
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 6 June 2017, Page No. 21833-21837

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i6.47

Nayan Mulla, IJECS Volume 6 Issue 6 June, 2017 Page No. 21833-21837 Page 21833

Dynamic Analysis of web system by using model-based testing and Process

Crawler Model
Mrs. Nayan Mulla

1
, Prof. Sachin B. Takmare

2
, Prof. Pramod A.Kharade

3

1Department of Computer Science and Engg., Bharati Vidyapeeth’s College of Engineering,

Kolhapur, Maharashtra, India

nayanmulla@gmail.com
2department of Computer Science and Engg., Bharati Vidyapeeth’s College of Engineering,

Kolhapur, Maharashtra, India

sachintakmare@gmail.com
3department of Computer Science and Engg., Bharati Vidyapeeth’s College of Engineering,

Kolhapur, Maharashtra, India

pramodkharade@gmail.com

Abstract: Modern business applications predominantly rely on web technology, enabling software vendors to efficiently provide them as a

service, removing some of the complexity of the traditional release and update process. To increasing web application accuracy and speed user

process crawler model.Cutting edge business applications transcendently depend on web innovation, empowering programming sellers to give

proficiently them as an administration, uprooting a portion of the multifaceted nature of the customary discharge and overhaul process. While

this encourages shorter, more productive and successive discharge cycles, it obliges persistent testing. Having knowledge into application

conduct through unequivocal models can to a great extent bolster improvement, testing and support. Model-based testing permits effective test

creation taking into account a depiction of the states the application can be in and the moves between these states. As determining conduct

models that are sufficiently exact to be executable by a test computerization device is a hard assignment, an option is to concentrate them from

running applications.

Keywords: Specification mining; dynamic analysis; model-based testing; web system testing.

1. Introduction

Then again, mining such models is a test, specifically in light of

the fact that one needs to know when two states are

proportional, and also how to achieve that state. Here

introduce ProCrawl (Process Crawler), a device to mine

conduct models from web applications that backing multi-client

work processes. ProCrawl incrementally takes in a model by

creating system runs and watching the application conduct

through the client interface. In our assessment on a few true

web applications, ProCrawl removed models that briefly depict

the actualized work processes and can be specifically utilized

for model-based testing[14].

into a prevailing customer for big business

programming. Also, the accessibility of system data transfer

capacity empowers applications to be worked by the merchant

and gave as administrations to clients. Working applications on

the seller side evacuates a portion of the intricacy and expenses

of the customary programming discharge and redesign

procedure; while this empowers shorter, more proficient and

incessant discharge cycles with a littler number of components,

it puts more weight on programming advancement and obliges

giving careful consideration to operational viewpoints, nonstop

Quality Affirmation (QA) and testing. Having knowledge into

the conduct of a product segment through unequivocal models

can to a great extent enhance the improvement, QA and support

process.

The field of determination mining so as to mine plans

to encourage these exercises deliberations from projects and

their executions; commonly, models of the program's conduct.

On the off chance that these models are sufficiently

exact, they can even be utilized as post-facto details of the

project and test designers can apply them in a ceaseless joining

environment to check for relapses after code changes.

Determination mining has been utilized to infer effectively

aphoristic details, for example, capacity and information

invariants from projects or limited state machines portraying

states and moves for individual classes For such little scale

spaces, it is genuinely simple to approve details, in light of the

fact that both system code and project state are available and

agreeable to typical thinking and thorough testing. Extricating

models on framework level is a great deal more troublesome.

Project code and system state, for the case, may not be

accessible for examination, as the application may be

appropriated over a few layers and locales. As a rule, the main

suspicion that can be made is that there is some client interface

(UI, for example, a web front end that takes into consideration

human communication.)

2. Motivation

The Integrating existing tests with Numerous Web applications

accompany existing unit and framework tests. Investigating

intends to incorporate and adjust these tests into computerized

slithering.

 Research development challenges - utilizing their

information for data provisioning, and their association streams

for shockingly better scope. The base of our model is absolutel

state-based. Here considering utilizing setting free and

connection delicate language structures that would permit to

express a great deal more perplexing associations and

conditions. Besides Web applications, the strategies connected

on nonspecific GUI-driven applications, giving model

 extraction and resulting model-construct testing in light of

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i6.47

Nayan Mulla, IJECS Volume 06 Issue 06 Month, 2017 Page No.01-05 Page 21834

an extensive variety of stages and projects.

 Overview of solution-

 Richer models- At this point, the base of our model is

purely state-based. We are thinking about leveraging

context-free and context-sensitive grammars, that would

allow to express much more complex interactions and

dependencies.

 Alternative platforms- Besides Web applications, the

PROCRAWL techniques could just as well be applied on

generic GUI-driven applications, providing model

extraction and subsequent model-based testing on a wide

range of platforms and programs

3. Literature Review

Conduct models can emotionally supportive network

comprehension and acceptance. Model-Based Testing (MBT)

takes into account productive test creation when a model

depicting the conceivable and the normal application conduct is

accessible, and along these lines for expanded computerization.

On the other hand, physically making and keeping up conduct

models that are sufficiently exact to be executable by a test

computerization apparatus all through the product improvement

procedure is costly. Web applications commonly come without

express models, which suggests for the most part manual and in

this manner less proficient test creation, furthermore eases off

comprehension and support[1].

There exist many approaches for reverse engineering various

properties of software components, PROCRAWL is a dynamic

technique mining behavior models of web applications that

generalize upon multiple runs (traces) of the application, which

makes it applicable where source code is not accessible or

amenable to static analysis. The resulting models capture the

interaction of multiple users, as well as the interplay between

input data and event sequencing affecting application behavior.

PROCRAWL is related to dynamic techniques mining

(extended) finite state machines, experimental techniques that

systematically generate program runs to learn program

behavior, techniques extracting models from GUI applications,

and web crawling approaches[2].

 There are various approaches that mine FSMs capturing

program behavior as sequencing of events, many of them

building upon the k-tails algorithm However, program behavior

usually depends not only on the sequencing of events, but also

on the provided input data, which led to approaches combining

FSM inference with data rule inference[3].

MINER mines parametric specifications capturing the multi-

object behavior of Java classes by preprocessing parametric

execution traces and using an extension of k-tails to extract an

FSM with data parameters. Pradel et al[4]. Also mine

parametric multi-object specifications (API usage protocols)

from Java classes. While multi-object specifications capture

method calls performed on multiple objects, PROCRAWL

captures UI interactions performed by multiple actors. One

pioneering work was developed by Lorenzo et al. While

nondeterministic models may be acceptable for the program

comprehension, they are usually too imprecise for test case

generation, the transition guard learning approach implemented

in PROCRAWL is similar to the approach of Walkinshaw et

al[5].

The quality of models extracted by dynamic techniques

closely depends on the

choice of program runs (traces) these techniques

generalize upon. Experimental approaches such as

PROCRAWL tackle this problem by systematically

generating runs to explore program behavior; this allows

PROCRAWL to verify its hypotheses and explicitly control

the exploration scope, which would otherwise be implicitly

induced by a given set of traces. Such techniques have

successfully been implemented for mining behavior models

of Java classes[6].

The underlying problem PROCRAWL has to solve is an

instance of online exploration of a directed multi-graph by

repeatingly selecting an outgoing edge from the current vertex

and traversing it, which is a fundamental problem in robotics

and has been extensively studied for strongly connected graph

However, ABMs are usually not strongly connected, i.e.

PROCRAWL might need to reset the SUT to the initial state to

continue graph exploration[7].

PROCRAWL mines program behavior by observing changes

on the application’s web UI, which is related to GUI Ripping

developed by Atif Memon et al. GUITAR reverse engineers

Event-Flow Graphs (EFGs,) of Java desktop, the web and

Android applications, which are used for model-based GUI

testing. While in ABMs extracted by PROCRAWL user actions

are modeled as transitions between nodes that represent

abstract GUI states of multiple users, in EFGs they are modeled

as nodes with transitions representing the event flow[8].

To explore a web application, PROCRAWL applies

techniques similar to web crawling. Gives an overview on the

state of the art. A prominent representative and actively

developed crawler for AJAX applications is CRAWLJAX ,

which automatically creates a State-Flow Graph (SFG) of the

dynamic DOM states and the event-based transitions between

them. SFGs depict the various navigational paths and UI states

within an AJAX application. Although ABMs look similar to

SFGs, the underlying abstraction in SFGs is much closer to the

SUT’s UI. Limiting the state abstraction scope to a single

DOM tree of a single user, limits the number of actions that can

be detected by the crawler and often leads to a nondeterministic

FSM, prohibiting effective model-based testing. In ABMs, a

node represents an abstraction over multiple DOM trees

(views) of multiple users and transitions refer to generated

scripts encapsulating sequences of UI commands. Furthermore

nondeterminism is effectively eliminated by learning transition

guards over the input data[9][10].

In our evaluation we apply the behavior models inferred by

PROCRAWL for state-based web application testing, similar to

and However, due to the wider exploration scope and higher

level of abstraction supporting multiple users and views, the

test cases generated from PROCRAWL ABMs are more than

pure UI tests and suitable for testing workflows. reports the

state of the art in web testing[5][11]. Presents an approach for

reverse engineering business processes exposed in web

applications by inferring an FSM from execution traces and

transforming it to Business Process(BPMN) and Recovering and

Reducing Business Processes REBPMN [12]

4. Problem Statement

Implementation of integrating the system with automated

process crawling model, using their data for input provisioning,

and their interaction flows for even better coverage

DOI: 10.18535/ijecs/v6i6.47

Nayan Mulla, IJECS Volume 06 Issue 06 Month, 2017 Page No.01-05 Page 21835

5. Proposed Work

5.1 Proposed System Architecture

.

Figure 1. ProCrawl overview

ProCrawl applies a black-box approach that is it mines

application behavior without accessing the sources code of the

System Under Test(SUT).It determines the configured set of UI

views(technical DOM trees),

5.2 Scope

To fully automatic configurable tool to my workflow models

from web applications. It includes implements an iterative

approach of executing actions through the UI, observing

changes to the UI, and enhancing the model. Design an

approach to increases model accuracy by inferring transition

guard conditions from the input data.

5.3 Objective of proposed work

1.To Study and Integrating existing tests and

implementation GUI-driven system using proCrawl model

with context-free grammar and context sensitive grammar.

2. To Study context-free and context-sensitive grammars,

that would allow to express much more complex interactions

and dependencies besides

3. Design an Web applications GUI-driven applications

providing model extraction and subsequent model-based

testing on a wide range of platforms and programs.

4. To integrate and adapt these tests into automated

crawling, using their data for input provisioning, and their

interaction flows for even better coverage.

5.4 Methodology

5.4.1. UI Command Abstraction

Figure 2.First iteration. PROCRAWL

It executes an action with a configured actor, infers the state

of the SUT by applying an abstraction function over the

DOM trees (views) extracted with the actors, and update the

behavior, model.

5.5 Modules

To integrate our system described following four models

5.5.1 Model 1: Configuration

Configured system with the identified actors,

views, start action, a test fixture, and the click depth

and started system and without transition guard

learning;

5.5.2 Model 2: Automatic exploration

Based on this configuration, the system

automatically explores the behavior of the web

application.

 each iteration consists of the following steps

 1 Run action.

 2 State abstraction.

 3 Model.

5.5.3 Model 3: Application Behavior Model

By generating tests from the ABM of the

baseline application and executing these tests on the

delta build, we are able to detect

 Logical Changes (LC) to the underlying workflow, e.g.

removing workflow steps or introducing additional

mandatory steps.

 Structural Changes (SC) to the web UI that cause the

generated scripts to fail, e.g. removing, replacing or

changing attributes of UI elements that are used in the

scripts to locate these elements.

5.5.4 Model 4: Model Based Testing and validation

With the aim of increasing test automation, Model-Based

Testing (MBT) has expanded the automation of software

testing towards the test design phase: behavior models can

be used to derive a test suite that is when executed through

a test automation framework. The Industrial application

has positive effects of MBT on the development

productivity .However, wide-scale adoption suffers from

the absence of explicit models that are complete enough to

be executable by test frameworks.

5.6 Algorithm

5.6.1 Algorithm 1 shows the initialization of the

exploration procedure for mining the behavior

model [6]

Algorithm 1: MAIN

Input: config

 1 global A ← new HashMultimap();

 2 global ABMk ← new AppBehaviorModel();

 3 global driver← INITDRIVERPOOL(config);

4 s0 ← DETERMINESTATE();

5 ABMk.initialState ← s0;

6 A(s0) ←{config.startAction};

7 PLUGINS.EXPLORATIONSTARTED(ABMk,

config);

8 EXPLORE(s0);

DOI: 10.18535/ijecs/v6i6.47

Nayan Mulla, IJECS Volume 06 Issue 06 Month, 2017 Page No.01-05 Page 21836

9 PLUGINS.EXPLORATIONFINISHED();

5.6.2 Algorithm 2. Set of elements extracted from

the DOM trees of multiple actor/view

relations[6]

Algorithm 2: DETERMINESTATE

Data: config

Output: current state s of the SUT

1s ←{};

2 foreach (α,ςv) ∈ config.exploration_scope do

3 DOM ←driver.GETDOM(α,ςv);

4 fDOM ← FILTER(α, DOM);

5 foreach e ∈ SELECT(α,fDOM) do

6 s ← s∪f(α,ςv,e);

7 end

8 end

9 return s;

5.6.3 Algorithm 3 shows the exploration

procedure recursively building up the

behaviour model[6]

Algorithm 3: EXPLORE Input: current state s of the

SUT

1 if A(s) 6= ∅ then

 2 action← (α,ς) ∈ A(s);

3 A(s) ← A(s)\{action};

4 ∆E ←driver.EXECUTE(action);

5 s0 ← DETERMINESTATE();

6 if s’ ≠ s then

7 if s’ € ABMk.S then

8 ABMk.S ← ABMk.S∪{s0};

9 PLUGINS.STATEADDED(s0);

10 foreach (α,ςv,ε) ∈ s0\s0 do

11 ςε ←hςv + (click,lε,null)i;

12 A(s0) ← A(s0)∪{(α,ςε)};

13 end

14 end

15 t ← (s,action,s0);

16 ABMk.trans← ABMk.trans∪{t};

17 PLUGINS.TRANSITION(t);

18 else if CLICKS(ς) < k then

19 foreach e ∈ ∆E do

20 ςe ←hς + (click,le,null)i;

21 A(s) ← A(s)∪{(α,ςe)};

22 end

23 end

24 EXPLORE(s0);

25 else if {s ∈ ABMk.S | A(s) 6= ∅}6= ∅

then

26 sp ← GOTOPENDINGSTATE(s);

27 EXPLORE(sp);

28 end

6. Performance Analysis

Evaluation of the designed system is on several real-world web

applications are on the basis of adequate in size, accuracy,

cover all to almost all workflow-relevant actions, and are a

suitable input to model-based test generation. And using

proCrawl model increasing performance and accuracy of the

any web application.

References

[1] M. Utting and B. Legeard. Practical Model-Based Testing:

A Tools Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2007

[2] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and

T. Ratchford. Automated API property inference techniques.

IEEE Trans. Softw. Eng., 39(5):613–637, May 2013.

[3] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and

P. Dupont. Stamina: A competition to encourage the

development and assessment of software model inference

techniques. Empirical Softw. Eng., 18(4):791–824, Aug. 2013..

[4] C. Lee, F. Chen, and G. Ros¸u. Mining parametric

specifications. In ICSE, pages 591–600, New York, USA,

2011.

[5] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross. Statically

checking api protocol conformance with mined multi-object

specifications. In ICSE, pages 925–935, Piscataway, NJ, USA,

2012. IEEE Press.

[6] M. Schur, A. Roth, and A. Zeller. Procrawl: mining test

models from multi-user web applications. In International

Symposium on Software Testing and Analysis, ISSTA ’14, San

Jose, CA, USA July 21 - 26, 2014, pages 413–416, 2014.

[7] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller.

Generating test cases for specification mining. In ISSTA, pages

85–96, New York, USA, 2010. ACM

[8] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon.

GUITAR: an innovative tool for automated testing of GUI-

driven software. Automated Software Engineering, pages 1–41,

2013

[9] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman.

Modelbased quality assurance of protocol documentation: tools

and methodology. Software Testing, Verification & Reliability,

21(1):55–71, Mar. 2011.

[10] V. Garousi, A. Mesbah, A. Betin-Can, and S. Mirshokraie.

A Systematic Mapping Study of Web Application Testing.

Information and Software Technology, 55(8):1374–1396, Aug.

2015

[11] M. Schur, A. Roth, and A. Zeller. Mining behavior models

from enterprise web applications. In ESEC/SIGSOFT FSE,

pages 422–432, 2013.

[12] A. Tomasi, A. Marchetto, C. D. Francescomarino, and A.

Susi. reBPMN : Recovering and Reducing Business Processes.

In Software Maintenance (ICSM), 2012 28th IEEE

International Conference on, pages 666–669. IEEE, 2012

DOI: 10.18535/ijecs/v6i6.47

Nayan Mulla, IJECS Volume 06 Issue 06 Month, 2017 Page No.01-05 Page 21837

Author Profile

Mrs.Nayan Mulla is a PHP developer at Purestudy Software Services

Pvt..Ltd and a M.E student at Shivaji University. She received the

B.E. degree in Information Technology in 2013 from Shivaji

University. His research concerns the analysis and testing of

enterprise web application.

Mr. Takmare Sachin Balawant is working as Associate Professor and

Head of Department in computer Science and Engineering

Department of Bharati Vidyapeeth’s college of Engineering, Kolhapur

with teaching experience of about 10 year. He has published bout

three International Papers and five National Papers.

Mr. Pramod A. Kharade is working as Assistant Professor of

Department in computer Science and Engineering Department Bharati

Vidyapeeth’s college of Engineering, Kolhapur.

