
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 6 June 2017, Page No. 21756-21762

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21756

Deterministic Routing Algorithm for Shared Memory Processing (SMP)
Soha S. Zaghloul, PhD

1
, Ashwag Homod Alotebi

2
, Noura Saleh AL Maghrabi

3

 Asma Abdurahman Almulifi
4
, Hend Ibrahim Alshaya

5

1
King Saud University, Computer Science Dept.,

Saudi Arabia, Riyadh

smekki@ksu.edu.sa
2
King Saud University, Computer Science Dept.,

 Saudi Arabia, Riyadh

435203998@student.ksu.edu.sa
3
 King Saud University, Computer Science Dept.,

 Saudi Arabia, Riyadh

435203944@student.ksu.edu.sa
4
King Saud University, Computer Science Dept.,

 Saudi Arabia, Riyadh

436203795@student.ksu.edu.sa
5
King Saud University, Computer Science Dept.,

 Saudi Arabia, Riyadh

43520400@student.ksu.edu.sa

Abstract: Parallel computing involves the simultaneous deployment of various resources and computers to solve computational problems

by using multiple processors. The most common parallel computing model is the shared memory processing (SMP) model. In this model, a

number of identical processors communicate with each other by using one large logical shared memory with the same amount of access time

for the entire memory area. The parallel programming performance is affected by the run time, which is in turn affected by the number of

processors and the size of the problem. Therefore, this paper presents an application of XY deterministic routing in an SMP system based on

a 4x4 2D mesh topology network with two cores and two threads per core. The sequential run time and the related parallel run time for each

thread were measured.

The sequential time that must be achieved to compensate for the warm-up overhead time consumed by the Java Virtual Machine (JVM) was

at least 60 seconds. The results revealed that the achieved sequential time was equal to 69.057 seconds, whereas the achieved parallel

times for threads 1 and 2 of the first core and threads 1 and 2 of the second core were 70.066, 68.112, 44.869, and 42.412 seconds,

respectively. On the basis of the degree of parallelism, the parallel programming performance was evaluated in terms of speedup and

efficiency. The performance evaluation results demonstrated that an increase in the degree of parallelism results in faster speed up and

decreased efficiency.

Keywords: Deterministic routing algorithm, Sequential computing, Parallel computing, SMP.

1. Introduction

The continuous development of computer architectures [1]

and the growing use of modern systems are increasing

the need for fast computers that can implement numerous

tasks in a short period of time. In traditional serial com-

putting, tasks are performed sequentially over a long

duration. In practice, this time consumption problem can

be solved by performing various operations simultaneously,

which has led to the development of another type of

computation called parallel computing in which several

tasks are executed simultaneously [2, 3]. Figure 1 shows a

comparison of serial and parallel computing.

Parallel computing refers to the simultaneous deployment of

various re- sources and computers to solve single

computational problems by using multi- plea processing

entities. Such entities may be multiprocessor systems

composed of multiple processors that are linked via bus

or switch networks in a sin- gel machine. Alternatively,

they may be multicomputer systems composed of various

independent computers that are connected by computer or

telecommunication networks. A control/coordination

mechanism is also deployed in parallel computing [2, 4].

The concept of parallel computing is based on dividing

the problem to be solved into various discrete parts

through a divide-and-conquer method, such that the

resultant parts can be executed concurrently and

independently [3]. Each part is separated into a set of

instructions that are operated simultaneously on multiple

processes, thus enhancing speedup and decreasing

http://www.ijecs.in/
mailto:smekki@ksu.edu.sa
mailto:435203998@student.ksu.edu.sa
mailto:435203944@student.ksu.edu.sa
mailto:436203795@student.ksu.edu.sa
mailto:436203795@student.ksu.edu.sa

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21757

operation time and cost. Parallel computing also allows for

the use of non-local resources and can be applied to solving

larger and more complicated and time- critical problems,

which typically impose high requirements in terms of both

processing power and memory. Other benefits of parallel

computing include the efficient use of underlying parallel

hardware, load distribution, fault tolerance, synchronization,

and communication [2, 5].

These benefits have increased the deployment of this

computing paradigm in various industrial, commercial,

scientific, and engineering fields, such as image

processing [6, 7], differential evolution [8-10], big data,

data mining, databases, and computer science mathematics.

In addition, various scientific and industrial studies have

taken ad- vantage of large, complicated computation

methods that would take years to reach completion

without parallel computers [3].

This paper sought to presents an application of XY

deterministic routing in shared memory processing based on

a 4x4 2D mesh topology network with two cores and two

threads per core. Section II of this paper introduces gen-

earl background information about parallel programming

models, with a focus on shared memory models, and

introduces the main concepts of deterministic and adaptive

routing algorithms. The primary metrics that are used to

evaluate parallel processing models are described in

Section III, and Section IV explains the experiments in

detail. Section V then analyzes and discusses the results,

and the final section concludes the paper and presents future

research opportunities.

Figure 1: Comparison of serial and parallel computing [3]

2. Background

2.1. Parallel Programming Models

The multiprocessors that are used in parallel architectures

can be categorized into three types on the basis of their

communication models: shared memory, distributed memory,

and hybrid memory [4].

A. Shared Memory Paradigm

In the shared memory paradigm, all processors

communicate with each other by using one large, common

logical shared memory over a high-speed network and treat

this memory as a global address space. A system based

on this paradigm is also referred to as a symmetric

multiprocessor system, because its processors are identical

and the access time is the same for the entire memory area

[3, 4, 11]. The shared memory paradigm offers specific

advantages regarding programmability, because it has the

same memory organization as that of sequential

programming models.

Therefore, there is no need to consider the details of data

partitioning, communication, migration, and distribution. This

paradigm also prevents the multiplicity of data items, and

programmers have a low level of individual responsibility in

this model. However, no high-performing, practical shared-

memory machine exists, because there is no scalable shared

memory that permits numerous processors to access various

locations at the same time. Moreover, the use of a single

shared memory prevents processors from high-speed access.

There are also many hardware requirements, high costs, and

high complexity because of the presence of deadlocks during

application development [4, 5, 12].

B. Distributed Memory Paradigm

The distributed memory paradigm involves several processing

elements called nodes that aggregate in clusters. It also

involves an interconnection network, in which the nodes are

connected to one another and data transmission among nodes

is supported. Each node is an independent module that is

composed of a small local memory unit and processor and

simultaneously communicates private data to other processors.

In this paradigm, for programming purposes, messages are

transmitted among nodes by using a message-passing model

[13, 14].

Such programming is based on the exchange of send/receive

communication primitives among several processors that

communicate over the network. A system based on the

distributed memory paradigm is also called an asymmetric

multiprocessor system, because it includes different types of

processors, such as a front-end processor that acts as the

access point to all other back-end processors and controls

the distribution of data [4, 12, 15].

Programmers can apply the distributed memory paradigm to

achieve eve- efficient performance, because it optimizes

programs so that they can benefit from locality by saving

commonly deployed data in local memory and de- crease

remote memory access. Furthermore, the relevant message-

passing mod- ells have few hardware requirements, low

complexity, and low costs. However, this paradigm requires

significant effort from individual programmers, who must

take responsibility for managing all of the details

concerning communication, task scheduling, and data

distribution. In addition, message-passing models can easily

give rise to deadlocks during the communication process and

high communication overheads [4, 5, and 12].

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21758

C. Hybrid Memory Paradigm

To combine the programming simplicity of shared memory

architectures with the performance of distributed memory

architectures, a hybrid type, also referred to as a distributed

shared memory architecture, has been developed. Such a

system is constructed on top of a message-passing distributed

architecture and presents an exposed interface to enable a

shared architecture. In addition, it allows for the programming

of multiple computers to be simplified by simulating a shared

address space. Within such a system, there exists a

communication library that is responsible for the mapping

from remote memory accesses to message passing, thus

avoiding the need for programmers to participate in the

message communication process. However, hiding the

memory access locality from programmers may result in

reduced performance and inefficient memory access [4, 12,

and 16].

This paper focuses on SMP programming paradigms based on

the concept of parallelism. Such paradigms can be

represented with several programming models, as presented in

the following subsection.

2.2 Shared Memory Programming Models

Figure 2: The difference between shared memory (SMP)

and distributed memory architectures

The two main types of models used to represent shared

memory computer paradigms are Java threads and Open

Message passing (OpenMP). These models differ in their

syntax, semantics, levels of abstraction, and principles of

parallelism. Java is a programming language that supports

parallelism in the form of threads. Parallel SMP programs

written in Java are primarily implemented through thread

execution, wherein each thread is an independent control

flow that uses a global address space to share data with

other threads [15].

OpenMP is a programming model and application program

interface de- signed for shared memory paradigms. It

supports parallelism by means of a group of parallel

directives, environment variables, and run-time library rout-

tines. It is usually presented in the C, C++, and FORTRAN

languages. This model has a high level of abstraction, thus

simplifying the design of parallel applications from the

developer perspective. However, OpenMP is not deployed

as a thread model because of its low flexibility, and it is not

treated as a standard [5, 17].

Figure 3: Hybrid architecture

3. Routing Algorithms

In practice, routing is the process of transferring data from a

specific source node to a target destination node by using a

well- defined strategy and routing path [19]. In other words,

a routing algorithm specifies the path that must be

followed by a data packet traveling between these two

nodes. There are various types of routing algorithms

available that differ in their main characteristics. On the

basis of the method used to select a path, routing algorithms

can be classified into two main types: deterministic and

adaptive routing algorithms. These two types of algorithms

differ in their dependence on the network conditions and the

number of possible paths that are determined between a pair

of source and destination nodes.

A. Deterministic and Adaptive Routing

 In a deterministic routing algorithm, the routing path

(typically the shortest path) is specified by the receiver and

sender. Because this path is fixed for the same network

correspondents, there is a specific, unique route for each

message regardless of the network con- dictions. However,

when a packet is transmitted over a congested network, the

entire network fails because such an algorithm does not

consider the network conditions [18, 19].

The most common type of deterministic routing algorithm is

an XY algorithm, which is a dimension-order routing

algorithm. In such an algorithm, packets are initially routed

in the horizontal direction (x axis) until the tar- get

column is reached, after which they are routed in the

vertical direction (y axis) to their destination. Thus, the

address of each router represents coordinates. In practice,

such an algorithm is appropriate for a network with a torus

or mesh topology. The operating principle of an XY routing

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21759

algorithm is illustrated in the figure 4 [19].

Figure 4: XY routing algorithm [19].

In an adaptive routing algorithm, data may be transmitted

between two nodes over several different paths, depending

on the network conditions and load, information about

available output channels, and traffic conditions. In this

type of routing algorithm, each router is aware of the traffic

situation in the network and adjusts its routing accordingly.

In practice, adaptive routing algorithms integrate network

congestion information into their decisions about routing

and route messages around detected regions of congestion.

Moreover, this type of routing offers enhanced data flow in

a network; however, it results in more complex nodes [18-

21].

The most common type of adaptive routing algorithm is an

even-odd turn model, which restricts the priority of data

in specific locations within the network topology, on the

basis of the evenness or oddness of the column in which

a given packet is located. This in turn provides many

livelock and deadlock-free paths for packets [20].

B. Pseudo code for XY routing in a two-dimensional mesh

Figure 5 presents the pseudo code for an XY routing

algorithm.

Figure 5: The pseudo code for an XY routing algorithm

3 Performance Metrics

The efficiency of parallel processing for a specific problem

can be practically evaluated by using the following metrics:

speedup, efficiency, and Amdahl's

3.1 Speedup

The speedup factor is the ratio of the execution time

required for one processor performing sequential

computations to solve a problem of size N Tseq to the

execution time required for K processors performing

parallel computations T-par to solve the same problem.

Thus, it can be expressed as follows [2, 22]:

Speedup (N, K) = (T seq (N, 1))/ (T par (N, K)).

(1) Speedup is directly dependent on the number of

processors until a saturation point is reached. After this

point, the addition of more processors does not

Result in more efficient performance. Speedup is also based

on the best sequential program for a one-processor system,

whereas the underlying programs for different parallel

implementations might be different

3.2 Efficiency

Efficiency is a measure of how much speedup is provided

by the addition of another processor and is expressed as

follows [4, 22]:

E(N, K) = speedup(N, K)/K (2)

According to this relation, the efficiency is inversely

correlated with the

Number of processors [4].

3.3 Amdahl's Law

The reduction in efficiency that occurs with an increasing

number of processors is related to the limit of parallel

performance. After a specific threshold number of

processors, the addition of more processors cannot offer

further improvement in performance and consequently

results in performance degradation because of the reduction

in the time saved by additional task division and the increase

in communication overheads. Therefore, Amdahl's law is an

efficient method of assessing the effectiveness of a parallel

program for a given problem. The speedup of a parallel

program is expressed as follows [4, 22]:

Speedup (N, K) = 1/(s + p/n) < 1/s (3)

Where p represents the fraction of parallel code and s is

equal to 1-p and represents the fraction of serial code. Thus,

the maximum possible speedup cannot be more than one

second [4]

4 Experiments

4.1 Hardware and Software Requirements

The design stage of this study was conducted on a laptop

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21760

(Intel(R) Core(TM) i7-5500U CPU @2.40 GHz, hyper-

threaded; 2 threads per core, with a total of two cores and

four threads), running the Windows 10 operating system.

The Java programming language was used for

implementation, in combination with the Net Beans IDE 8.2

software.

4.2 Experimental Stages

In the current study, a network with a 4x4 2D mesh

topology was deployed; in which each node had unique xy

coordinates described by the following four arrays:

 X1[] = 1, 0, 2, 2, 0, 3, 2, 1;

y1 [] = 1, 2, 1, 0, 1, 3, 2, 0;

X2[] = 2, 1, 3, 3, 1, 2, 1, 2;

y2[] = 2,3,1,2,2,3,1,1; .

A random function was used to generate data packets. An

XY routing algorithm was used to determine the route that

each packet should follow. The Java language has no global

concept dictating that each variable should belong to a

specific class or method. Thus, access to shared data should

be explicitly managed among threads because they share

several variables in the SMP architecture. This problem was

solved by declaring a specific public class including

variables that must be shared. This declared class must, in

turn, be accessed by other program classes, which may

require the exchange of data values among threads.

Shared data can have a position class (x, y), whereas

private data files are generated randomly. Thus, four

threads were created in this study, and each acted as a

sender. Each sender took a text file as input and read the

data, which contained the header source, destination

position, and data packet. The following points must be

considered when comparing the performance of different

versions of a program, such as sequential and parallel

versions:

The programs must be executed on the same computer

All parallel computer processors must possess the same

hardware characteristics, such as clock speed The same key

algorithm must be incorporated into both programs

The main factor that affects a programs performance is

its run time, regardless of other algorithm and hardware

factors. The run time (T) of any program is the time

required by that program to compute an answer to a

problem. This value depends on the number of

processors (K) and the problem size (N), which is

defined as the number of computations required to

determine the result. Thus, T is a function of both K and N:

T (N, K). There- fore, all programs were created by

preparing various input datasets covering a range of problem

sizes N. The smallest problem size such that Tseq (N, 1)60

seconds was then selected. This amount of time was

considered sufficient to compensate for the warm-up

overhead time consumed by the JVM.

The sequential programming implementation was executed

ten times for each input dataset. The shortest run time was

subsequently determined on the basis of the measured

value of Tseq (N,1), following a Gaussian distribution.

This procedure resulted in a number of packets equal to

350000 for each dataset. The parallel programming

implementation was also executed ten times for each value

of K, from 2 to the maximum number of available process-

sores. Finally, both the speedup and efficiency were plotted

against the number of processors (K), and the run time

(T) was plotted against the problem size (N) for each

value of K. Amdahl's law was then computed.

5 Results and Analysis

For the sequential programming implementation, the

achieved Tseq (N, 1) was equal to 69.057 seconds. All

threads started at the same time in the parallel programming

implementation. However, the results revealed a dramatic

decrease in the execution time for three threads.

Table 1 Measured metrics for different numbers of threads

in the parallel programming implementation

Tseq Tpar Degree of parallelism Speedup Efficiency Amdahl's Speedup Amdahl's Efficiency

69 68 2 1.01 1.01 1.62 0.81
69 44 3 1.53 0.76 2.05 0.68

69 42 4 1.62 0.81 2.37 0.59

Figure 6: Speedup versus the degree of parallelism

The degree of parallelism represents the number of cores,

which was equal to two in this study. The achieved Tpar

value for each thread was as follows: Tpar

(core1,thread1)=70.066 seconds, Tpar

(core1,thread2)=68.112 seconds, Tpar

(core2,thread1)=44.869 seconds and Tpar

(core2,thread2)=42.412 sec- nods. The highest run time,

which was associated with the first thread in the first core,

was used to measure the parallel overhead. The computed

speedup and efficiency values of the parallel

programming implementation with the addition of the

other three threads are presented in the table 1.

The following figures illustrate how the speedup and

efficiency are related to the degree parallelism. The selected

number of packets was 350000 because this value was the

smallest number for which a sequential time of Tseq (N, 1)

mailto:@2.40
mailto:@2.40
mailto:@2.40
mailto:@2.40
mailto:@2.40
mailto:@2.40

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21761

=60 seconds. Was achieved.

As seen from the figure 6, there is a direct relationship

between the degree of parallelism and the resultant speedup

value.

Moreover, the figure 7 illustrates that when the degree of

parallelism is equal to two, the resultant efficiency is one,

because the parallel time is similar to the sequential time.

However, this cannot be considered the optimal case. The

figures 8 and 9 illustrate how the Amdahl speedup and

efficiency are related to the degree of parallelism.

Figure 7: Efficiency versus the degree of parallelism

Figure 8: Amdahl Speedup versus the degree of parallelism.

As seen from figure 8, there is a direct linear

relationship between the Amdahl speedup and the degree

of parallelism. Furthermore, figure 9 demonstrates that there

is an inverse linear relation- ship between the Amdahl

efficiency and the degree of parallelism. The scalability is

defined as the number of packets at which the system

failed (3500000) divided by the number of packets used

in the initial experiments (350000), which is equal to 10.

As shown in figure 10, as the number of packets increases,

the run time

Figure 9: Amdahl efficiency versus the degree of

parallelism

Figure 10: Scalability: time versus number of packets

6 Conclusions and Future Work

This paper presents the application of XY deterministic

routing in an SMP system based on a 4x4 2D mesh

topology network with two cores and two threads per

core. A public class including variables to be shared was

declared to explicitly manage access to the shared data

among the threads. Both sequential and parallel

programming implementations were considered, each was

executed ten times for each prepared input dataset. The run

time of a program, which is a function of the number of

processors and the problem size, has a major effect on

performance. According to the findings of this study, the

sequential time that must be achieved to compensate

for the warm-up overhead time consumed by the JVM

should be equal to or greater than 60 seconds. Here, the

achieved Tseq (N,1) was 69.057 seconds, whereas the

achieved Tpar values for threads 1 and 2 of the first core

and threads 1 and 2 of the second core were 70.066,

68.112, 44.869, and 42.412 seconds, respectively. The

highest run time, which was associated with the first thread

of the first core, was used to measure the parallel overhead.

This parallel programming performance evaluation

revealed that speedup increases with an increasing degree

of parallelism, whereas efficiency is inversely correlated

with the degree of parallelism. This study may be enhanced

DOI: 10.18535/ijecs/v6i6.35

Soha S. Zaghloul, IJECS Volume 6 Issue 6 June, 2017 Page No. 21756-21762 Page 21762

in the future by choosing the source and destination nodes

randomly and by scaling the mesh size.

Acknowledgment

 The authors would like to extend their sincere

appreciation to the Deanship of Scientific Research at King

Saud University for its funding this Research group NO

(RG-1435-077).

References

[1] B. Bose, "Gaussian and EJ networks Some efficient

interconnection topologies for parallel systems", 17th

CSI International Symposium in Computer

Architecture and Digital Systems (CADS), pp. XV-

XV, 30-31 Oct. 2013

[2] S. Rastogi and H. Zaheer," Significance of parallel

computation over serial computation", IEEE, 2016

[3] B. Barney, "Introduction to Parallel Computing”,

[online]:available at:

https://computing.llnl.gov/tutorials/parallel_comp/#Wh

atis

[4] I. Singh, "Review on Parallel and Distributed

Computing", Scholars Journal of Engineering and

Technology (SJET), vol. 1, no. 4, pp. 218-225, 2013

[5] S. C. Ravela, Comparison of Shared memory based

parallel programming models, thesis is submitted to

the School of Computing at Blekinge Institute of

Technology in partial fulfillment of the requirements

for the degree of Master of Science in Computer

Science, 2010

[6] I.A. Ansari, A. Pant and C. W., Ahn, "Robust and

false positive free watermarking in IWT domain

using SVD and ABC", Engineering Applications of

Artificial Intelligence, vol. 49, pp. 114-125, 2016

[7] I.A. Ansari, A. Pant and C. W., Ahn, "SVD based

fragile watermarking scheme for tamper localization

and self-recovery", International Journal of Machine

Learning and Cybernetics, pp.1-15, 2015

[8] H. Zaheer, M. Pant, S. Kumar, O. Monakhov, E.

Monakhova and K. Deep, "A new guiding force

strategy for differential evolution", International

Journal of System Assurance Engineering and

Management, pp. 1-14, 2015

[9] H. Zaheer and M. Pant, "A Differential Evolution

Approach for Solving Integer Programming

Problems", In Proceedings of Fourth International

Conference on Soft Computing for Problem Solving,

pp. 413-424, 2015

[10] H. Zaheer, M. Pant, S. Kumar and O. Monakhov, "A

Novel Mutation Strategy for Differential Evolution",

Problem Solving and Uncertainty Modeling through

Optimization and Soft Computing Applications, vol.

20, 2016

[11] N. Manchanda and K. Anand, "Non-Uniform Memory

Access (NUMA)", New York University, 2010

[12] Zaid Abdi Alkareem Alyasseri, "Survey of Parallel

Computing with MATLAB", pp. 1-9, 2010

[13] J. P. Weiss, "Hybrid Computing: Advantages of

Shared and Distributed Memory Combined", [online]:

available at: https://www.comsol.com/blogs/hybrid-

computing-advantages-shared-distributed-memory-

combined/, 2014

[14] T. Rauber and G. Rnger, Chapter 2 Parallel Computer

Architecture, Parallel Programming, Springer-Verlag

Berlin Heidelberg, pp.9-103, 2013

[15] J. Monteiro, "non-uniform memory access (NUMA)

architecture and multicomputers, Parallel and

Distributed Computing", Department of Computer

Science and Engineering (DEI) Instituto Superior

Tecnico, 2011

[16] P. Kumar and K. Kumar, "Defining Hybrid

Distributed Shared Memory Consistency Models on

Unified Framework", international journal of

enhanced research in science tech- nology and

engineering, vol. 2, no 2, 2013

[17] E. Ajkunic, H. F. kic, E. Omerovic, K. Talic and

N. Nosovic, "A Comparison of Five Parallel

Programming Models for C++", MIPRO, pp. 2203-

2207, 2012

[18] A. Ben Achballah and S. Ben Saoud, "A Survey of

Network-On-Chip Tools, (IJACSA) International

Journal of Advanced Computer Science and

Applications", vol. 4, no. 9, 2013

[19] G. Adamu, P. Chejara and A. Baita Garko, "Review

Of Deterministic Routing Algorithm For Network-On-

Chip", 2nd international conference on science,

technology and manage- ment, 2015

[20] D. Ouellet-Poulin, "Adaptive Routing Algorithms and

Implementations", pp.1-4, 2010

[21] L. Shrivastava, G.S. Tomar and S. S. Bhadauria, "A

Survey on Congestion Adaptive Routing Protocols for

Mobile Ad-Hoc Networks", International Journal of

Computer The- ory and Engineering, vol. 3, no. 2,

pp. 189-196, April 2011

[22] J. Mathew and R. Vijayakumar, "The Performance of

Parallel Algorithms by Amdahl’s Law, Gustafson’s

Trend", Juby Mathew et al, / (IJCSIT) International

Journal of Computer Science and Information

Technologies, vol. 2, no. 6, pp. 2796-2799, 2011

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
https://www.comsol.com/blogs/hybrid-computing-advantages-shared-distributed-memory-combined/
https://www.comsol.com/blogs/hybrid-computing-advantages-shared-distributed-memory-combined/
https://www.comsol.com/blogs/hybrid-computing-advantages-shared-distributed-memory-combined/

