
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 1 January 2016, Page No. 15572-15577

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15572

A Paradigm for Active Database Management Systems
Manvendra Yadav ,

Sonia Kumari

Atma Ram Sanatan Dharma College , University Of Delhi , India

ymanvendra@gmail.com

Shyama Prasad Mukherji College (For Women), University Of Delhi, India

soniakumari.ducs@gmail.com

ABSTRACT

Active database systems support mechanisms that enable them to respond automatically to events that are

taking place either inside or outside the database

system itself. Considerable effort has been directed towards improving understanding of such systems in

recent years, and many different proposals have been made and applications suggested. This high level of

activity has not yielded a single agreed-upon standard approach to the integration of active functionality

with conventional database systems, but has led to improved understanding of active behaviour description

languages, execution models, and architectures. This paper presents the fundamental characteristics of active

database systems[11], describes a collection of representative systems within a common framework,

considers the consequences for implementations of certain design decisions, and discusses tools for

developing active applications. Active database management systems are invoked by synchronous events

generated by user or application programs as well as external asynchronous data change events such as a

change in sensor value or time. In this paper gives the introduction of active DBMS[12] and discussed how

it is different from passive DBMS.

Keywords

Active database management systems(ADBMS),

Rule-Based Systems Application Program.

1. INTRODUCTION

Traditionally, database systems have been viewed

as repositories that store the information required

by an application, and that are accessed either by

user programs or through interactive interfaces. In

such a context, a range of different tools and

systems are used together to support the

requirements of the application. However,

database systems are beginning to be applied to a

range of domains associated with highly complex

information processing, ever more substantial

quantities of data, or highly stringent performance

requirements, in which the conventional multi

component environment has proved to be

unsatisfactory. This has resulted in a trend in

database research towards more of the

functionality required by an application being

supported within the database system itself, giving

rise to database systems[5] with more

comprehensive facilities for modelling both the

structural and the behavioural aspects of an

application. Among the fields that have received

attention in recent years with a view to enhancing

the behavioural facilities of database systems are

database

programming, temporal databases, spatial

databases, multimedia databases, deductive

databases, and active databases. This survey

focuses upon the last mentioned. Traditional

database management systems (DBMSs) are

passive in the sense that commands are executed

by the database[5] (e.g., query, update, delete) as

and when requested by the user or application

program. However, some situations cannot be

effectively modelled by this pattern. As an

example, consider a railway database where data

are

stored about trains, timetables, seats, fares, and so

on, which is accessed by different terminals. In

some circumstances (e.g., public holidays, cultural

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v5i1.20

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15573

events) it may be beneficial to add additional

coaches to specific trains if the number of spare

seats a month in advance is below a threshold

value. Two options are available to the

administrator of a passive database system who is

seeking to support this requirement.

One is to add the additional monitoring

functionality to all booking programs so that the

preceding situation is checked each time a seat is

sold. However, this approach leads to the

semantics of the monitoring task being distributed,

replicated, and hidden among different application

programs. The second approach relies on a polling

mechanism that periodically checks the number of

seats available. Unlike the first approach, here the

semantics of the application is represented in a

single place, but the difficulty stems from

ascertaining the most appropriate polling

frequency. If too high, there is a cost penalty. If

too low, the reaction may be too late (e.g., the

coach is added, but only after several customers

have been turned away). Active databases support

the preceding application[11][12] by moving the

reactive behaviour from the application (or polling

mechanism) into the DBMS. Active databases are

thus able to monitor and react to specific

circumstances of relevance to an application. The

reactive semantics is both centralized and handled

in a timely manner. An active database system

must provide a knowledge model (i.e., a

description mechanism) and an execution model

(i.e., a runtime strategy) for supporting this

reactive behaviour. A common approach for the

knowledge model uses rules that have up to three

components: an event, a condition, and an action.

The event part of a rule describes a happening to

which the rule may be able to respond. The

condition part of the rule examines the context in

which the event has taken place. The action

describes the task to be carried out by the rule if

the relevant event has taken place and the

condition has evaluated to true. Most active

database systems support rules with all three of

the components described; such a rule is known as

an event-condition-action or ECA-rule[4]. In some

proposals the event or the condition may be either

missing or implicit. If no event is given, then the

resulting rule is a condition-action rule, or

production rule. If no condition is given, then the

resulting rule is an event-action rule. At first

glance, the introduction of active rules to a

database system may seem like a straightforward

task, but in practice proposals have been made

that support widely different functionalities.

Among the issues that distinguish proposals are

the expressiveness of the event language, the

scope of access to database states from the

condition and action, and the timing of condition

and action evaluation relative to the event. The

functionality of a specific system will be

influenced by a number of factors, including the

nature of the passive data model that is being

extended, and the categories of application to be

supported .

2. Active DBMSs (ADBMSs) versus Passive

DBMSs

DBMSs are passive in the sense that they are

explicitly and synchronously invoked by user or

application program initiated operations.

Applications send requests for operations to be

performed by the DBMS and wait for the DBMS

to confirm and return any possible answers. The

operations can be definitions and updates of the

schema, as well as queries and updates of the data.

Active Database Management Systems

(ADBMSs) are event driven systems[11][12]

where operations such as schema changes and

changes to data generate events that can be

monitored by active rules. An ADBMS can be

invoked, not only by synchronous events that have

been generated by users or application programs,

but also by external asynchronous events such as

changes of sensor values or time. When

monitoring events in a passive database, a polling

technique or operation filtering can be used to

determine changes to data. With the polling

method the application program periodically polls

the database by placing a query about the

monitored data. The problem with this approach is

that the polling has to be fine-tuned so as not to

flood the DBMS with too frequent queries that

mostly return the same answers, or in the case of

too infrequent polling, the application might miss

important changes of data. Operation filtering is

based on the fact that all change operations sent to

the DBMS are filtered by an application layer that

performs the situation monitoring before sending

the operations to the DBMS. The problem with

this approach is that it greatly limits the way rule

condition evaluation can be optimized. It is

desirable to be able to specify the conditions to

monitor in the query language of the DBMS. By

DOI: 10.18535/Ijecs/v5i1.20

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15574

checking the conditions outside the database the

complete queries representing the conditions will

have to be sent to the DBMS. Many DBMSs

allow precompiled stored procedures that can

update the database. The effects of calling such a

procedure cannot be determined outside of the

database. If the condition monitoring is used to

determine inconsistencies in the database, it is

questionable whether this should be performed by

the applications, instead of by the DBMS itself. In

an integrated ADBMS condition monitoring is

integrated into the database. This makes it

possible to efficiently monitor conditions and to

notify applications when an event occurred that

caused a rule condition to become true and that is

of interest to the application. Monitoring of

specific conditions, represented as database

queries, can be performed more efficiently since

the ADBMS has more control of how to evaluate

the condition efficiently based on knowledge of

what has changed in the database since the

condition was last checked. It also lets the

ADBMS perform consistency maintenance as an

integrated part of the data management. Internal

ADBMS functions that can use data monitoring

includes, for example, constraint management,

management of long-running transactions, and

authorization control. In constraint management,

rules can monitor and detect

inconsistent updates and abort any transactions

that violate the constraints. In

some cases compensating actions can be

performed to avoid inconsistencies instead of

performing an abortion of the complete

transaction. In the management of long-running

transactions, rules can be used to efficiently

determine synchronization points of different

activities and also whether if one transaction has

performed updates that have interfered with

another [2]. In authorization control rules can be

used to check that the user or application has

permission to do specific updates or schema

changes in the database. Applications which

depend on data monitoring activities such as CIM,

Telecommunications Network Management,

Medical [6] and Financial Decision Support

Systems [7] can greatly benefit from integration

with ADBMSs.

3. Temporal Logic in Active Databases

In ADBs, dynamic integrity constraints

formulated in temporal logic are converted to

ECA rules[4]. An architecture is proposed for

implementing temporal integrity constraints by

compiling them into a set of active DBMS rules.

This compiler allows automatic translation of

integrity constraints formulated in past temporal

logic into rules of an active DBMS. During

compilation, the set of constraints is checked for

the safe evaluation property. The result is a set of

SQL statements that includes all the necessary

rules needed for enforcing the original constraints.

When the rules are activated, all updates to the

database that violate any of the constraints are

automatically rejected (meaning the corresponding

transaction is aborted). This method converts past

temporal logic formulae into a set of SQL

statements. For past temporal logic formulas, the

truth of the formula in state n depends only on the

finite history D0 ,D1 ,D2..... Dn of the database. [9]

uses past temporal logic for specifying conditions

and events in the rules for active database system.

An algorithm is presented for incremental

evaluation of temporal conditions and a new

framework for processing temporal constraints.

This method stores the history of the database. In

[10], monitoring schemes for dynamic integrity

constraints are developed. Generating triggers for

monitoring integrity from dynamic constraint

formulae are addressed. Refering to the “job”

description of a database from the first section, we

see that all of these approaches go beyond what is

meant to be supported by a database. In fact, they

address precisely some of the issues that are

required for modeling the interactive behavior of

information systems that are defined by their

service descriptions.

4 . Using Rules as a Complement to

Traditional Coding

Active rules can serve as a complement to

traditional coding techniques where all the

functionality of the system is specified in

algorithms written in modules and functions.

Active rules provide a more dynamic way of

handling new situations and are often better

alternatives to modifying old functions to cope

with new situations. Great care has to be taken,

however, when using active rules to avoid

introducing unanticipated behaviour into the

system. Misuse of rules, such as using too many

levels of rules that can affect each other in

DOI: 10.18535/Ijecs/v5i1.20

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15575

unpredictable ways or attempts to use rules where

traditional functions are more suited is one reason

why the use of active rules in software

development has only had limited success. A

common technique that is used is to use rules for

specifying parts of the system during the design

phases and to use these rules as guidelines

Introduction for the actual coding phases or to

compile the rules into corresponding functions to

simplify the coding. This last technique is

sometimes found directly supported in some

programming languages where pre- and post-

conditions on data can be specified. If the

conditions are violated an error is generated. Rules

can, however, specify pre- or post-conditions that

should apply in many different situations not just

in one piece of code. The rules can signal to the

user or some application that a condition has been

violated. Rules can also specify actions to be

taken, such as removing inconsistencies by

changing illegal values of data. In most

programming languages and query languages such

as SQL fault or signal handlers can be defined that

catches error signals. Rules in an ADBMS can be

seen as having similar behaviour, but catches

database events such as updates. Rules can also be

used for monitoring changes to data. These are

often specified as conditional expressions (if-then-

else, or case expressions) in traditional coding. the

rules can be dynamically changed. New situations

can also be monitored by adding new rules.

5. Rule-Based Systems and Active Database

Systems

In rule-based systems the rules can be used for

different purposes. In fig. 1 the distinction is made

between using rules for monitoring, control, and

reasoning. We here make a distinction between

active database systems [3] and other rule based

systems such as reactive systems (sometimes

called real-time expert systems) and knowledge-

based systems [1] (often just referred to as expert

systems).

Figure 1 The relation between active database systems and other
rule based

 Active database systems are primarily database

management systems with the main task of storing

large amounts of data and providing efficient

access to this data through a query language. In

active database systems the rules are primarily

used for monitoring changes to the data stored in

the database. In reactive systems the rules are used

for reacting to changes of some external

environment and performing actions on

(controlling) the environment in response to the

changes. In knowledge-based systems the rules

are usually used for reasoning using stored facts

and by deducing new facts by using the rules. As

can be seen in fig. 1 there is no sharp distinction

between the three different kinds of rule systems.

An active database system can do limited

reasoning by using rules with more complicated

rule conditions and which store new data in the

database as new facts that signify that the rules

have triggered. Control of the environment

represented by the data in the database itself can

also be performed, e.g. with constraint rules that

modify the database to remove any

inconsistencies. By allowing the active database

manager to access an external environment that

can be both accessed and updated, the rules in the

active database can be used for control of an

external environment as well. The primary use of

active rules in an active database system as

presented in this thesis is to monitor changes to

the data that can be accessed in the database.

6. EXECUTION MODEL

The execution model specifies how a set

of rules is treated at runtime, the execution model

of a rule system is closely

related to aspects of the underlying DBMS (e.g.,

data model, transaction manager), there are a

number of phases in rule evaluation, illustrated in

Figure 2, that transcend considerations that relate

to specific software environments.

 The signaling phase refers to the

appearance of an event occurrence caused

by an event source.

 The triggering phase takes the events

produced thus far, and triggers the

corresponding rules. The association of a

rule with its event occurrence forms a rule

instantiation.

 The evaluation phase evaluates the

condition of the triggered rules. The rule

DOI: 10.18535/Ijecs/v5i1.20

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15576

conflict set is formed from all rule

instantiations whose conditions are

satisfied.

 The scheduling phase indicates how the

rule conflict set is processed.

 The execution phase carries out the

actions of the chosen rule instantiations.

Figure 2: Principal steps that take place during rule execution

During action execution other events can in turn

be signalled that may produce cascaded rule

firing. These phases are not necessarily executed

contiguously, but depend on the Event-condition

and Condition-action coupling modes. The former

determines when the condition is evaluated

relative to the event that triggers the rule. The

Condition-action coupling mode indicates when

the action is to be executed relative to the

evaluation of the condition. A further aspect to be

considered is how Error handling is supported

during rule firing. Most systems simply abort the

transaction, as this is standard behaviour in

databases. However, other alternatives may be

more convenient that is to ignore the rule that

raised the error and to continue processing other

rules to backtrack to the state when rule

processing started and either restart rule

processing or continue with the transaction

to adopt some contingency plan that endeavours to

recover from the error state, possibly using the

exception mechanism of the underlying database

system.

7. ADBMS in Large Complex Systems

The introduction of a DBMS into a system

provides a good platform for designing rules that

access data from different parts of the system.

Rules are dependent on the fact that all the

information that is needed to check the rules is

available. In a system without a general

mechanism for storing data the rules have to be

compiled into each module or function that can

affect the rule condition. This limits the rule to

just relating to data available in that module or

function. In an ADBMS active rules are managed

by the ADBMS and the rules can

thus directly access data stored in the database.

Rules specified in a database can have conditions

that span over data belonging to several modules

of the system. The active rules can be used for

directly supporting various applications with

monitoring of changes to data in the database,

with synchronizing activities in the system, and

with maintaining the integrity of data in the

database. Care has to be taken when designing

these systems to not introduce unwanted or

unspecified communication between modules

through the database. A common and successful

technique in designing large systems has been to

carefully design the interaction between different

modules or processes by

special interfaces, i.e. by exported interface

functions or by inter-process communication. The

design phase [8] now has to take into

consideration what data that is going to be stored

in the database for each module and what data is

going to be visible to other modules. By storing

information about the state of the system in the

database, e.g. the state of different hardware and

software components, active rules can be used to

monitor the state of the system itself. If the system

is interacting with some external environment, e.g.

a telecommunication network or a manufacturing

plant, state information of these environments can

be made available in the database as well. This

could be done by mapping sensor data into the

database and making it available in queries and

rules. This does not have to mean that the sensor

data is always stored permanently in the database.

It may be the case that the sensor data is available

to read as if it was stored directly in the database

and that the ADBMS is informed when the sensor

data changes. In many cases it makes no sense to

store the data permanently since it changes quite

frequently. The sensor data can sometimes be

stored for logging purposes, but this might already

be done in some other system that is part of the

external environment. Allowing access to the state

of the external environment through the database

makes it possible to use active rules to monitor

changes in the external

Environment.

DOI: 10.18535/Ijecs/v5i1.20

Manvendra Yadav, IJECS Volume 05 Issue 1 January 2016 Page No.15572-15577 Page 15577

8. Conclusions

Active databases have been traditionally

considered as data transformation systems, with

research methods that borrow from traditional

database arsenal. This is despite the fact that one

of the design issues in active databases is in

bringing application-level integrity concerns to the

database level. As a result, designing the rule

system of ADBMS is a challenge and the mapping

between application requirements

and the system of rules remains complicated. We

argue for a change in viewpoint, so active

databases are embraced as a special (restricted)

type of an information system rather than a special

(augmented) type of a database. As such, they are

interactive service-providing systems rather than

mere data transformation engines. This change in

perspective offers a promising approach for

addressing ADBMS shortcomings, and reveals a

roadmap of additional features for ADBMS.

REFERENCES :

1. Hedberg S. and Steizner M. “Knowledge

Engineering Environment (KEE) System”

Summary of Release 3.1, Intellicorp Inc. July

1987.

2. Dayal U., Hsu M., and Ladin R. “Organizing

Long-Running Activities with Triggers and

Transactions”, Proceedings of the ACM SIGMOD

International Conference on Management of Data,

Atlantic City, May 1990.

3. Morgenstern M. “Active Databases as a

Paradigm for Enhanced Computing

Environments” , Proceedings of the 9th VLDB

Conference, Florence, Nov. 1983.

4. N. W. Paton (Ed.), “Active Rules in Database

Systems”. Springer, New York 1999, pp. 81-102.

5. ABITEBOUL, S. AND HULL, R. 1987. “IFO:

A formal semantic database model”, ACM Trans.

Database Syst. 12, 4 (Dec.), 525–565.

6. Hayes-Roth D., Washington R., Hewett R.,

Hewett M., and Seiver A. “Intelligent Monitoring

and Control”, Proceedings of the 1989

International Joint Conference on Artificial

Intelligence, 1989.

7. Chandra R. and Segev A , “Active Databases

for Financial Applications”, RIDE ´94, Houston,

Febr., 1994, Pages 46-52.

8. Widom J. and Ceri S. (ed.), “Active Database

Systems - Triggers and Rules for

Advanced Database Processing”, Morgan

Kaufmann Publishers, Inc., ISBN-1-55860-304-2,

1996.

9. A.P. Sistla, O. Wolfson, “Temporal Conditions

and Integrity Constraints in Active Database

Systems” , Proc. 1995 ACM SIGMOD Int’l Conf.

on Management of Data, pp. 269– 280, 1995.

.

10. M.Gertz, U.W.Lipeck. “Deriving optimized

monitoring triggers from dynamic integrity

constraints”. IEEE Proc. Of Data and Knowledge

Eng., Vol. 20(2), pp. 163-193, 1996.

11. F. Casati, S. Castano, and M. Fugini,

“Managing Workflow Authorization Constraints

through Active Database Technology” .

Information Systems Frontiers 3:3, Sep. 2001.

12. N. W.Paton, Os. Diaz. “ Active Database

Systems”, ACM Computing Surveys, Vol 31, No

1, March 1999.

