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Abstract-   Big Data is a collection of a huge and complex data that it becomes extremely drab to seize, 

store, process, reclaim and inspect it with the help of on hand database management tools or traditional data 

processing techniques. Now a day, data is constantly evolving and becomes a big data. The data is being 

generated from different sources – undertaking, social media, sensors, digital images, video, audio and 

clickstreams for domains together with healthcare, retail, energy and utilities. It is intended to scale up from 

single server to thousands of machines, each offering local computations and storage Big data with 3 V‟s: 

volume, variety and velocity. For processing such big volume of data, variety of data and the data with high 

velocity and having high storage capacity, we introduced Hadoop which is evolved day by day. We used 

MapReduce at this point as a programming model. In this paper we worn Incremental MapReduce most 

extensively used framework for processing big data. To improve the time of processing big data and 

optimizing data content of big data we applied PageRank and k-means iteratively along with MapReduce. 

Therefore to process big data incremental MapReduce approach is used. Incremental MapReduce 1) 

performs key-value pair level incremental processing, 2) supports complicated duplication computation, 

which is widely used in data mining applications. That means incremental MapReduce processes big data in 

a less time and stores it in a more optimized form. 
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[1] INTRODUCTION 

 

Big data is the term for a collection of data sets so big and complex that it becomes difficult to process using 

on-hand database management tools or traditional data processing applications. Big data streams are 

characterized by having high volume data (data in petabytes and zetabytes), variety of data (data may be 

structured, semi structured or unstructured) and velocity of data (how fast data processes). To process such 

big data hadoop is evolved. Hadoop is an open source framework that allows to store and process big data in 

distributed environment across clusters of computers using simple programming models. Hadoop is a 

framework for running applications on large clusters. Modeled after Google‟s MapReduce/GFS framework 

and implemented in Java. Amazon/A9, Facebook, Google, IBM, Intel Research uses hadoop. 

 

A.  Hadoop Sake 
 
Cost effective – Because it works on commodity hardware.   
Big cluster (1000 nodes on cluster) – Big storage and more processing power due to number of nodes on 
cluster.   
Parallel processing – In MapReduce framework thousands of nodes processes in parallel and generate 
results in timely manner.   
Big storage – Thousands of nodes with high capacity (100 GB). So storage capacity increases.   
Failover – Automatic failover. If node crashes, framework will identify automatically.   
Data distribution – Hadoop framework handles itself because it has thousands of nodes.   
MapReduce framework – Designed and will work on hadoop framework as map and reduce fu Moving code 
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to data – Writes a MapReduce code, sends MapReduce code to cluster and get data.   
Heterogeneous  hardware  –  Can  use  hardware  (CPU, memory etc.) of IBM, oracle, HP, Intel etc.  
Hadoop uses java framework for processing huge volume of data in cluster. Hadoop includes core 

technology  
1) HDFS - a distributed filesystem for storage purpose and   
2) Map/Reduce - offline computing engine.   

Hadoop File System was developed by using distributed file system design. It is run on commodity 

hardware. Contrasting other distributed systems, HDFS is highly fault-tolerant and designed using low-cost 

hardware. HDFS holds very large amount of data and provides easier access. To store such huge data, the 

files are stored across multiple machines. These files are stored in redundant fashion to rescue the system 

from possible data losses in case of failure. HDFS(Hadoop distributed file system) also makes applications 

available to parallel processing.  
Map Reduce is a programming model and an associated implementation for processing and 

generating large data sets with a parallel, distributed algorithm on a cluster. Map Reduce program poised of 

a Map function and Reduce function. Map ( ) procedure that performs filtering and sorting, reduce ( ) 

method that performs a summary operation. Map Reduce execution sequence is shown in fig.1.a,1.b 
map(K1,V1) [<K2,V2>] reduce(K2,{V2}) [<K3,V3>] 
 

 

Fig1.a MapReduce computation       Fig1.b Execution sequence 

         The Map function takes a kv-pair <K1, V1> as input and computes zero or more intermediate kv-pairs 

<K2, V2>s. Then all <K2, V2>s are grouped by K2. The Reduce function takes a K2 and a list of {V2} as 

input and computes the final output kv-pairs <K3, V3>s. 
 
             A MapReduce system reads the input data of the MapReduce computation from and writes the final 
results to a distributed file system, which divides a file into equal-sized (e.g., 64 MB) blocks and stores the 
blocks across a cluster of machines. For a MapReduce program, the MapReduce system runs a JobTracker 
process on a maste node supervise job improvement, and a set of Task Tracker processes on worker nodes to 
execute the actual Map and Reduce tasks. 

The Job Tracker starts a Map task per data block, and typically assigns it to the Task Tracker on the 

machine that holds the corresponding data block in order to minimize communication overhead. Each Map 

task calls the Map function for every input <K1, V1> and stores the intermediate kv-pairs <K2, V2>s on 

local disks. Intermediate consequences are shuffled to Reduce tasks according to a partition function on K2. 

After a Reduce task obtains and merges intermediate results from all Map Tasks, it invokes the Reduce 

function on each <K2, {V2}> to generate the final output kv-pairs <K3, V3>s. 

The MapReduce system orchestrates the processing by marshaling the distributed servers, running 

the different tasks in parallel, organization all communications and data relocate between the different parts 

of the system and provided that for redundancy and fault tolerance. 
 

Incremental MapReduce is an addition to MapReduce used for processing big data efficiently and 
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timely with the optimization in data content of big data and also required optimized time to process this big 

data. 

 

 

 [2] LITERATURE SURVEY  
 

We begin by reviewing the concept of MapReduce programming model, HaLoop, IterMR, Incoop, incMR , 

Iterative processing ,Incremental processing for iterative application, and Dataflow 

 

A.  MapReduce 
 
MapReduce is a programming model and an allied execution for processing and generating large data sets. 

Map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with the same intermediate key. Programs written in 

this functional style are automatically parallelized and executed on a large cluster of commodity machines. 

The run-time system takes care of the details of partitioning the input data, scheduling the program's 

execution across a set of machines, handling ma-chine failures, and managing the required inter-machine 

communication but it takes a more time for processing [2]. Implementation of MapReduce runs on a large 

cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many 

terabytes of data on thousands of machines 

hundreds of MapReduce programs have been implemented and upwards of one thousand MapReduce jobs 

are executed on Google's clusters every day. Programs written in this functional style are automatically 

parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the 

details of partitioning the input data, scheduling the program's execution across a set of machines, handling 

machine failures, and managing the required inter-machine Communication. This allows programmers 

without any experience with parallel and distributed systems to easily utilize the resources of a large 

distributed system [5]. 

 

B.  HaLoop 

 
Bu et al. used a new technique called as HaLoop which is modified version of Hadoop MapReduce 

Framework, as Map Reduce lacks built-in-support for iterative programs HaLoop allows iterative 

applications to be assembled from existing Hadoop programs without modification, and significantly 

improves their efficiency by providing inter-iteration caching mechanisms and a loop-aware scheduler to 

exploit these caches. HaLoop is built on top of Hadoop and extends it with a new programming model and 

several important optimizations that include (1) a loop-aware task scheduler, (2) loop-invariant data caching, 

and (3) caching for efficient fix point verification. HaLoop performs worse than plain MapReduce. This is 

because HaLoop employs an extra MapReduce job in each iteration to join the structure and state data [3].  
A number of distributed frameworks have newly emerged for big data processing. HaLoop improves the 

efficiency of iterative computation by making the task scheduler loop-aware and by employing caching 

mechanisms. Twister employs a lightweight iterative MapReduce runtime system by sensibly constructing a 

Reduce-to-Map loop. IMapReduce supports iterative processing by directly passing the Reduce outputs to 

Map and by distinguishing variant state data from the static data [4]. Bu et al. used a new technique called as 

HaLoop which is modified version of Hadoop MapReduce Framework, as Map Reduce lacks built-in-

support for iterative programs HaLoop allows iterative applications to be assembled from existing Hadoop 

programs without modification, and significantly improves their efficiency by providing inter- iteration 

caching mechanisms and a loop-aware scheduler to exploit these caches. HaLoop is built on top of Hadoop 
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and extends it with a new programming model and several important optimizations that include (1) a loop-

aware task scheduler, (2) loop-invariant data caching, and (3) caching for efficient fix point verification [7]. 
 

 
C.  Incoop 
 
Incoop, which allows existing MapReduce programs, not designed for incremental processing, to execute 

transparently in an incremental manner. In Incoop, computations can respond automatically and efficiently 

to modifications to their input data by reusing intermediate results from previous computations, and 

incrementally updating the output according to the changes in the input. But Incoop Supports only task-level 

incremental processing and supports only one-step computation [5]. 
 
 

D.  IncMR 
 
IncMR framework is for incrementally processing new data of a large data set, which takes state as implicit 

input and combines it with new data. Map tasks are created according to new splits instead of entire splits 

while reduce tasks fetch their inputs including the state and the intermediate results of new map tasks from 

designate nodes or local nodes. Data 

locality is considered as one of the main optimization means for job scheduling. But optimization of data is 

not done so size and location of state data is not recognized [6]. 

 

 E. Iterative processing  

 

A number of distributed frameworks have newly emerged for big data processing. HaLoop improves the 

efficiency of iterative computation by making the task scheduler loop-aware and by employing caching 

mechanisms. Twister employs a lightweight iterative MapReduce runtime system by sensibly constructing a 

Reduce-to-Map loop. IMapReduce supports iterative processing by directly passing the Reduce outputs to 

Map and by distinguishing variant state data from the static data [1]. 

 

F. Incremental processing for one-step application. 

 
 
Besides Incoop, several recent studies aim at supporting incremental processing for one-step applications. 

Incoop detects changes to the inputs and enables the automatic update of the outputs by employing an 

efficient, fine-grained result reuse mechanism. This incremental nature of data suggests that performing 

large-scale computations incrementally can improve efficiency dramatically. But Incoop supports only task-

level incremental processing. So, Incoop do not allow for reusing the large existing base of MapReduce 

programs.Incoop supports only one step computation [2]. 

 

G. Incremental processing for iterative application. 

 

Naiad [14] proposes a timely dataflow paradigm that allows stateful computation and arbitrary 

nested iterations. To support incremental iterative computation, programmers have to completely rewrite 

their MapReduce programs for Naiad. In comparison, we extend the widely used MapReduce model for 

incremental iterative computation. Existing Map-Reduce programs can be slightly changed to run on 

i2MapReduce for incremental processing [3]. 

 

1.Continuous MapReduce 
 
Ad-hoc data processing is a critical paradigm for wide-scale data processing especially for unstructured data. 
Ad-hoc data processing abstraction is a distributed stream processor based on MapReduce programming 
model to support continuous inputs. MapReduce Online adopts pipelining technique within a job and 
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between jobs, supports single-job and multi-job online aggregation, and also provides database continuous 
queries over data streams. MapReduce programming model with the continuous query model characterized 
by Cut-Rewind to process dynamic stream data chunk. CMR, continuous MapReduce, is architecture for 
continuous and large-scale data analysis. Continuous processing is a special case of incremental processing 
[4]. 

 

2. Incremental parallel data processing 
 
It is a generalized architecture for continuous incremental bulk processing. It takes the prior state as an 

explicit input combined with the new input. A set of dataflow primitives is also provided to perform web 

analytics and mine large scale and evolving graphs. Percolator is a system for incrementally data processing 

by using distributed transactions and notifications. It is mainly used to create Google Web search index. 

PIESVM is a special parallel incremental extreme SVM classifier. It is designed based on MapReduce 

model and can save training time for SVM algorithm [4].    

 

 H. Dataflow 

 

Systems such as CIEL, Spark, Spark Streaming and Optimus extend acyclic batch dataflow to allow 

dynamic modification of the dataflow graph, and thus support iteration and incremental computation without 

adding cycles to the dataflow. By adopting a batch-computation model, these systems inherit powerful 

existing techniques including fault tolerance with parallel recovery; in exchange each requires centralized 

modifications to the dataflow graph, which introduce substantial overhead that Naiad avoids [6]. 

 

I. Asynchronous computation 
 
Several systems have abandoned synchronous execution in favor of a model that asynchronously updates a 

distributed shared data structure, in order to achieve low-latency incremental updates and fine-grained 

computational dependencies. Percolator structures a web indexing computation as triggers that run when 
new values are written into a distributed key-value store [6]. 

 

[3] IMPLEMENTATION DETAILS 
 
Processing is done on a datasets which are the iterative with respect to its base file. Four iterative algorithms 

are used for the accomplishment. In section A, we design PageRank algorithm. Section B includes Kmeans 

algorithm. Section C and D includes the explanation of MapReduce and incremental MapReduce 

respectively. System architecture is shown in fig. 2. 
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Fig. 2: System Architecture 
 
A.  PageRank 
 
PageRank is a link investigation algorithm that assigns a numerical weighting to every element of a 

hyperlinked set of documents, with the point of measuring its comparative significance within the set. Votes 

throw by pages that are themselves "important" weigh up more deeply and facilitate to make further pages 

"important". PageRank is a well-known iterative graph algorithm for ranking web pages. It computes a 

ranking score for all vertex in a graph. After initializing all ranking scores, the working out performs a 

MapReduce job per iteration.  
The PageRank algorithm is at the heart of the Google search engine. It is this algorithm that in spirit decides 
how significant a precise page is and thus how elevated it will demonstrate in a search result. In PageRank 

algorithm a page is important, if other important pages link to it. This scheme can be seen as a method of 
calculating the importance of pages by voting for them. Each link is viewed as a vote - a de facto suggestion 

for the importance of a page - whatever reasons the page has for connecting to a precise page. The 

PageRank-algorithm can, with this explanation, be seen as the contradict of an online survey, where pages 
vote for the importance of others, and this result is then tallied by PageRank and is reflected in the search 

results.  
 

 

B.  K-means 
 
Clustering is a classification of objects into dissimilar groups in such a way the partitioning of dataset into 
subsets so that data in each subset share some common feature according to some defined distance measure 
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which is Euclidean distance measure.  
Euclidean distance, 
d = √∑

n
i=1(pi − qi)² …………… (3.1)  
K-means clustering algorithm is a simple technique for estimating the mean of a set of k-group. K-

means is a frequent and well-known clustering algorithm. It partitions a set of „n‟ objects into „k‟ clusters 

based on a similarity measurement of the objects in the dataset. The clusters have an prominent intra-cluster 

and a little inter-cluster similarity. As the number of objects in the cluster vary, the center of gravity of the 

cluster shifts.  
Simply speaking k-means clustering is an algorithm to classify or to group the objects based on 

attributes/features into K number of group. K is positive integer number. The grouping is done by 
minimizing the su m of squares of distances between data and the corresponding cluster centroid  

 

C.  MapReduce 
 

MapReduce is a programming model and an allied implementation for processing and generating big 

data sets. Users state a map function that processes a key/value pair to build a set of intermediary key/value 

pairs, and a reduce function that merges the total intermediary values allied with the same intermediate key. 

Implementation of MapReduce runs on a large cluster of product machines and is extremely scalable: an 

individual MapReduce calculation processes numerous terabytes of data on thousands of machines.  
The solid part of the MapReduce output framework is a large distributed sort. The hot spots, which 

the application defines, are:  
Input reader – The input reader divides the input into proper size splits and the framework assigns on split to 

each map function. The input reader reads data from steady storage space and generates key/value pairs.  
 
Map function – The map function takes a series of key/value pairs, processes each, and generates zero or 
more output key/value pairs.   
Partition function – Each map function output is allocated to a particular reducer by the applications 

partition function for sharing purposes. The partition function is given the key and the number of reducers 

and returns the key of the desired reducer.  
 
Comparison function – the input for each reducer is pulled from the machine where the map ran and stores 
using the application‟s comparison function.   
Reduce function – The framework calls the applications reduce function one of each unique key in the 
stored order. The reduce function can iterate through the values that are associated with that key and produce 
zero or more outputs.   
Output writer – The output writer writes the output of the reduce function to the stable storage 
 

 

 

 

D.  Incremental MapReduce 

 
 
In order to hold up incremental and iterative processing, a few MapReduce APIs are changed or added. 

Incremental MapReduce is an enhancement in the MapReduce. Incremental MapReduce is a task-level 

coarse-grain incremental processing system. Incremental MapReduce exploits inspection to stay re-

computation by preliminary since the previously converged state, and during the stage incremental updates 

on the changeable information. Incremental MapReduce improves the run time of re-computation on plain 

MapReduce by an eight fold speedup. Incremental MapReduce takes input file as the output of the k-means 

clustering algorithm. Therefore in incremental MapReduce there is optimization of data content. Incremental 

MapReduce requires computation time less than the computation time of MapReduce because of the 

optimization in the data content. 

 

 Remark  
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Here we are going to use Big Data for the storage and processing Hadoop technology. HDFS will be 

used for the storage and MapReduce for the computation. Incremental MapReduce is a MapReduce based 

framework designed for incremental iterative computations. Incremental MapReduce supports more 

complex state-to-structure relationships. Also it supports big data sets of terabytes and petabytes. 
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