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Abstract—One of the major challenges to software industry today is to provide products with high degrees of quality and 

functionality. Maintainability is one such quality attribute that accounts for 40-70% of the total cost of the project. As the technology 

advances, a number of metrics such as CK (Chidamer & Kemerer), MOOD (Metrics for Object Oriented Design), Lorenz and Kidd 

Suite, etc have been proposed to predict quality characteristics such as maintainability, reliability, usability etc. Currently, software 

development is mostly based on object oriented paradigm. At the system level, there are patterns that represent the extent of use of 

encapsulation, inheritance, polymorphism or cooperation among classes which are closely related with the quality characteristics. By 

finding those patterns developer of a project can say that a certain design is more maintainable than another. Most of the 

Maintainability models proposed earlier are based on CK metrics. CK are class based metrics but MOOD metrics are project based and 

represents all the basic mechanisms of Object Oriented Paradigm. Size of project also plays a significant role in maintainability 

prediction. In particular, larger size systems are hard to analyze and understand. Earlier statistical models were proposed but nowadays 

machine learning techniques such as Artificial Neural Networks (ANN), fuzzy, neurofuzzy etc. are used. ANN is capable of modeling 

complex functions and has strong generalization ability.   Hence, in this paper MOOD and size metric (Lines of Code) based ANN model 

is proposed to predict maintainability of a project early in the design phase.  

Keywords—Artificial Neural Networks; MOOD metrics; Software 

Quality; Principal Component Analysis; Size metrics. 

 INTRODUCTION 

Currently, software development is mostly desired to be based 
on Object Oriented paradigm and software quality is a major 
factor of concern. The quality of Object Oriented software can 
be best assessed by the use of software metrics. Even today the 
essential of software quality engineering is to investigate the 
relationships among the software metrics and end-product 
quality, and, based on the findings, to engineer improvements 
in both process and product quality. Maintainability is an 
important quality attribute and a difficult concept as it involves 
a number of measurements. Despite the fact that software 
maintenance is an expensive and challenging task, it is not 
properly managed and often ignored. One reason for this poor 
management is the lack of proven measures for software 
maintainability. The backbone of any software system is its 
design. It is the skeleton where the flesh i. e. code, will be 
supported. Measuring software maintainability early in the 
development life cycle, especially at the design phase, may 
help designers to incorporate required enhancement and 
corrections for improving maintainability of the final software.  

Artificial Neural Networks can be used as a predictive 
model because it is very sophisticated modeling techniques 
capable of modeling complex functions. Unlike mathematical 
models that require precise knowledge of all contributing 
variable, a trained artificial neural network can estimate 
process behavior. It is proven fact that neural nets have a 
strong generalization ability, which means that, once they have 
been properly trained, they are able to provide accurate results 
even for cases they have never seen before.  

In this paper, ANN based prediction model to predict 
maintainability of object oriented systems at design phase has 
been proposed and validated against the empirical results 

provided by Abreu et al.[3] 

The outline of this paper is the following: section 2 
presents the overview of the existing studies; section 3 
describes the  proposed model ; validation of the proposed 
model and results are given in section 4 and finally section 5 
concludes the paper and provides future scope for the research. 

RELATED WORK 

Several maintainability models/methodologies were 
proposed to help the designers in calculating the 
maintainability of software so as to develop better and 
improved software systems. Many researchers have worked to 
find quality of object oriented systems and hence several 
metrics were proposed. Fernando Brito e Abreu et al. 
(1996)[3], reviewed a set of metrics called MOOD, suited for 
evaluating the use of object oriented mechanisms. They 
conducted experiment on eight small sized information 
management systems. The impact of Object-Oriented design 
on software quality characteristics is evaluated. Data obtained 
in this experiment show how OO design mechanisms such as 
inheritance, polymorphism, information hiding and coupling, 
can influence quality characteristics like reliability or 
maintainability. Quah and Thwin (2002)[15] in their research 
envisaged the quantity of faults in a particular class by 
employing a multiple regression model and a neural network 
model. Three industrial real-time subsystems data were 
implicated in their study and it was found that neural network 
model has more accurate prediction than regression model. 
Muktamyee Sarker(2005)[14], suggest that, only those metrics 
should be used which are empirically validated. K. K. 
Aggarwal et al.(2008)[6] examined the application of ANN for 
software quality prediction using Object- Oriented (OO) 
metrics. The results showed that the Mean Absolute Relative 
Error (MARE) was 0.265 of ANN model. Thus ANN method 
was useful in constructing software quality model. Sanjay 
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Kumar Dubey et al.(2012)[7]  predicted the maintainability of 
object oriented software by using  neural network model. They 
used UIMS dataset and CK metrics. The comprehensive 
experimental analysis showed that the proposed model is quite 
valuable for real life applications. Alisara Hincheeranan and 
Wanchai Rivepiboon(2012)[5] present a multivariate linear 
regression to establish the maintainability estimation model. 
They considered flexibility and extendibility as two sub 
characteristics of maintainability. Gurpreet Kaur and Mehak 
Aggarwal (2014)[9] proposed a Fuzzy Model for Evaluating 
the Maintainability of Object Oriented System Using MOOD 
Metrics. Rajiv D. Bankar et all. [16] examines the relationship 
between software maintainability and complexity. They 
showed that complexity is inevitably dependent on size of 
project. Excluding size and complexity measures makes the 
model for maintainability prediction incomplete. Thus size 
metrics such as lines of code are important.  

METRICS THAT AFFECT MAINTAINABILITY 

A. Metrics Studied 

In this paper, focus is on MOOD and size metrics. MOOD 
(Metrics for Object Oriented Design)[3] includes the following 
metrics: 

Attribute Inheritance Factor (AIF):  
The AIF numerator is the sum of inherited attributes 
in all classes of the system under consideration. The 
AIF denominator is the total number of available 
attributes (locally defined plus inherited) for all 
classes. 

    
∑  
         

∑  
         

 (1) 

TC= Total Number of Classes. 

Ai =Number of Inherited attributes of Class Ci. 

Aa =Number of Total attributes of Class Ci. 

Method Inheritance Factor (MIF): 
The MIF numerator is the sum of inherited methods 
in all classes of the system under consideration. The 
MIF denominator is the total number of available 
methods (locally defined plus inherited) for all 
classes. 

    
∑  
         

∑  
         

 (2) 

Mi =Number of Inherited methods of Class Ci. 

Ma =Number of Total methods available in Class Ci. 

Attribute Hiding Factor (AHF): 
The AHF numerator is the sum of the invisibilities of 
all attributes defined in all classes. The invisibility of 
an attribute is the percentage of the total classes from 
which this attribute is not visible. 

    
∑  
         

∑  
         

 (3) 

Ah =Number of hidden attributes of Class Ci. 

Ad=Number of total attributes (available and hidden). 

Method Hiding Factor (MHF): 
The MHF numerator is the sum of the invisibilities of 
all methods defined in all classes. The invisibility of a 
method is the percentage of the total classes from 
which this method is not visible. 

    
∑  
         

∑  
         

  (4) 

Mh =Number of Inherited methods of Class Ci. 

Md=Number of Total methods of Class Ci. 

Polymorphism Factor (PF): 
The POF numerator represents the actual number of 
possible different polymorphic situations. The POF 
denominator represents the maximum number of 
possible distinct polymorphic situations for class Ci. 
This would be the case where all new methods 
defined in Ci would be overridden in all of their 
derived classes. 

    
∑  
         

∑  
                  

 (5) 

Mo =Number of methods overridden of Class Ci. 

Mn =Number of new methods. 

DC=Descendants count 

Coupling Factor (CF): 
The COF denominator stands for the maximum 
possible number of couplings in a system with TC 
classes. The client supplier relation (represented by 
Cc =>Cs) means that Cc (client class) contains at 
least one non inheritance reference to a feature 
(method or attribute) of class Cs (supplier class). The 
COF numerator then represents the actual number of 
couplings not imputable to inheritance. 

    
∑  
    ∑  

                  

      
  (6) 

Where 

                            

                 
Each of these metrics refer to a basic structural 
mechanism of object oriented paradigm as 
encapsulation (MHF and AHF), inheritance (MIF and 
AIF), polymorphism (PF) and message-passing (CF). 

Size Metric 

Source lines of code (SLOC), also known as lines of 

code(LOC), is a software metric used to measure the 

size of a computer program by counting the number 

of lines in the text of the program's source code. 

SLOC is typically used to predict the amount of effort 

that will be required to develop a program, as well as 

to estimate programming productivity or 

maintainability once the software is produced. It is 

fairly intuitive that the total size of a system should 

feature heavily in any measure of maintainability. A 

larger system requires, in general, a larger effort to 

maintain.  

Correlation of Size and Rework 

A correlation coefficient is a statistical measure of the 
degree to which changes to the value of one variable 
predict change to the value of another. Size is 
considerable factor in measuring the maintainability 
of a software, which is shown by correlation 
coefficient results as shown: 

CORRELATION COEFFICIENT 

 Size 

Rework 0.8885 
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PROPOSED ANN MODEL 

B. Proposed Model 

The goal of our study is to explore the relationship between 
OO metrics and maintenance effort at the project level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: Proposed Model 

Maintainability is taken as number of hours spent to make 
required changes in the software i. e. rework effort.  

Rework = f (MIF, AIF, MHF, AHF, CF, POF, size) 

Equation... 

Maintainability is inversely proportion to Rework i.e. efforts 
required to maintain software. 

● Input Unit consists of all the independent variables of 
this model. Independent variables are those that can 
characterize the project and influence the evaluation 
results. Data is gathered from research papers. (Abreu, 
1996), (Harrison, 1998), (Abreu, 1996). Data is 
collected empirically by the authors using MOODKIT 
tool. The rework is measured by using the number of 
hours spent to correct bugs and make required changes 
in a project. A line change could be an addition or a 
deletion.  

● PREPROCESSING UNIT: Nowadays, in the ANN, 
the high computational cost connected with the 
learning process of the MLP (Multi-Layer Perceptron 
Network) is a grave problem. This cost is directly 
linked with the training dataset size. The 
computational cost of ANN training can be reduced by 
introducing preprocessing techniques such as; Min-
Max, Z-Score and Decimal Scaling Normalization. 
The preprocessing techniques increase the robustness 
of the proposed model and increase the training 
efficacy of MLP’s. One of the first steps concerns the 
normalization of the data. This step is very important 
when dealing with parameters of different units and 
scales. All parameters should have the same scale for a 
fair comparison between them. The standard score of a 
raw data is calculated by the formula: 

    
 

 
 

Where: 

µ is the mean of the population. 

σ is the standard deviation of the population. 

It returns the z-score for each element of 'x' such that 
columns of 'x' are centered to have mean 0 and scaled 
to have standard deviation 1.  

The performance of a MLP very much depends on its 
generalization capability, which in turn is dependent 
upon the data representation. One important 
characteristic of data representation is uncorrelated. In 
other words, a set of data presented to a MLP ought 
not consist of correlation information. This is because 
correlated data reduce the distinctiveness of data 
representation and thus, introduce confusion to the 
MLP model during the learning process and hence, 
producing one that has low generalization capability to 
resolve unseen data.  This suggests a need for 
eliminating correlation in the sample data before they 
are being presented to an MLP. This can be achieved 
by applying the Principal Component Analysis 
(PCA) technique onto input data sets prior to the MLP 
training process as well as interpretation stage. Steps 
involved in Principal Component Analysis are: 

1. Most often, the first step in PCA is to standardize the 
data. 

2. Calculating the coefficients of the principal 
components and their respective variances is done by 
finding the eigen functions of the sample covariance 
matrix: 

[V D] = eig(cov(z)) 

The matrix V contains the coefficients for the 
principal components. The diagonal elements of D 
store the variance of the respective principal 
components. 

3. To calculate the principal components simply multiply 
the standardized data by the principal component 
Coefficients. 

Principal Components = B * V 

 

TABLE I.  PRINCIPAL COMPONENTS 

 PC1 PC2 PC3 

MHF 0.2549 -2.2617 0.1439 

AHF -0.6949 -0.00024 -1.1001 

MIF -0.5426 2.6399 -1.5256 

AIF 0.2255 -1.3384 0.7997 

POF 1.0956 -0.1352 -0.4318 

COF -1.0473 0.3284 0.5083 

Size -0.3792 -0.7127 -0.4402 

Eigen value 2.8096 1.2398 1.1220 

Commulative 

Variance 

40% 57.8% 73.88% 

 

● ARTIFICIAL NEURAL NETWORK UNIT: 
Artificial neural networks (ANNs) are a family of 
models inspired by the biological neural networks. 
ANNs are used to estimate functions that can depend 
on a large number of inputs and are generally 
unknown. Artificial neural networks are generally 
presented as systems of interconnected neurons 
which exchange messages between each other. The 
connections have numeric weights that can be tuned 
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Inputs 
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based on experience, making neural nets adaptive to 
inputs and capable of learning.   

Architecture of Model selected is shown in Table II. 
Here, MLP neural network with three layers is used. 
Input layer consist of seven input neurons, hidden 
layer consist of ten neurons and one neuron at output 
layer. Data Splitting is an important step in the 
artificial neural network (ANN) development process 
whereby data is divided into training, test and 
validation subsets to ensure good generalization 
ability of the model. In the present work, dividerand() 
function is used for data splitting. For input layer, 
linear activation function is used i. e., the output of 
the input layer is treated as input of the input layer. 
For hidden layer, sigmoidal function or squashed-S 
function is used. For output layer linear activation 
function is used. Sigmoid functions are often used in 
artificial neural networks to introduce nonlinearity in 
the model.  

Trainlm is used as training algorithm. Levenberg–
Marquardt backpropagation (trainlm) algorithm 
locates the minimum of a multivariate function that 
can be expressed as the sum of squares of non-linear 
real-valued functions. It is an iterative technique that 
works in such a way that performance function will 
always be reduced in each iteration of the algorithm.  

 

 

 

 

TABLE II.  ANN DETAILS: 

Architecure 

Number of Layers 3 

Number of Hidden Neurons 10 

Number of Input Neurons 7 

Number of Output Units 1 

Training 

Training Function TRAINLM 

Performance Function MSE 

Network Type Feedforward 

Algorithm Back Propagation 

a.  

Mean Square Error is used to access the quality of 
the predictor. It measures the network's performance 
according to the mean of squared errors.  

    
 

 
∑

 

   

       

where Y is vector of n predictions and X is vector of 
observed values. 

MSE is used as training stopping criteria. Weights of 
the neural network are adjusted to keep mean square 
error to minimum in training data. 

● After the Artificial Neural is trained, it gives results in 
Normalized form. As the outputs of ANN are not in 
real scale, post processing is required. This is done by 
reversing the z-score function. The value of rework  is 

calculated by the formula: 

        
  Where: 

  µ is the mean of the population. 

  σ is the standard deviation of the population. 

● The results should be displayed in easy to use form. 
Thus, Graphical User Interface is designed, where user 
can input values of MOOD Metrics and SIZE metrics. 

 

 

WORKING OF THE PROPOSED MODEL 

The working of proposed model is shown in Figure.... User 
input the Raw Data for all the MOOD metric variables. 
MOOD values are in form of percent. Size in Lines of code is 
entered. Input raw data is Normalized by zscore values for 
sigma σ and mu µ.  µ is the mean of the population and σ is 
the standard deviation of the population as calculated during 
ANN modeling. Then normalized data is converted into 
Principal Coefficients. Normalized data is multiplied with 
coefficient values produced during ANN modeling. Principal 
Components are given as input to the trained ANN and then 
Output for the rework is produced in normalized form. Finally, 
results are denormalized by reversing the zcsore process and 
using values for sigma and mu. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Normalization(e.g.zscore) 

Principal Component Analysis 

Prediction with Trained Neural Network 

Denormalization of results 
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RESULTS AND VALIDATION 

ANN Results 

The trained neural network performance progress is 
shown below. It shows validation and testing curves are very 
similar. Thus training proceeded correctly. 

Fig. 1. Performance progress of ANN  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Regression Plot of Trained ANN 

 

 

 

 

 

 

 

 

 

 

 

 

The Regression plot shows the relationship between outputs 
and targets of network. If R = 1, this indicates that there is an 
exact linear relationship between outputs and targets. If R is 
close to zero, then there is no linear relationship between 
outputs and targets. The three plots represent the training, 
validation, and testing data. The dashed line in each plot 
represents the perfect result i. e. outputs = targets. Thus, this 
Neural Network is validated, since R>0.9. 

Validation Of the Proposed Model 

The model is validated on the basis of Response Coefficients. 

According to Fernando Brito e Abreu et all. [3], the response 

coefficients should be  

RESPONSE COEFFICIENTS OF MOOD WITH REWORK 

MHF AHF MIF AIF POF COF 

23.77 -1.57 5.66 -16.94 -57.93 62.07 

 

Response of Rework with increase in value of MHF, while 
all other attributes are constant is shown in TABLE V.  It is 
positive and thus valid. Similarly, Response of Rework with 
increase in value of AHF is shown in TABLE VI. It is 
negative i. e. decreases with increase in AHF as desired. 
Response of Rework with increase in value of MIF is shown in 
TABLE VI. It is positive as desired. Response of Rework with 
increase in value of AIF is shown in TABLE VII. 

RESPONSE OF REWORK WITH INCREASE IN MHF 

 

RESPONSE OF REWORK WITH INCREASE IN AHF 

 

RESPONSE OF REWORK WITH INCREASE IN MIF 

 

RESPONSE OF REWORK WITH INCREASE IN AIF 

 

Response is negative as desired. 

 

 TABLE IX shows Response of REWORK with increase 
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in POF, which is negative as desired. Response of REWORK 
with increase in COF is shown by TABLE X. 

RESPONSE OF REWORK WITH INCREASE IN POF 

 

RESPONSE OF REWORK WITH INCREASE IN COF 

 

REWORK should increase with increase in size which is  
shown below. Hence, the model is valid. 

RESPONSE OF REWORK WITH INCREASE IN SIZE 

 

 

CONCLUSION AND FUTURE WORK  

The proposed model can be used by developers to predict 
maintainability efforts at design phase itself and thus can make 
required changes before the software is actually coded. The 
Mean Absolute Error for this Artificial Neural Network is 
0.1799. Thus it is appropriate to predict the maintainability 
efforts required. The analysis results show which factor is 
more important and by what weight. Thus developer can 
choose certain object oriented mechanisms over other. MOOD 
metrics gives complete project level results. Thus, this model 
can be used by project managers for analyzing various design 
models.   

The data-set can be extended by developing tool to 
measure MOOD values and further more metrics relevent to 
maintainability can be incorporated. 
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