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Abstract 

Although lot of research done o residue number system to save power but still it is considered as concerned area in the field of 

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS  the proposed method presents an sign detection unit offers significant 

savings in delay, area and power compared with the sign detection units and recorded good performance over traditional 

approaches. The processing’s of the proposed work is performed in two steps namely, first, a sign detection algorithm for the 

restricted moduli set is described. The new algorithm allows for parallel implementation and consists exclusively of modulo 2n 

additions. Then, a sign detection unit for the moduli set {2n+1 − 1, 2n − 1, 2n} is proposed based on the new sign detection 

algorithm. The unit can be implemented using one carry save adder, one comparator and one prefix adder First, a sign detection 

algorithm for the restricted moduli set is described. The new algorithm allows for parallel implementation and consists 

exclusively of modulo 2n additions. Then, a sign detection unit for the moduli set {2n+1 − 1, 2n − 1, 2n} is proposed based on the 

new sign detection algorithm. The unit can be implemented using one carry save adder, one comparator and one prefix adder. 

Finally the experimental results shows that the proposed work offers 63.8%, 44.9%, and 67.6% savings on average in area, delay 

and power, respectively, compared with a unit based on one of the best sign detection algorithm. 
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1. INTRODUCTION 

Residue number systems (RNS) have been for a long time a 

topic of intensive research. Their usefulness has been 

demonstrated, especially for computations where additions, 

subtractions and multiplications dominate, because such 

operations can be done independently for each residue digit 

without carry propagation. Other operations such as 

overflow detection, sign detection, magnitude comparison 

and division in RNS are very difficult and time consuming. 

However, above mentioned operations are essential in 

certain applications, e.g. in exact arithmetic or 

computational geometry, where residue arithmetic is 

applied. 

 Moduli selection is one of the greatest RNS 

challenges. This is because, the speed and complexity of the 

resulting RNS architecture is dependent on the form and the 

number of moduli set. It has been well established that 

powers-of-two moduli sets simplify the required arithmetic 

operations and generate efficient hardware implementations 

of the RNS architecture. 

 The sign detection problem has been investigated 

by many researchers. A general theorem is derived by 

establishing the necessary conditions for sign detection. The 

sign detection for a selected class of RNS is carried out as a 

sum modulo 2 of digits in the associated mixed radix system 

(MRS). A sign detection technique based on fractional 

representation is proposed to reduce the sum modulo M in 

the conversion formula to a sum modulo 2.A sign detection 

algorithm based on the new Chinese remainder theorem 

(CRT) II is presented. The modulo operations in the sign 

detection algorithm are bounded by size √M. In [5], a sign 
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detection algorithm uses the nth mixed radix digit in mixed-

radix conversion (MRC) to detect the sign function. To date, 

the only brief to use the combinational logic to implement a 

sign detection algorithm based on {2n −1, 2n, 2n +1}. 

However, the method cannot be extended to other moduli 

sets. 

 The proposed sign detection algorithm requires 

only the addition of the modulo 2n. Then, a new sign 

detection unit is developed for the moduli set {2n+1−1, 

2n−1, 2n} based on the proposed sign detection algorithm. 

This unit only consists of a carry save adder (CSA), a 

comparator, and a carry generation unit. The proposed 

algorithm is the first proposed for the moduli set {2n+1 − 1, 

2n − 1, 2n}. The achieved efficiency is better than that of 

other methods, such as algorithms based on ROM 

technology. 

2. BACKGROUND 

2.1 RESIDUE NUMBER SYSTEM (RNS) 

The RNS implementations can provide speedup for addition, 

subtraction and multiplication. In RNS, a decimal number is 

represented by an n-tuple of its remainders with respect to 

each modulus in the moduli set. A remainder called r, of a 

number X with respect to a modulus m is denoted by r = X 

mod m and is calculated by r = X- m q, where q is the 

largest integer which yields a non-negative r. To illustrate an 

RNS number (SODERSTRAND.M.A and AL 

MARAYATI.K (1995)), let us consider X to be a decimal 

number and set {m0, m1, m2,…..m(n-1)} to be the moduli 

set for a residue number system. This RNS can be the 

moduli set for a residue number system. This RNS can 

represent any number from 0 to (M-1), where M is the 

product of all the moduli in the set. Number X in this system 

will be represented by n-tuple (r0, r1, r2 , …….., r(n-1)), 

where ri = X mod mi 0<=i<=n-1. 

As for the number of modulus in a set, no 

limitation has been set. On one hand, the choice of moduli 

set affects the performance of the algorithms. Most of RNS 

applications today use 3 or 4 numbers of modules. One of 

the major attractive features of RNS is that each of the 

residue digits is independent of each other and hence, there 

is no carry propagation from one residue digit to another. 

This characteristic is very important in some of cyclic 

operations such as addition, subtraction and multiplication. 

This makes it possible for those operations to be performed 

on all residue digits in parallel 

 

2.2 CHOICE OF MODULI SET 

There are no fixed rules regarding moduli set used in RNS. 

The only requirement for a modulus to be in a set is that it 

has to be a pair-wise relatively prime to any other moduli in 

the set. However, that guideline is not always necessary. A 

moduli set can have moduli that have common factor; hence 

they are not relatively prime to one another.  

1. The dynamic range for the set is the closest to the 

dynamic range of its 3n binary counterpart.  

2.  As all the moduli are almost equal, number of operations 

in the set is spread out almost evenly throughout the moduli 

set.  

3. Implementation of RNS can be accomplished using 

conventional hardware. 

3. LITERATURE REVIEW 

(1) M. BHARDWAJ and A. BALARAM (1998) proposed 

low power architecture using residue numbers and also 

discussed the related issues. 

(2) G. C. CARDARILLI, A. NANNARELLI and MARCO 

RE (2002) dealt with the power dissipation in FIR filters and 

also discussed to reduce power in FIR filter using Residue 

Number System (RNS). 

(3) R. CONWAY and J. NELSON (1999) proposed Fast 

Converter for 3 Moduli RNS Using New Property of CRT 

and also discussed about the direct method of 

implementation of RNS. 
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(4) M.A. SODERSTRAND and K.AL MARAYATI (1995) 

discussed about the design of higher order FIR filters and 

related issues.  

(5) W.L. FREKING and K.K. PARHI (1998) proposed the 

design of low power digital filters using residue arithmetic 

and comparison made with existing methods.  

(6) SANGYAN HWANG and SUNGHO KANG (2004) 

proposed the implementation of low power FIR filter using 

distributed arithmetic algorithm. 

4. PROPOSED METHOD 

A standard RNS is defined exclusively for positive integers 

in the range [0, M). To accommodate negative integers, an 

implicit signed number system may be considered to be split 

into a positive half of the range and a negative half of the 

range. The dynamic range M of the moduli set {m1, m2. . . 

m N−1, m N = 2n} is even. After conversion from the 

residue number to the weighted number, the resulting non 

integer X in the interval [0, M/2) carries an implicit 

representation of the sign of the actual result Y , which can 

be obtained in its range [−M/2, M/2 − 1) as follows 

𝑌 = {
 𝑋,         𝑖𝑓    0 ≤ 𝑋 <  𝑀 2⁄

𝑋 − 𝑚, 𝑖𝑓   𝑀 2⁄ ≤ 𝑋 < 𝑀 
   (1) 

Theorem 1: Given {m1, m2.  . . m N }, the magnitude of a 

residue number X = (x1, x2, . . . , xN) is calculated as 

follows: 

X =∑ (𝛼𝑗+1 ∏ 𝑚𝑖
𝑗+1
𝑖=1

𝑁−2
𝑗=1 ) + 𝛼1𝑚1 + 𝛼0   (2) 

Where 

𝛼𝑗+1  =  ⟦∑ 𝛾𝑖
𝑗+2
𝑖=1 𝑥𝑖 ∏ 𝑚𝑖

𝑗+1
𝑖=2⁄ ⟧

𝑚𝑗+2
,  𝛼𝑗+1  =  |𝛾1𝑥1 +

 𝛾2𝑥2|𝑚2
, 𝛼0 = 𝑥1, N > 1 , 𝛾1 = (𝑁1|𝑁1

−1|𝑚1
− 1) 𝑚1⁄ , 𝛾𝑖 = 

𝑀 |𝑁1
−1|𝑚1

𝑚1⁄ 𝑚𝑖, for i = 1, 2, 3, . . . , N. The floor 

function is denoted by 

                                                          •

                                                                                                 

. 

Theorem 1 provides the mixed radix form of the CRT that 

converts residue numbers to weighted numbers; it requires 

modulo mi operations only. The calculation process for each 

mixed radix α j in Theorem 1 is independent of the others, 

and thus, the mixed radix coefficients can be computed in a 

fully parallel manner. With Theorem 1, we can deduce 

Theorem 2 as follows 

Theorem 1, we can deduce Theorem 2 as follows. Theorem 

2: For the moduli set {m1, m2, . . . , m N−1, m N = 2n}, the 

value of αN−1 is equal to 2n−1 when the integer X is M/2. 

αN−1(M/2) is denoted as the value of αN−1 for X = M/2, 

and it has 

𝛼𝑁−1  (
𝑀

2
) = 2𝑛−1  (3) 

Proof: For the moduli set {m1, m2. . . m N−1, m N = 2n}, 

we have 

𝑀

2
= 𝑚1𝑚2, … , 𝑚𝑁−1, 𝑚𝑁−1. 2𝑛−1  (4) 

For i = 1, 2. . . N − 1, the following function is established: 

|
𝑀

2
|

𝑚𝑖

= |2𝑛−1 ∏ 𝑚𝑖
𝑁−1
𝑖=1 |𝑚𝑖

 = 0.   (5) 

With (5), the RNS representation of M/2 is 

M

2
= (0,0, … ,0, |m1m2, … , mN−1, mN−1. 2n−1 |2n 

Thus, unfold (2), and we have 

X = 𝑥1 + 𝑚1|𝛾1𝑥1 + 𝛾2𝑥2|𝑚2
+𝑚1𝑚2 ⟦

𝛾1𝑥1+𝛾2𝑥2+𝛾3𝑥3

𝑚2
⟧

𝑚3

 

+𝑚1𝑚2𝑚3 ⟦
𝛾1𝑥1+𝛾2𝑥2+𝛾3𝑥3+𝛾4𝑥4

𝑚2
⟧

𝑚3

 

+ . . . + 𝑚1𝑚2 … 𝑚𝑁−1 ⟦
𝛾1𝑥1+𝛾2𝑥2+⋯+𝛾𝑁𝑥𝑁

𝑚2𝑚3…𝑚𝑁−1
⟧

𝑚𝑁

    (7) 

Then, (6) can be substituted in (7), and we have 

𝑀

2
= 𝑚1𝑚2 … 𝑚𝑁−1 ⟦

𝛾𝑁𝑥𝑁

𝑚2𝑚3…𝑚𝑁−1
⟧

2𝑛
 (8) 

By comparison of (4) and (8), we can obtain 

𝛼𝑁−1(
𝑀

2
) = ⟦

𝛾𝑁𝑥𝑁

𝑚2𝑚3…𝑚𝑁−1
⟧

2𝑛
 =2𝑛−1  (9) 

Theorem 3: In the moduli set {m1, m2, . . . , m N−1, m N = 

2n}, for a residue representative number (x1, x2, . . . , xN ), 

αN−1 is 
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𝛼𝑁−1 = ⟦
𝛾1𝑥1+𝛾2𝑥2+⋯+𝛾𝑁𝑥𝑁

𝑚2𝑚3…𝑚𝑁−1
⟧

2𝑛
 (10) 

Then the proposed sign detection function is 

𝑔𝑛(𝑥1, 𝑥2, … , 𝑥𝑁) = {
        0,                 𝑖𝑓 𝛼𝑁−1 < 2𝑛−1

      1,                𝑖𝑓  𝛼𝑁−1 ≥ 2𝑛−1    (11) 

Proof: From (2), (8), and (9), in residue representation X < 

M/2 can be rewritten as 

𝑥1 + ∑ (𝛼𝑗 ∏ 𝑚𝑖
𝑗
𝑖=1

𝑁−1
𝑗=1 ) <  2𝑛−1 ∏ 𝑚𝑖

𝑁−1
𝑖=1   (12) 

Then, rewrite (12), and we have 

(𝛼𝑁−1 −  2𝑛−1) < - 
𝑥1+∑ (𝛼𝑗 ∏ 𝑚𝑖

𝑗
𝑖=1

𝑁−2
𝑗=1 )

∏ 𝑚𝑖
𝑁−1
𝑖=1

  < 0   (13) 

Thus, the sufficiency of Theorem 3 is established. The 

necessity of the Theorem 3 proof is presented as follows. 

With Theorem 1 and because α j < m j+1 for j < N − 1, it is 

easy to verify that 

𝑥1 + ∑ (𝛼𝑗 ∏ 𝑚𝑖
𝑗
𝑖=1

𝑁−1
𝑗=1 )≤ (𝑚1 − 1) + ∑ ((𝑚𝑗+1 −𝑁−2

𝑗=1

1) ∏ 𝑚𝑖
𝑗
𝑖=1 ) < ∏ 𝑚𝑖

𝑁−1
𝑖=1  .  (14) 

Because the condition αN−1 < 2n−1 is established, we can 

deduce X in residue representation as 

𝑥1 + ∑ (𝛼𝑗 ∏ 𝑚𝑖
𝑗
𝑖=1

𝑁−1
𝑗=1 ) <  ∏ 𝑚𝑖

𝑁−1
𝑖=1  + 𝛼𝑁−1 ∏ 𝑚𝑖

𝑁−1
𝑖=1  

                                        ≤  ∏ 𝑚𝑖
𝑁−1
𝑖=1  + (2𝑛−1 −  1) ∏ 𝑚𝑖

𝑁−1
𝑖=1  

                                        = 2𝑛−1 ∏ 𝑚𝑖
𝑁−1
𝑖=1  

                                        = 
𝑀

2
                                          (15) 

Hence, when αN−1 < 2n−1, X < M/2 becomes true. 

In summary, with (13) and (15), X < M/2 is true if and only 

if 𝛼𝑁−1< 2𝑛−1. Similarly, X < 𝑀 2⁄  is true if and only if 

𝛼𝑁−1 ≥  2𝑛−1, therefore, Theorem 3 is established. 

Theorem 3 provides an efficient sign detection algorithm for 

moduli set {m1, m2. . . m N−1, m N = 2n} because it 

consists exclusively of modulo 2n addition and the residue 

digits can be computed in a fully parallel manner. Analyzing 

further, from the definitions of γi in Theorem 1, we can 

simplify (10) as follows: 

X = ⟦
∑ 𝛾𝑖

𝑁
𝑖=1 𝑥𝑖

∏ 𝑚𝑖
𝑁−1
𝑖=1

⟧
𝑚𝑁

 

= ⟦
𝑁1 |𝑁𝑖

−1|
𝑚1

−1 

𝑚𝑖 ∏ 𝑚𝑖
𝑁−1
𝑖=2

𝑥1 + ∑
𝑀 |𝑁𝑖

−1|
𝑚1

 

𝑚1𝑚𝑖 ∏ 𝑚𝑗
𝑁−1
𝑗=2

𝑥𝑖
𝑁
𝑖=2 ⟧

𝑚𝑁

   

= ⟦
(∏ 𝑚𝑖

𝑁
𝑖=1 )|𝑁1

−1|
𝑚1

−1 

∏ 𝑚𝑖
𝑁−1
𝑖=2

𝑥1 + ∑
 𝑚𝑁  |𝑁𝑖

−1|
𝑚𝑖

 

𝑚𝑖
𝑥𝑖

𝑁
𝑖=2 ⟧

𝑚𝑁

   

=  ⟦∑
 𝑚𝑁  |𝑁𝑖

−1|
𝑚𝑖

 

𝑚𝑖
𝑥𝑖 − 

1

∏ 𝑚𝑖
𝑁−1
𝑖=1

𝑥1
𝑁
𝑖=1 ⟧

2𝑛

         (16)   

Based on Theorem 3, the sign output is the MSB of αN−1. 

Therefore, the summation of the last level of (16) needs only 

one carry generation circuit to obtain the n-th bit of αN−1. 

 

SIGN DETECTION FOR THE MODULI SET 

In this section, a high-efficiency sign detection unit for the 

moduli set {2n+1 − 1, 2n − 1, 2n} is presented. The sign 

detection unit is concurrent and suitable for VLSI 

implementation based on the proposed sign detection 

algorithm. 

Theorem 4: For the moduli set {2n+1 − 1, 2n − 1, 2n}, the 

sign detection of X = (x1, x2, x3) is 

𝑠𝑔𝑛(𝑥1, 𝑥2, 𝑥3) = 𝑀𝑆𝐵 (|⌊−2𝑥1 + 𝑥2 + 𝑥3 +
𝑥2−𝑥1

2𝑛−1
⌋|

2𝑛
)  

(17) 

Proof: For the moduli set {2n+1−1, 2n−1, 2n}, let m1 

=2n+1−1, m2 = 2n − 1, and m3 = 2n. With Theorem 1, the 

multiplicative inverses of the moduli set can be obtained 

from 

|𝑁1. 𝑁1
−1|𝑚1

= |(2𝑛 − 1). 2𝑛. (−4)|2𝑛+1−1 = 1  (18) 

|𝑁2. 𝑁2
−1|𝑚2

= |(2𝑛+1 − 1). 2𝑛. 1|2𝑛−1−1 = 1  (19) 

|𝑁3. 𝑁3
−1|𝑚3

= |(2𝑛+1 − 1). (2𝑛 − 1). 1|2𝑛 = 1  (20) 

Then, we substitute these expressions into (16) to achieve 

𝛼2 = |⌊
2𝑛(2𝑛+1 − 1 − 4)

2𝑛+1 − 1
 𝑥1 +

2𝑛. 1

2𝑛 − 1
𝑥2 +

2𝑛 . 1

2𝑛
𝑥3

−
1

(2𝑛+1 − 1)(2𝑛 − 1)
𝑥1⌋|

2𝑛

 

= |⌊(2𝑛 − 2)𝑥1 −
2

2𝑛+1 − 1
𝑥1 + 𝑥2 + −

1

(2𝑛 − 1)
𝑥2 + 𝑥3

−
1

(2𝑛+1 − 1)(2𝑛 − 1)
⌋|

2𝑛
 

= |⌊−2𝑥1 + 𝑥2 + 𝑥3 +
1

2𝑛 − 1
𝑥2

−
2(2𝑛 − 1) + 1

(2𝑛+1 − 1)(2𝑛 − 1)
𝑥1⌋|

2𝑛
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= |⌊−2𝑥1 + 𝑥2 + 𝑥3 +
1

2𝑛 − 1
𝑥2 −

1

2𝑛 − 1
𝑥1⌋|

2𝑛
 

=  |⌊−2𝑥1 + 𝑥2 + 𝑥3 +
𝑥2−𝑥1

2𝑛−1
⌋|

2𝑛
   (21) 

 

Figure 1: Sign detection unit for the moduli set {2n+1 − 1, 

2n − 1, 2n} 

 

Figure 2: Blocks of the carry generation unit and comparator 

unit. 

According to (9), the MSB of α2 can be viewed as the sign 

output, and thus, (17) is established. 

                                                           In binary 

representation, the words x1, x2, and x3 are n + 1, n and n 

bits, respectively. We denote x1,n as the n + 1th bit of x1, 

and denote x1 as the least n bits of x1. Because the word x1 

is with one more bit than x2, the floor of the fractional part 

of (21) can be transformed as 

|⌊
𝑥2−𝑥1

2𝑛−1
⌋|

2𝑛
= |⌊

𝑥2−𝑥1
′ −𝑥𝑛,𝑛

2𝑛−1
⌋|

2𝑛
    (22) 

We rewrite (22) in a new form that is more easily 

implemented in circuit design 

|⌊
𝑥2−𝑥1

2𝑛−1
⌋|

2𝑛
=  −𝑥1,𝑛 − 𝑊̅   (23) 

W in (23) is ones complement of W, which is defined as 

W = 1 − W̅ = 1 + ⌊
x2 − x1

′ − xn, n

2n − 1
⌋ 

=  {
0,   𝑖𝑓𝑥1, 𝑛 = 0 𝑎𝑛𝑑 𝑥2 < 𝑥1,𝑛

′ = 1 𝑎𝑛𝑑 𝑥2 ≤ 𝑥1
′

1, 𝑖𝑓𝑥1, 𝑛 = 0 𝑎𝑛𝑑 𝑥2 < 𝑥1,𝑛
′ = 1 𝑎𝑛𝑑 𝑥2 ≤ 𝑥1

′
   (24) 

Then, we denote x1 as a n-bit digit that equals 2x1,n−2:0 + 

x1,n, which is concatenated by the least n−1 bits of x1 and 

x1,n. Therefore, (21) can be rewritten as 

 

The goal of the carry generation unit and post processing 

unit is to achieve the nth bit of α2 = C + S + W. The carry 

generation unit and post processing unit, as shown in Fig. 3, 

are identical to the CG1 (carry generation unit) and post 

processing units 

 

Figure 3: Carry generation unit and post processing unit for 

n = 16. 

 

Figure 4: Comparator unit for n = 16 

 

The comparator unit is used to set up the comparison of x2 > 

x1  and x2 = x1  . Parallel implementation of the least-

significant-bit first approach comparison algorithm is 
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adopted to implement the comparator unit as shown in Fig. 

4. This comparator unit is a carry generation circuit for 

addition with one input vector being set in ones 

complement. 

 

 

 

 

5. SIMULATION RESULTS 

 

Figure 5: CARRY GENERATION UNIT 

 

Figure 6: CARRY SAVE BLOCK 

 

Figure 7: COMPARATOR UNIT 

 

Figure 8: TOP SIGN DETECTION 16 

 

Figure 9: TOP SIGN DETECTION 32 

 

Figure 10: TOP SIGN DETECTION 8 

6. CONCLUSION 

In this brief, a fast sign detection algorithm is presented for 

restricted moduli set including the modulo 2n. The proposed 

algorithm allows for parallel implementation and consists 

exclusively of modulo 2n additions. A sign detection unit 

for the moduli set {2n+1 − 1, 2n − 1, 2n} is proposed based 

on the proposed sign detection algorithm. The experimental 

results demonstrate that the proposed circuit achieves 

significant improvements in terms of area, delay, and power. 
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