa Saini , Bijender M’dia “Floating Point Unit

Implementation on FPGA” International Journal Of

Computational Engineering Research(IJCER), Vol. 2 , pp.972-

976, Issue No.3, May-June 2012

[2] Paschalakis, S., Lee, P., “Double Precision Floating-Point

Arithmetic on FPGAs”, In Proc. 2003 2nd IEEE International

Conference on Field Programmable Technology (FPT ’03),

Tokyo, Japan, pp. 352-358, 2003

[3] Addanki Puma Ramesh, A. V. N. Tilak, A.M.Prasad “An

FPGA Based High Speed IEEE-754 Double Precision Floating

Point Multiplier Using Verilog” 2013 International Conference

on Emerging Trends in VLSI, Embedded System, Nano

Electronics and Telecommunication System (ICEVENT), pp.

1-5, 7-9 Jan. 2013

[4] Ushasree G, R Dhanabal, Sarat Kumar Sahoo

“Implementation of a High Speed Single Precision Floating

Point Unit using Verilog” International Journal of Computer

Applications National conference on VSLI and Embedded

systems, pp.32-36, 2013

[5] Pramod Kumar Jain, Hemant Ghayvat , D.S Ajnar “Double

Precision Optimized Arithmetic Hardware Design For Binary

& Floating Point Operands” International Journal of Power

Control Signal and Computation (IJPCSC) Vol. 2 No. 2 ISSN :

0976-268X

[6] Basit Riaz Sheikh and Rajit Manohar “An Operand-

Optimized Asynchronous IEEE 754 Double-Precision

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6490097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6490097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6490097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6490097

DOI: 10.18535/ijecs/v4i9.76

Prabhjot Kaur1 IJECS Volume 04 Issue 09 September, 2015 Page No.14523-14528 Page 14528

Floating-Point Adder”, IEEE Symposium on Asynchronous

Circuits and Systems (ASYNC), pp. 151 – 162, 3-6 May 2010

[7] Ms. Anjana Sasidharan, Mr. M.K. Arun” Vhdl

Implementation Of Ieee 754 Floating Point Unit” IJAICT,

ISSN 2348 – 9928Volume 1, Issue 2, June 2014

 [8] Dhiraj Sangwan , Mahesh K. Yadav “Design and

Implementation of Adder/Subtractor and Multiplication Units

for Floating-Point Arithmetic” International Journal of

Electronics Engineering, 2(1), pp. 197-203, 2010

[9] Tarek Ould Bachir, Jean-Pierre David “Performing

Floating-Point Accumulation on a modern FPGA in Single and

Double Precision” 18th IEEE Annual International Symposium

on Field-Programmable Custom Computing Machines, pp.105-

108, 2010

[10] Geetanjali Wasson “IEEE-754 compliant Algorithms for

Fast Multiplication of Double Precision Floating Point

Numbers” International Journal of Research in Computer

Science, Volume 1, Issue 1, pp. 1-7, 2011

[11] KavithaSravanthi, Addula Saikumar “An FPGA Based

Double Precision Floating Point Arithmetic Unit using

Verilog” International Journal of Engineering Research &

Technology ISSN: 2278-0181, Vol. 2 Issue 10, October - 2013

[12] Rathindra Nath Giri, M.K.Pandit “Pipelined Floating-

Point Arithmetic Unit (FPU) for Advanced Computing Systems

using FPGA” International Journal of Engineering and

Advanced Technology (IJEAT), Volume-1, Issue-4, pp. 168-

174, April 2012

[13] H. Yamada, T. Hottat, T. Nishiyama, F. Murabayashi, T.

Yamauchi, and H. Sawamoto “A 13.3ns Double-precision

Floating-point ALU and Multiplier”, IEEE International

Conference on Computer Design: VLSI in Computers and

Processors, pp. 466 – 470, 2-4 Oct 1995

[14] Shrivastava Purnima, Tiwari Mukesh, Singh Jaikaran and

Rathore Sanjay “VHDL Environment for Floating point

Arithmetic Logic Unit - ALU Design and Simulation” Research

Journal of Engineering Sciences, Vol. 1(2), pp.1-6, August -

2012

[15] Hwa-Joon Oh, Silvia M. Mueller, Christian Jacobi, Kevin

D. Tran, Scott R. Cottier “A Fully Pipelined Single-Precision

Floating-Point Unit in the Synergistic Processor Element of a

CELL Processor” IEEE Journal of Solid-State Circuits, Vol.

41, No. 4, pp. 759-771, April 2006

 [16] Jongwook Sohn, Earl E. Swartzlander “Improved

Architectures for a Fused Floating Point Add-Subtract Unit”

IEEE Transactions on Circuits and Systems—I: regular papers,

Vol. 59, No. 10, pp. 2285-2291, October 2012

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5476381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5476381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5476381
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4053

