
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 6 June 2017, Page No. 21808-21813

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21808

Artificial Neural Network Model for predicting Maintainability Using

MOOD and size metrics

Rajbinder Kaur
1
, Mehak Aggarwal

2

1Research Scholar, 2Associate Professor
1,2Department of Computer Science and Engineering, Lala Lajpat Rai Institute of Engineering & Technology, Moga,

(Punjab) INDIA
1
brar.rajbinder@gmail.com, 2aggarwal.mehak@gmail.com

Abstract—One of the major challenges to software industry today is to provide products with high degrees of quality and

functionality. Maintainability is one such quality attribute that accounts for 40-70% of the total cost of the project. As the technology

advances, a number of metrics such as CK (Chidamer & Kemerer), MOOD (Metrics for Object Oriented Design), Lorenz and Kidd

Suite, etc have been proposed to predict quality characteristics such as maintainability, reliability, usability etc. Currently, software

development is mostly based on object oriented paradigm. At the system level, there are patterns that represent the extent of use of

encapsulation, inheritance, polymorphism or cooperation among classes which are closely related with the quality characteristics. By

finding those patterns developer of a project can say that a certain design is more maintainable than another. Most of the

Maintainability models proposed earlier are based on CK metrics. CK are class based metrics but MOOD metrics are project based and

represents all the basic mechanisms of Object Oriented Paradigm. Size of project also plays a significant role in maintainability

prediction. In particular, larger size systems are hard to analyze and understand. Earlier statistical models were proposed but nowadays

machine learning techniques such as Artificial Neural Networks (ANN), fuzzy, neurofuzzy etc. are used. ANN is capable of modeling

complex functions and has strong generalization ability. Hence, in this paper MOOD and size metric (Lines of Code) based ANN model

is proposed to predict maintainability of a project early in the design phase.

Keywords—Artificial Neural Networks; MOOD metrics; Software

Quality; Principal Component Analysis; Size metrics.

 INTRODUCTION

Currently, software development is mostly desired to be based
on Object Oriented paradigm and software quality is a major
factor of concern. The quality of Object Oriented software can
be best assessed by the use of software metrics. Even today the
essential of software quality engineering is to investigate the
relationships among the software metrics and end-product
quality, and, based on the findings, to engineer improvements
in both process and product quality. Maintainability is an
important quality attribute and a difficult concept as it involves
a number of measurements. Despite the fact that software
maintenance is an expensive and challenging task, it is not
properly managed and often ignored. One reason for this poor
management is the lack of proven measures for software
maintainability. The backbone of any software system is its
design. It is the skeleton where the flesh i. e. code, will be
supported. Measuring software maintainability early in the
development life cycle, especially at the design phase, may
help designers to incorporate required enhancement and
corrections for improving maintainability of the final software.

Artificial Neural Networks can be used as a predictive
model because it is very sophisticated modeling techniques
capable of modeling complex functions. Unlike mathematical
models that require precise knowledge of all contributing
variable, a trained artificial neural network can estimate
process behavior. It is proven fact that neural nets have a
strong generalization ability, which means that, once they have
been properly trained, they are able to provide accurate results
even for cases they have never seen before.

In this paper, ANN based prediction model to predict
maintainability of object oriented systems at design phase has
been proposed and validated against the empirical results

provided by Abreu et al.[3]

The outline of this paper is the following: section 2
presents the overview of the existing studies; section 3
describes the proposed model ; validation of the proposed
model and results are given in section 4 and finally section 5
concludes the paper and provides future scope for the research.

RELATED WORK

Several maintainability models/methodologies were
proposed to help the designers in calculating the
maintainability of software so as to develop better and
improved software systems. Many researchers have worked to
find quality of object oriented systems and hence several
metrics were proposed. Fernando Brito e Abreu et al.
(1996)[3], reviewed a set of metrics called MOOD, suited for
evaluating the use of object oriented mechanisms. They
conducted experiment on eight small sized information
management systems. The impact of Object-Oriented design
on software quality characteristics is evaluated. Data obtained
in this experiment show how OO design mechanisms such as
inheritance, polymorphism, information hiding and coupling,
can influence quality characteristics like reliability or
maintainability. Quah and Thwin (2002)[15] in their research
envisaged the quantity of faults in a particular class by
employing a multiple regression model and a neural network
model. Three industrial real-time subsystems data were
implicated in their study and it was found that neural network
model has more accurate prediction than regression model.
Muktamyee Sarker(2005)[14], suggest that, only those metrics
should be used which are empirically validated. K. K.
Aggarwal et al.(2008)[6] examined the application of ANN for
software quality prediction using Object- Oriented (OO)
metrics. The results showed that the Mean Absolute Relative
Error (MARE) was 0.265 of ANN model. Thus ANN method
was useful in constructing software quality model. Sanjay

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21809

Kumar Dubey et al.(2012)[7] predicted the maintainability of
object oriented software by using neural network model. They
used UIMS dataset and CK metrics. The comprehensive
experimental analysis showed that the proposed model is quite
valuable for real life applications. Alisara Hincheeranan and
Wanchai Rivepiboon(2012)[5] present a multivariate linear
regression to establish the maintainability estimation model.
They considered flexibility and extendibility as two sub
characteristics of maintainability. Gurpreet Kaur and Mehak
Aggarwal (2014)[9] proposed a Fuzzy Model for Evaluating
the Maintainability of Object Oriented System Using MOOD
Metrics. Rajiv D. Bankar et all. [16] examines the relationship
between software maintainability and complexity. They
showed that complexity is inevitably dependent on size of
project. Excluding size and complexity measures makes the
model for maintainability prediction incomplete. Thus size
metrics such as lines of code are important.

METRICS THAT AFFECT MAINTAINABILITY

A. Metrics Studied

In this paper, focus is on MOOD and size metrics. MOOD
(Metrics for Object Oriented Design)[3] includes the following
metrics:

Attribute Inheritance Factor (AIF):
The AIF numerator is the sum of inherited attributes
in all classes of the system under consideration. The
AIF denominator is the total number of available
attributes (locally defined plus inherited) for all
classes.

∑

∑

 (1)

TC= Total Number of Classes.

Ai =Number of Inherited attributes of Class Ci.

Aa =Number of Total attributes of Class Ci.

Method Inheritance Factor (MIF):
The MIF numerator is the sum of inherited methods
in all classes of the system under consideration. The
MIF denominator is the total number of available
methods (locally defined plus inherited) for all
classes.

∑

∑

 (2)

Mi =Number of Inherited methods of Class Ci.

Ma =Number of Total methods available in Class Ci.

Attribute Hiding Factor (AHF):
The AHF numerator is the sum of the invisibilities of
all attributes defined in all classes. The invisibility of
an attribute is the percentage of the total classes from
which this attribute is not visible.

∑

∑

 (3)

Ah =Number of hidden attributes of Class Ci.

Ad=Number of total attributes (available and hidden).

Method Hiding Factor (MHF):
The MHF numerator is the sum of the invisibilities of
all methods defined in all classes. The invisibility of a
method is the percentage of the total classes from
which this method is not visible.

∑

∑

 (4)

Mh =Number of Inherited methods of Class Ci.

Md=Number of Total methods of Class Ci.

Polymorphism Factor (PF):
The POF numerator represents the actual number of
possible different polymorphic situations. The POF
denominator represents the maximum number of
possible distinct polymorphic situations for class Ci.
This would be the case where all new methods
defined in Ci would be overridden in all of their
derived classes.

∑

∑

 (5)

Mo =Number of methods overridden of Class Ci.

Mn =Number of new methods.

DC=Descendants count

Coupling Factor (CF):
The COF denominator stands for the maximum
possible number of couplings in a system with TC
classes. The client supplier relation (represented by
Cc =>Cs) means that Cc (client class) contains at
least one non inheritance reference to a feature
(method or attribute) of class Cs (supplier class). The
COF numerator then represents the actual number of
couplings not imputable to inheritance.

∑
 ∑

 (6)

Where

Each of these metrics refer to a basic structural
mechanism of object oriented paradigm as
encapsulation (MHF and AHF), inheritance (MIF and
AIF), polymorphism (PF) and message-passing (CF).

Size Metric

Source lines of code (SLOC), also known as lines of

code(LOC), is a software metric used to measure the

size of a computer program by counting the number

of lines in the text of the program's source code.

SLOC is typically used to predict the amount of effort

that will be required to develop a program, as well as

to estimate programming productivity or

maintainability once the software is produced. It is

fairly intuitive that the total size of a system should

feature heavily in any measure of maintainability. A

larger system requires, in general, a larger effort to

maintain.

Correlation of Size and Rework

A correlation coefficient is a statistical measure of the
degree to which changes to the value of one variable
predict change to the value of another. Size is
considerable factor in measuring the maintainability
of a software, which is shown by correlation
coefficient results as shown:

CORRELATION COEFFICIENT

 Size

Rework 0.8885

DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21810

PROPOSED ANN MODEL

B. Proposed Model

The goal of our study is to explore the relationship between
OO metrics and maintenance effort at the project level.

Figure: Proposed Model

Maintainability is taken as number of hours spent to make
required changes in the software i. e. rework effort.

Rework = f (MIF, AIF, MHF, AHF, CF, POF, size)

Equation...

Maintainability is inversely proportion to Rework i.e. efforts
required to maintain software.

● Input Unit consists of all the independent variables of
this model. Independent variables are those that can
characterize the project and influence the evaluation
results. Data is gathered from research papers. (Abreu,
1996), (Harrison, 1998), (Abreu, 1996). Data is
collected empirically by the authors using MOODKIT
tool. The rework is measured by using the number of
hours spent to correct bugs and make required changes
in a project. A line change could be an addition or a
deletion.

● PREPROCESSING UNIT: Nowadays, in the ANN,
the high computational cost connected with the
learning process of the MLP (Multi-Layer Perceptron
Network) is a grave problem. This cost is directly
linked with the training dataset size. The
computational cost of ANN training can be reduced by
introducing preprocessing techniques such as; Min-
Max, Z-Score and Decimal Scaling Normalization.
The preprocessing techniques increase the robustness
of the proposed model and increase the training
efficacy of MLP’s. One of the first steps concerns the
normalization of the data. This step is very important
when dealing with parameters of different units and
scales. All parameters should have the same scale for a
fair comparison between them. The standard score of a
raw data is calculated by the formula:

Where:

µ is the mean of the population.

σ is the standard deviation of the population.

It returns the z-score for each element of 'x' such that
columns of 'x' are centered to have mean 0 and scaled
to have standard deviation 1.

The performance of a MLP very much depends on its
generalization capability, which in turn is dependent
upon the data representation. One important
characteristic of data representation is uncorrelated. In
other words, a set of data presented to a MLP ought
not consist of correlation information. This is because
correlated data reduce the distinctiveness of data
representation and thus, introduce confusion to the
MLP model during the learning process and hence,
producing one that has low generalization capability to
resolve unseen data. This suggests a need for
eliminating correlation in the sample data before they
are being presented to an MLP. This can be achieved
by applying the Principal Component Analysis
(PCA) technique onto input data sets prior to the MLP
training process as well as interpretation stage. Steps
involved in Principal Component Analysis are:

1. Most often, the first step in PCA is to standardize the
data.

2. Calculating the coefficients of the principal
components and their respective variances is done by
finding the eigen functions of the sample covariance
matrix:

[V D] = eig(cov(z))

The matrix V contains the coefficients for the
principal components. The diagonal elements of D
store the variance of the respective principal
components.

3. To calculate the principal components simply multiply
the standardized data by the principal component
Coefficients.

Principal Components = B * V

TABLE I. PRINCIPAL COMPONENTS

 PC1 PC2 PC3

MHF 0.2549 -2.2617 0.1439

AHF -0.6949 -0.00024 -1.1001

MIF -0.5426 2.6399 -1.5256

AIF 0.2255 -1.3384 0.7997

POF 1.0956 -0.1352 -0.4318

COF -1.0473 0.3284 0.5083

Size -0.3792 -0.7127 -0.4402

Eigen value 2.8096 1.2398 1.1220

Commulative

Variance

40% 57.8% 73.88%

● ARTIFICIAL NEURAL NETWORK UNIT:
Artificial neural networks (ANNs) are a family of
models inspired by the biological neural networks.
ANNs are used to estimate functions that can depend
on a large number of inputs and are generally
unknown. Artificial neural networks are generally
presented as systems of interconnected neurons
which exchange messages between each other. The
connections have numeric weights that can be tuned

MHF

F

AHF

MIF

AIF

POF

COF

SIZE

Rework

Inputs

DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21811

based on experience, making neural nets adaptive to
inputs and capable of learning.

Architecture of Model selected is shown in Table II.
Here, MLP neural network with three layers is used.
Input layer consist of seven input neurons, hidden
layer consist of ten neurons and one neuron at output
layer. Data Splitting is an important step in the
artificial neural network (ANN) development process
whereby data is divided into training, test and
validation subsets to ensure good generalization
ability of the model. In the present work, dividerand()
function is used for data splitting. For input layer,
linear activation function is used i. e., the output of
the input layer is treated as input of the input layer.
For hidden layer, sigmoidal function or squashed-S
function is used. For output layer linear activation
function is used. Sigmoid functions are often used in
artificial neural networks to introduce nonlinearity in
the model.

Trainlm is used as training algorithm. Levenberg–
Marquardt backpropagation (trainlm) algorithm
locates the minimum of a multivariate function that
can be expressed as the sum of squares of non-linear
real-valued functions. It is an iterative technique that
works in such a way that performance function will
always be reduced in each iteration of the algorithm.

TABLE II. ANN DETAILS:

Architecure

Number of Layers 3

Number of Hidden Neurons 10

Number of Input Neurons 7

Number of Output Units 1

Training

Training Function TRAINLM

Performance Function MSE

Network Type Feedforward

Algorithm Back Propagation

a.

Mean Square Error is used to access the quality of
the predictor. It measures the network's performance
according to the mean of squared errors.

∑

where Y is vector of n predictions and X is vector of
observed values.

MSE is used as training stopping criteria. Weights of
the neural network are adjusted to keep mean square
error to minimum in training data.

● After the Artificial Neural is trained, it gives results in
Normalized form. As the outputs of ANN are not in
real scale, post processing is required. This is done by
reversing the z-score function. The value of rework is

calculated by the formula:

 Where:

 µ is the mean of the population.

 σ is the standard deviation of the population.

● The results should be displayed in easy to use form.
Thus, Graphical User Interface is designed, where user
can input values of MOOD Metrics and SIZE metrics.

WORKING OF THE PROPOSED MODEL

The working of proposed model is shown in Figure.... User
input the Raw Data for all the MOOD metric variables.
MOOD values are in form of percent. Size in Lines of code is
entered. Input raw data is Normalized by zscore values for
sigma σ and mu µ. µ is the mean of the population and σ is
the standard deviation of the population as calculated during
ANN modeling. Then normalized data is converted into
Principal Coefficients. Normalized data is multiplied with
coefficient values produced during ANN modeling. Principal
Components are given as input to the trained ANN and then
Output for the rework is produced in normalized form. Finally,
results are denormalized by reversing the zcsore process and
using values for sigma and mu.

Normalization(e.g.zscore)

Principal Component Analysis

Prediction with Trained Neural Network

Denormalization of results

DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21812

RESULTS AND VALIDATION

ANN Results

The trained neural network performance progress is
shown below. It shows validation and testing curves are very
similar. Thus training proceeded correctly.

Fig. 1. Performance progress of ANN

Fig. 2. Regression Plot of Trained ANN

The Regression plot shows the relationship between outputs
and targets of network. If R = 1, this indicates that there is an
exact linear relationship between outputs and targets. If R is
close to zero, then there is no linear relationship between
outputs and targets. The three plots represent the training,
validation, and testing data. The dashed line in each plot
represents the perfect result i. e. outputs = targets. Thus, this
Neural Network is validated, since R>0.9.

Validation Of the Proposed Model

The model is validated on the basis of Response Coefficients.

According to Fernando Brito e Abreu et all. [3], the response

coefficients should be

RESPONSE COEFFICIENTS OF MOOD WITH REWORK

MHF AHF MIF AIF POF COF

23.77 -1.57 5.66 -16.94 -57.93 62.07

Response of Rework with increase in value of MHF, while
all other attributes are constant is shown in TABLE V. It is
positive and thus valid. Similarly, Response of Rework with
increase in value of AHF is shown in TABLE VI. It is
negative i. e. decreases with increase in AHF as desired.
Response of Rework with increase in value of MIF is shown in
TABLE VI. It is positive as desired. Response of Rework with
increase in value of AIF is shown in TABLE VII.

RESPONSE OF REWORK WITH INCREASE IN MHF

RESPONSE OF REWORK WITH INCREASE IN AHF

RESPONSE OF REWORK WITH INCREASE IN MIF

RESPONSE OF REWORK WITH INCREASE IN AIF

Response is negative as desired.

 TABLE IX shows Response of REWORK with increase

DOI: 10.18535/ijecs/v6i6.42

Rajbinder Kaur, IJECS Volume 6 Issue 6 June, 2017 Page No. 21808-21813 Page 21813

in POF, which is negative as desired. Response of REWORK
with increase in COF is shown by TABLE X.

RESPONSE OF REWORK WITH INCREASE IN POF

RESPONSE OF REWORK WITH INCREASE IN COF

REWORK should increase with increase in size which is
shown below. Hence, the model is valid.

RESPONSE OF REWORK WITH INCREASE IN SIZE

CONCLUSION AND FUTURE WORK

The proposed model can be used by developers to predict
maintainability efforts at design phase itself and thus can make
required changes before the software is actually coded. The
Mean Absolute Error for this Artificial Neural Network is
0.1799. Thus it is appropriate to predict the maintainability
efforts required. The analysis results show which factor is
more important and by what weight. Thus developer can
choose certain object oriented mechanisms over other. MOOD
metrics gives complete project level results. Thus, this model
can be used by project managers for analyzing various design
models.

The data-set can be extended by developing tool to
measure MOOD values and further more metrics relevent to
maintainability can be incorporated.

REFERENCE

[1] Fernando Brito e. Abreu, M. Goulão and R. Esteves,
“Toward the design quality evaluation of object-oriented

software systems.” Proceedings of the 5th International
Conference on Software Quality, Austin, Texas, 1995.

[2] Fernando Brito e. Abreu, “Design metrics for object
oriented systems”, 1996.

[3] Fernando Brito e. Abreu and Walcélio. Melo, “Evaluating
the impact of Object-Oriented Design on software
quality”, Originally published in Proceedings of the 3rd
International Software Metrics Symposium
(METRICS’96), IEEE, Berlin, Germany.

[4] Fernando Brito e. Abreu, R. Esteves and M. Goulão, “The
design of Eiffel programs: quantitative evaluation using
the MOOD metrics”, originally published in proceedings
of tools’96 usa, santa barbara, california, 1996.

[5] A. Hincheeranan and W. Rivepiboon, “A maintainability
estimation model and tool” , pp.-143-146, International
Journal of Computer and Communication Engineering,
Vol. 1, No. 2, 2012.

[6] K.K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra,
“Application of artificial neural network for predicting
maintainability using object oriented metrics” , World
Academy of Science, Engineering and Technology Vol:2,
2008.

[7] Y. Dash, S. K. Dubey and A. Rana, “Maintainability
prediction of object oriented software system by using
artificial neural network approach”, IJSCE ISSN: 2231-
2307, Volume-2, Issue-2, 2012.

[8] A. Kumar, A. Kalia and H. Singh, “Metrics identification
for measuring object oriented software quality”,
International Journal of Soft Computing and Engineering
(IJSCE) ISSN: 2231-2307, Volume-2, Issue-5, 2012.

[9] G. Kaur and M. Aggarwal,“A fuzzy model for evaluating
the maintainability of object oriented system using
MOOD metrics”, IJCSCE, Volume 3, issue1, 2014.

[10] K. Kaur and A. Sami, “A maintainability estimation
model and metrics for object-oriented design (MOOD)”,
ISSN: 2278-1323 International Journal of Advanced
Research in Computer Engineering & Technology
(IJARCET) Volume 2, No 5, 2013.

[11] S.W.A. Rizvi and R.A. Khan, “Maintainability estimation
model for object- oriented software in design phase
(MEMOOD)”, journal of computing, volume 2, issue 4,
2010.

[12] H. Singh and A. Kumar, “A novel approach to enhance
the maintainability of object oriented software
engineering during component based software
engineering”, International Journal of Computer Science
and Mobile Computing, Vol.3 Issue.3, pg. 778-786,
2014.

[13] M. Saini and M. Chauhan, “A roadmap of software
system maintainability models”, International Journal of
Software and Web Sciences 3(2), pp. 69-73, 2012.

[14] M. Sarker, “An overview of Object Oriented Design
Metrics”, Department of Computer Science, Umeå
University, Sweden, 2005.

[15] J.T.S. Quah and M.M.T. Thwin, “Prediction of software
readiness using neural network”, In Proceedings of 1st
International Conference on Information Technology &
Applications, Bathurst, Australia, pp. 2312-2316, 2002.

[16] R. D. Bankar, S. M. Datar and D. Zweig, “ Software
complexity and maintainability”.

[17] R. Harrison, S.J. Counsell and R. V. Nithi, “An evaluation
of the MOOD set of object oriented software
metrics”,University of Southampton, 1998.

