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Abstract 

Although tremendous progress has done in past years on memory designing but still Radiation-induced soft errors is concerned 

area in the field of soft memories and the single error correction double error detection (SEC-DED) codes are commonly used to 

give assured memory contents with absence of corrupted scenario. Since SEC-DED codes cannot correct multiple errors, they are 

often combined with interleaving. Interleaving, however, impacts memory design and performance and cannot always be used in 

small memories. This limitation has spurred interest in codes that can correct adjacent bit errors. In particular, several SEC-DED 

double adjacent error correction (SEC-DED-DAEC) codes have recently been proposed. Implementing DAEC has a cost as it 

impacts the decoder complexity and delay. Another issue is that most of the new SEC-DED-DAEC codes miscorrect some double 

nonadjacent bit errors. In this brief, a new class of SEC-DED-DAEC codes is derived from orthogonal Latin squares codes. The 

new codes significantly reduce the decoding complexity and delay. In addition, the codes do not miscorrect any double nonadjacent 

bit errors. The main disadvantage of the new codes is that they require a larger number of parity check bits. Therefore, they can be 

useful when decoding delay or complexity is critical or when miscorrection of double nonadjacent bit errors is not acceptable. The 

proposed codes have been implemented in Hardware Description Language and compared with some of the existing SEC-DED-

DAEC codes. Finally the experimental results confirm the reduction in decoder delay. 

KEYWORDS: Error correction codes, Orthogonal Latin square codes. Single error correction double error detection (SEC-DED), 
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1. INTRODUCTION 

Memories are very dense structures that are especially 

susceptible to defects. Transient errors due to radiation, 

power supply noise, etc., can cause bit-flips in a memory. To 

protect the data integrity of the memory during runtime 

operations, error correcting codes (ECC) of various class and 

strength is generally employed A soft error occurs when a 

radiation event causes enough of a charge disturbance to 

reverse or flip the data state of a memory cell, register, latch, 

or flip-flop. The error is “soft” because the circuit/device 

itself is not permanently damaged by the radiation—if new 

data are written to the bit, the device will store it correctly.  

Recently, research has shown that commercial static 

random access memories (SRAMs) are now so small and 

sufficiently sensitive that single event upsets (SEUs) may be 

induced from the electronic stopping of a proton. This 

sensitivity appears near the 65 nm technology node as the 

critical charge to upset a cell is on the order of 1 fC; merely 

6,000 electrons are required to cause a change in data state. 

The lower critical charge required to cause a bit-flip has more 

pronounced effects on space applications compared to 

terrestrial ones. Also low voltage operation can lead to greater 

number of failures, arising due to more pronounced effect of 

process variations. Voltage scaling, which is one of the most 

effective ways to reduce power consumption can lead to 

unreliable operations at lower voltages. Voltage scaling is 
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limited by a minimum value referred to as VCC min beyond 

which circuits may not function reliably. Voltage scaling 

beyond Vccmin gives rise to reliability issues, most notably 

for the memory sub-systems. In order for Vccmin to be 

reduced to enable ultra-low power modes in microprocessors 

and other circuits, some means for handling high memory bit 

failure rates is required. 

To protect memories, error correction codes are 

commonly used. Traditionally, single error correction double 

error detection (SEC-DED) codes have been used. A SEC-

DED code has a minimum Hamming distance of four and is 

able to correct single bit errors and detect double errors 

without miscorrection. This is important to avoid silent data 

corruption. SEC-DED codes are sufficient when errors affect 

only one bit, however, the percentage of soft errors affecting 

more than a single bit is increasing as technology scales. For 

memories implemented in 40 nm and below, multiple bit 

errors are a significant percentage of errors and thus SEC-

DED codes alone are no longer sufficient to protect 

memories. One option is to combine SEC-DED codes with 

interleaving. Interleaving, places the bits that belong to the 

same logical word physically apart. As the errors caused by a 

radiation particle hit are physically close, this ensures that the 

errors affect at most one bit per logical word. Interleaving has 

an impact on the memory design. 

 

Figure 1: Illustration of OS-MLD decoding for OLS codes 

Another alternative is to use error correction codes 

that can correct adjacent bits. In many cases, directly adjacent 

bits account for over 90% of the observed multiple bit errors. 

Several codes have been recently proposed to this end. For 

example, a code that can correct double and triple adjacent 

errors for words of 16 bit was presented. A technique to 

design SEC-DED double adjacent error correction (SEC-

DED-DAEC) codes was introduced. The extension of SEC-

DED-DAEC codes to also detect larger burst errors has also 

been recently considered. One issue with those SEC-DED-

DAEC codes is that they can miscorrect some double 

nonadjacent bit errors. The reduction of the miscorrection 

probability has been considered. The algorithm tries to 

minimize the number of 4 cycles. It was shown that 

miscorrection can be avoided for the most common error 

patterns and in some cases for all patterns at the cost of adding 

additional parity check bits. Another issue with SEC-DED-

DAEC codes is that their decoding complexity and latency 

are larger than those of SEC-DED codes. 

The main limitation for these codes is that they 

require a number of parity check bits equal to the number of 

data bits. The use of more advanced codes such as difference 

set and orthogonal Latin squares (OLS) codes to correct 

adjacent errors has also been considered. Those codes are 

one-step majority logic decodable (OS-MLD) and therefore, 

can be decoded with low latency. In this brief, a new class of 

SEC-DED-DAEC codes is presented. The proposed codes are 

derived from OLS codes. They require fewer parity check bits 

than double error correction (DEC) OLS codes and are 

simpler to decode. Compared with existing SEC-DED-

DAEC codes, the new codes have two main advantages: first, 

there is no miscorrection for double nonadjacent errors and 

second, the decoding is much simpler and faster. The main 

drawback for the proposed codes is that they require more 

parity check bits than existing SEC-DED-DAEC codes. 

Therefore, the proposed codes can be useful to protect 

memories in which decoding latency is critical or 

miscorrection cannot be tolerated. The rest of this brief is 

organized as follows. 
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Figure 2: Parity check matrix H for the OLS code with k=16 

and t =2 

2. ERROR CORRECTING CODES 

The most common error correcting code that is used is single-

error-correcting, double-error-detecting (SEC-DED) codes. 

These codes can correct single bit errors in any word of the 

memory and can detect double bit errors, have moderate 

redundancy in terms of check bits and are relatively easy to 

decode. Decoding and correction are done via syndrome 

method which takes single cycle. A special class of SEC-

DED codes known as Hsiao codes [Hsiao 70] was proposed 

to improve the speed, cost, and reliability of the decoding 

logic. However some situations demand more stringent 

reliability requirements, thus necessitating error correction 

stronger than normal SEC-DED. 

 Stronger error correcting codes includes single byte-

error-correcting, double-by te error-detecting (SBC-DBD) 

codes. These codes perform at a higher order Galois field and 

consequently the encoding and decoding are more complex. 

Moreover, they require more check bits thereby increasing 

the size of the memory. There are also the double-error-

correcting triple-error-detecting (DEC-TED) codes, which 

come at the cost of much larger overhead in terms of both the 

check bits and more complex hardware to implement the error 

correction and detection The general drawbacks 3 with these 

methods are latency and speed. Most of these codes require 

several cycles to correct the first error unlike the SEC-DED 

codes. Moreover, the encoding and decoding are much more 

complex and require several table lookups for multiplication 

in higher order fields. However in spite of their low check bits 

overhead and single cycle decoding, SEC-DED codes are not 

able to provide requisite reliability under certain conditions. 

3. OLS CODES 

The OLS codes were introduced decades ago to protect 

memories. On the end simultaneously have recently been 

proposed to protect caches and interconnects. The block sizes 

for OLS codes are k=m 2 data bits and 2tm parity bits. Where 

t is the number of errors that the code can correct and mis an 

integer. For memories, the word sizes are typically a power 

of two and therefore mis commonly also power of two. The 

main advantage of OLS codes is that their decoding is simple 

and fast. This is because, as mentioned in the introduction, 

OLS codes can be decoded using OS-MLD. In OS-MLD, 

each bit is decoded by simply taking the majority value on the 

set of the recomputed parity check equations (or syndrome 

bits) in which it participates. The idea behind OS-MLD is that 

when an error occurs in bit di, the recomputed parity checks 

in which it participates will take a value of one unless there 

are errors in other bits. Therefore, a majority of ones in those 

recomputed checks is an indication that the bit is in error and 

therefore needs to be corrected. If the code is such that two 

bits share at most one parity check, thent−1 errors on other 

bits will not affect the majority of the 2t vote and therefore, 

the error will be corrected. Only a few codes have this 

property and can be decoded using OS-MLD. This is the case 

for difference set codes and for OLS codes, as mentioned in 

the introduction. 

More formally, the construction of OLS codes is such that:  

1) Each data bit participates in exactly 2t parity check bits;  

2) Each other data bit participates in at most one of those 

parity check bits. 

Therefore, for a number of errorst or smaller, when one error 

affects a given bit, the remaining t −1 errors can, in the worst 

case affect t −1 check bits on which that bit participates. 

Therefore, still a majority oft +1 will trigger the correction on 

the erroneous bit. Conversely, when a given bit is correct ,t 

errors on other bits will not cause miscorrection as a majority 
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of t +1 is needed. As shown in Fig. 1, the use of OS-MLD 

enables a simple and fast decoding that is attractive to protect 

memories when decoding latency is critical. Another 

characteristic of OLS codes is that they correct only errors on 

the data bits. No correction is done for the parity bits. This is 

not an issue as in memories; the goal is to recover the stored 

data correctly. 

The proposed codes are derived from DEC OLS codes. These 

are block linear codes that are defined by their parity 

generating G and parity check H matrixes. The parity check 

matrix is used to detect errors by computing the syndrome s 

that is obtained by multiplying the stored word by the H 

matrix 

 

 

 

 

 

TABLE I: PARAMETERS OFSOMEDEC OLS CODES 

The parity check matrix H for a DEC OLS code with k=m 2 

is constructed as follows: 

𝐻 = [

𝑀1

𝑀2 
𝑀3

𝑀4

𝐼4𝑚] (1) 

Where I4m is the identity matrix of size 4mand M1, M2, M3, 

M4 are matrices with size m×m 2 derived from OLS of size 

m×m. The weight or the number of ones, of all the columns, 

in the Mi matrices must be one. Therefore, the first k =m 2 

columns in H have a number of one’s equal to 2t (four for 

DEC codes). In addition, any pair of columns has at most a 

position with a one in common. This as discussed before 

enables the use of OS-MLD for decoding. As an example, the 

H matrix for a code with k =m 2 =16 data bits and 2tm=16 

parity bits that can correct double errors is shown in Fig. 2. 

The parameters of some DEC OLS codes are summarized in 

Table I. 

4. PROPOSEDSEC-DED-DAEC CODES AND 

ANALYSIS 

The proposed codes are derived from DEC OLS codes. 

Taking the parity check matrix in (1) as a starting point, the 

first step is to remove the m parity check bits that correspond 

to one of the Mi matrices. As an example, consider removing 

theM1matrix from the matrix in Fig. 2 as shown in Fig. 3. The 

data bits that participated in each of the removed parity check 

equations will not share any parity check in the reduced 

matrix. This is a direct consequence from the property of OLS 

codes that any two data bits share (that is have a one in the 

same row in the H matrix) at most one parity check bit. This 

can be clearly observed in Fig. 2. In addition, those groups of 

m bits are marked asg1,g2, g3,andg 4in Fig. 3.  

For example, the first four data bits share the first parity check 

bit in theM1 matrix and form the first group g1. It can be 

observed that they do not share any other parity check bits. 

Therefore, whenM1is removed they do not share any parity 

check bit. The same occurs for the other groups of bits 5–8 

(g2), 9–12 (g3), and 13–16 (g4). In the reduced matrix, each 

data bit participates in three parity checks. Therefore, if a 

majority vote is used to decode the bits, single and double 

errors can be corrected. 

 

Figure 3: Reduced parity check matrix H after the removal of 

M1 

k n-k m 

16 16 4 

64 32 8 

256 64 16 
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Figure 4: Illustration of the proposed decoder for data bits 1 

and 2 

However, double errors can also cause miscorrection on other 

bits. Therefore, the modified matrix, when a majority vote is 

used, is only effective in correcting single errors. However, 

let us consider that instead of a majority vote, the logical 

AND of the three parity checks is used. In Fig. 4, this is shown 

for the first two data bits where the s i values correspond to 

bits of the syndrome vector obtained by multiplying the word 

by the H matrix. In this case, the code will obviously not 

miscorrect when there are two errors. Single errors on data 

bits will also be corrected. Double errors affecting data bits 

will also be corrected as long as the data bits do not share any 

parity check bit. 

However, some double adjacent errors may affect bits on 

different groups. For example, an error on bits 8 and 9 affects 

it in g2 and another in g3. These bits share parity check bit 7 

and therefore, will not be corrected as that recomputed parity 

bit will take a value of zero in the syndrome as it has two bits 

in error. This effect can be avoided by carefully placing the 

bits in the memory. For example, the bits within each group 

can be reordered to ensure that the ones at the borders does 

not share any parity check bit with the adjacent bit on the 

other group. Another issue that can occur is that a double 

adjacent error affects two parity bits and the error is confused 

with a double nonadjacent error. For example, an error on 

parity check bits 4 and 5 produces the same syndrome as an 

error that affects data bit 16 and parity check bit 11. This can 

lead to silent data corruption leaving an error on data bit 16 

undetected. However, this issue can also be solved by 

carefully placing the bits into the memory. 

 

Figure 5: Reduced parity check matrix H after the removal of 

M1 with the proposed bit placement 

 

Figure 6: Detection of double uncorrectable errors in the 

proposed scheme 

The proposed bit placement is as follows: 1) ensure that the 

bits at the borders of the groups do not share any parity check 

bits and 2) interleave the parity check bits with the data bits 

so that no double adjacent error affects two parity bits. An 

example of this bit placement for the code with k =16 is 

shown in Fig. 5. The parity bits are marked in the figure and 

obviously, they can only be placed such that the adjacent 

columns do not participate in the parity bit. With this bit 

placement, all double adjacent errors affect at least a data bit 

and that data bit is corrected. 

 In addition, for nonadjacent errors that affect two 

bits, if any bit is corrected it means that the error is 

correctable. When the error affects two data bits, either they 

are both corrected or there is no correction. Obviously, when 

the error affects a data bit and a parity bit, if the data bit is 

corrected the error was correctable.  

This enables a simple method to detect 

uncorrectable errors. The proposed scheme to detect the 

uncorrectable errors is shown in Fig. 6. It is based on 
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detecting a nonzero even number of ones in the syndrome that 

can only be caused by a multiple bit error and checking if any 

correction has been made. 

 

 

 

 

 

TABLE 2: PARAMETERS OF THEPROPOSEDSEC-DED-

DAEC CODES 

The proposed scheme can be summarized as follows:  

1) Reduce the H matrix of the DEC OLS code by 

eliminatingM1;  

2) Place the bits in the groups ofmbitsg1, g2,..., gm such that 

the bits at the borders of the groups do not share any parity 

check;  

3) Interleave the parity bits with the data bits such that two 

adjacent bits never participate in the same parity bit; 

 4) Instead of majority voting, decode based on unanimity 

(three-way AND) to correct errors;  

5) Implement the circuit of Fig. 6 to detect uncorrectable 

errors. 

5. EXPERIMENTAL RESULTS 

 

Figure 7: SIMULATION RESULT OF Error MLD test 

 

Figure 8: SIMULATION RESULT OF OLS Encoder test 

 

Figure 9: SIMULATION RESULT OF OLS Decoder test 

6. CONCLUSION 

In this brief, a new class of SEC-DED-DAEC codes has been 

presented. The codes are derived from DEC OLS codes and 

can be decoded with low latency. Another interesting feature 

is that the codes do not experience miscorrection when double 

nonadjacent error occurs. This is interesting to minimize 

silent data corruption. The codes can also correct some 

nonadjacent double errors.  

Compared with existing SEC-DED-DAEC codes, they 

require a larger number of parity check bits, therefore, they 

are attractive when low latency decoding is a required. The 

codes have been implemented in HDL and the resulting 

implementations compared with existing SEC-DED-DAEC 

codes to put the reductions in decoding latency in perspective. 

The ideas used to derive the proposed SEC-DED-DAEC can 

also be used to derive burst error correction codes from OLS 

codes that can correct multiple errors. The key observation is 

that the structure of OLS codes is such that the data bits can 

be divided in groups of m bits that do not share any parity 

check. Therefore, any error affecting up to 2t−1 bits in one of 

these groups can be corrected. This can be exploited by 

carefully placing the data and parity check bits so that, in the 

best case, up to 2t−1 adjacent bit errors can be corrected. The 

development of burst error correction codes is an interesting 

k n-k m 

16 12 4 

64 24 8 

256 48 16 
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avenue to continue and extend the work presented in this 

brief. 
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