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Abstract: Parallel computing involves the simultaneous deployment of various resources and computers to solve computational problems 

by using multiple processors.  The most common parallel computing model is the shared memory processing (SMP) model. In this model, a 

number of identical processors communicate with each other by using one large logical shared memory with the same amount of access time 

for the entire memory area.  The parallel programming performance is affected by the run time, which is in turn affected by the number of 

processors and the size of the problem. Therefore, this paper presents an application of XY deterministic routing in an SMP system based on 

a 4x4 2D mesh topology network with two cores and two threads per core. The sequential run time and the related parallel run time for each 

thread were measured. 

The sequential time that must be achieved to compensate for the warm-up overhead time consumed by the Java Virtual Machine (JVM) was 

at least 60 seconds. The  results  revealed  that the  achieved  sequential  time  was equal  to 69.057 seconds, whereas the achieved parallel  

times for threads 1 and 2 of the first core and  threads 1 and  2 of the  second core were 70.066, 68.112, 44.869, and  42.412 seconds,  

respectively.  On the basis of the degree of parallelism, the parallel programming performance was evaluated in terms of speedup and 

efficiency. The performance evaluation results demonstrated that an increase in the degree of parallelism results in faster speed up and 

decreased efficiency. 

Keywords: Deterministic routing algorithm, Sequential computing, Parallel computing, SMP. 

 

1. Introduction 
 

The  continuous  development of computer architectures [1] 

and  the  growing use of modern  systems  are  increasing  

the  need  for fast  computers  that can implement numerous  

tasks in a short  period of time. In traditional serial com- 

putting, tasks are performed sequentially over a long 

duration. In practice,  this time consumption problem  can 

be solved by performing  various operations simultaneously, 

which has led to the development of another  type of 

computation called parallel  computing  in which several  

tasks  are executed  simultaneously [2, 3]. Figure 1 shows a 

comparison of serial and parallel computing. 

 

Parallel computing refers to the simultaneous deployment of 

various re- sources and computers to solve single 

computational problems by using multi- plea processing 

entities.  Such entities  may be multiprocessor systems 

composed of multiple  processors  that are  linked  via  bus  

or  switch  networks  in  a  sin- gel machine.  Alternatively, 

they may be multicomputer systems composed of various 

independent computers that are connected by computer or 

telecommunication networks.  A control/coordination 

mechanism is also deployed in parallel computing [2, 4]. 

 

The  concept  of parallel  computing   is based  on  dividing  

the  problem  to be solved into  various  discrete  parts  

through a divide-and-conquer method, such that the 

resultant parts  can be executed  concurrently and 

independently [3]. Each  part   is separated into  a  set  of 

instructions that are  operated simultaneously on multiple  

processes,  thus  enhancing  speedup  and  decreasing 
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operation  time and cost. Parallel  computing  also allows for 

the use of non-local resources and can be applied to solving 

larger and more complicated  and time- critical  problems,  

which typically impose high requirements in terms  of both 

processing  power  and  memory.  Other benefits of parallel 

computing include the efficient use of underlying parallel 

hardware, load distribution, fault tolerance, synchronization, 

and communication [2, 5].  

 

These benefits have increased the deployment of this 

computing  paradigm in various industrial, commercial, 

scientific,  and  engineering  fields, such  as image  

processing  [6, 7], differential evolution [8-10], big data,  

data  mining, databases, and computer science mathematics.  

In addition, various  scientific and  industrial studies  have  

taken  ad- vantage  of large, complicated  computation 

methods  that would take  years to reach completion  

without parallel  computers  [3]. 

 

This paper sought to presents an application of XY 

deterministic routing in shared memory processing based on 

a 4x4 2D mesh topology network with two cores and two 

threads per core. Section  II of this  paper  introduces  gen- 

earl background information about  parallel programming 

models, with a focus on shared  memory models, and 

introduces  the main concepts  of deterministic and  adaptive 

routing  algorithms. The  primary  metrics  that are used to 

evaluate  parallel  processing  models are  described  in 

Section  III,  and  Section  IV explains  the experiments in 

detail.  Section V then analyzes and discusses the results, 

and the final section concludes the paper and presents future 

research opportunities. 

 

 
 

Figure 1: Comparison of serial and parallel computing [3] 

2. Background 

2.1. Parallel Programming Models 

The  multiprocessors that  are  used  in parallel  architectures 

can  be categorized into  three  types on the  basis of their  

communication models: shared memory,  distributed memory,  

and hybrid  memory  [4]. 

 

A. Shared Memory Paradigm 

In  the  shared  memory  paradigm, all  processors  

communicate with  each other  by using one large,  common  

logical shared  memory  over a high-speed network  and  treat 

this  memory  as  a  global  address  space.  A system  based 

on this  paradigm is also referred  to  as a symmetric  

multiprocessor system, because  its  processors  are  identical  

and  the  access time  is the  same  for the entire  memory  area  

[3, 4, 11]. The  shared  memory  paradigm offers specific 

advantages regarding  programmability, because  it  has  the  

same  memory  organization  as that of sequential  

programming models.  

 

Therefore, there is no need to consider the details of data 

partitioning, communication, migration, and distribution. This 

paradigm also prevents the multiplicity of data items, and 

programmers have a low level of individual responsibility in 

this model. However, no high-performing, practical shared-

memory machine exists, because there  is no scalable  shared  

memory  that permits  numerous  processors to  access various  

locations  at  the  same  time.  Moreover, the use of a single 

shared memory prevents processors from high-speed access.  

There are also many hardware requirements, high costs, and 

high complexity because of the presence of deadlocks during 

application development [4, 5, 12]. 

 

B. Distributed Memory Paradigm 

The distributed memory paradigm involves several processing 

elements called nodes that aggregate in clusters.  It also 

involves an interconnection network, in which the nodes are 

connected to one another and data transmission among nodes 

is supported. Each node is an independent module that is 

composed of a small local memory unit and processor and 

simultaneously communicates private data to other processors. 

In this paradigm, for programming purposes, messages are 

transmitted among nodes by using a message-passing model 

[13, 14].  

 

Such programming is based on the exchange of send/receive 

communication primitives among several processors that 

communicate over the network.  A system  based  on  the  

distributed memory  paradigm is also called an asymmetric 

multiprocessor system, because it includes different types of 

processors, such as a front-end  processor that acts as the 

access point to all other  back-end  processors and controls  

the distribution of data  [4, 12, 15]. 

 

Programmers can apply  the  distributed memory  paradigm to  

achieve  eve- efficient performance, because  it  optimizes  

programs  so that they  can  benefit from  locality by  saving  

commonly  deployed  data  in  local  memory  and  de- crease 

remote memory access. Furthermore, the relevant message-

passing mod- ells have few hardware requirements, low 

complexity, and low costs. However, this  paradigm requires  

significant effort  from  individual   programmers,  who must  

take  responsibility for managing  all of the  details  

concerning  communication,  task  scheduling,  and data  

distribution. In addition, message-passing models can easily 

give rise to deadlocks during the communication process and 

high communication overheads [4, 5, and 12]. 
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C. Hybrid Memory Paradigm 

 

To  combine  the  programming simplicity  of shared  memory  

architectures with the performance  of distributed memory 

architectures, a hybrid  type, also referred  to as a distributed 

shared  memory  architecture, has been developed. Such a 

system is constructed on top of a message-passing distributed 

architecture and presents an exposed interface to enable a 

shared architecture. In addition, it allows for the programming 

of multiple computers to be simplified by simulating a shared 

address space.  Within  such  a system,  there  exists  a 

communication library  that is responsible for the mapping  

from remote  memory accesses to message passing,  thus  

avoiding  the  need for programmers to participate in the 

message communication process. However, hiding the 

memory access locality from programmers may result in 

reduced performance and inefficient memory access [4, 12, 

and 16]. 

 

This paper focuses on SMP programming paradigms based on 

the concept of parallelism.  Such paradigms can be 

represented with several programming models, as presented in 

the following subsection. 

2.2 Shared Memory Programming Models 

 

 
 

Figure 2: The difference between shared memory (SMP) 

and distributed memory architectures 
 
 

The two main types of models used to represent shared 

memory computer paradigms   are Java threads and Open 

Message passing (OpenMP).  These models differ in their 

syntax, semantics, levels of abstraction, and principles of 

parallelism.  Java is a programming language that supports 

parallelism in the form of threads. Parallel  SMP  programs  

written in  Java  are  primarily implemented through thread 

execution,  wherein each thread is an independent control  

flow that uses a global address  space to share data  with 

other  threads [15]. 

 

OpenMP is a programming model and application program 

interface de- signed for shared memory paradigms. It 

supports parallelism by means of a group of parallel 

directives, environment variables, and run-time library rout- 

tines.  It is usually presented in the C, C++, and FORTRAN 

languages.  This model has a high level of abstraction, thus 

simplifying the design of parallel applications from the 

developer perspective.  However, OpenMP is not deployed 

as a thread model because of its low flexibility, and it is not 

treated as a standard [5, 17]. 

 

 
 

Figure 3: Hybrid architecture 

 

3. Routing Algorithms   

In practice, routing is the process of transferring data from a 

specific source node to a target destination node by using a 

well- defined strategy and routing path [19]. In other  words,  

a routing  algorithm specifies the  path  that must  be 

followed by a data  packet  traveling  between these  two 

nodes. There are various types of routing algorithms 

available that differ in their main characteristics. On the 

basis of the method used to select a path, routing algorithms 

can be classified into two main types: deterministic and 

adaptive routing algorithms. These two types of algorithms 

differ in their dependence on the network conditions and the 

number of possible paths that are determined between a pair 

of source and destination nodes. 

 

A. Deterministic and Adaptive Routing  

 

 In a deterministic routing algorithm, the routing path 

(typically the shortest path) is specified by the receiver and 

sender.  Because this path is fixed for the same network 

correspondents, there is a specific, unique route for each 

message regardless of the network con- dictions.  However, 

when a packet is transmitted over a congested network, the 

entire network fails because such an algorithm does not 

consider the network conditions [18, 19]. 

 

The most common type of deterministic routing algorithm is 

an XY algorithm, which is a dimension-order routing 

algorithm. In such an algorithm, packets  are initially  routed  

in the  horizontal direction  (x axis)  until  the  tar- get 

column is reached,  after  which they are routed  in the 

vertical  direction  (y axis)  to their  destination. Thus, the 

address of each router represents coordinates. In practice, 

such an algorithm is appropriate for a network with a torus 

or mesh topology. The operating principle of an XY routing 
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algorithm is illustrated in the figure 4 [19]. 

 

 
 

Figure 4: XY routing algorithm [19]. 

 

In an adaptive routing  algorithm, data  may  be transmitted 

between  two nodes over several  different paths,  depending  

on the  network  conditions  and load,  information about  

available  output channels,  and  traffic conditions.  In this 

type of routing algorithm, each router is aware of the traffic 

situation in the network and adjusts its routing accordingly.  

In practice, adaptive routing algorithms integrate network 

congestion information into their decisions about routing 

and route messages around detected regions of congestion.  

Moreover, this type of routing offers enhanced data flow in 

a network; however, it results in more complex nodes [18-

21]. 

 

The most common type of adaptive routing  algorithm is an 

even-odd turn model,  which  restricts the  priority   of data  

in  specific locations  within  the network  topology,  on the  

basis  of the  evenness  or oddness  of the  column  in which  

a  given  packet  is located.  This in turn provides many 

livelock and deadlock-free paths for packets [20]. 

 

B. Pseudo code for XY routing in a two-dimensional mesh 

 

Figure 5 presents the pseudo code for an XY routing 

algorithm. 

 

 
 

Figure 5: The pseudo code for an XY routing algorithm 
 

 

3   Performance Metrics 

 
The efficiency of parallel processing for a specific problem 

can be practically evaluated by using the following metrics: 

speedup, efficiency, and Amdahl's 

 

3.1 Speedup 

 

The speedup factor is the ratio of the execution time 

required for one processor performing  sequential  

computations to solve a problem  of size N Tseq to the 

execution  time  required  for K  processors  performing  

parallel  computations T-par  to solve the same problem.  

Thus, it can be expressed as follows [2, 22]: 

 

Speedup (N, K) = (T seq (N, 1))/ (T par (N, K)).                      

(1) Speedup is directly dependent on the number of 

processors until a saturation point is reached. After this 

point, the addition of more processors does not 

Result in more efficient performance.  Speedup is also based 

on the best sequential program for a one-processor system, 

whereas the underlying programs for different parallel 

implementations might be different  

3.2 Efficiency 

 

Efficiency is a measure of how much speedup is provided 

by the addition of another processor and is expressed as 

follows [4, 22]: 

 

E(N, K ) = speedup(N, K )/K                               (2) 

According  to  this  relation,  the  efficiency is inversely  

correlated with  the 

Number of processors [4]. 

 

3.3 Amdahl's Law 

 

The reduction in efficiency that occurs with an increasing 

number of processors is related to the limit of parallel 

performance.  After a specific threshold number of 

processors, the addition of more processors cannot offer 

further improvement in performance and consequently 

results in performance degradation because of the reduction 

in the time saved by additional task division and the increase 

in communication overheads.  Therefore, Amdahl's law is an 

efficient method of assessing the effectiveness of a parallel 

program for a given problem.  The speedup of a parallel 

program is expressed as follows [4, 22]: 

 

Speedup (N, K) = 1/(s + p/n) < 1/s                               (3) 

 

Where p represents the fraction of parallel code and s is 

equal to 1-p and represents the fraction of serial code. Thus, 

the maximum possible speedup cannot be more than one 

second [4] 

 

4   Experiments 

4.1 Hardware and Software Requirements 

The design stage of this study  was conducted  on a laptop  
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(Intel(R) Core(TM) i7-5500U CPU @2.40 GHz, hyper-

threaded; 2 threads per core, with a total  of two cores and  

four threads), running  the  Windows  10 operating  system.  

The Java programming language was used for 

implementation, in combination with the Net Beans IDE 8.2 

software. 

 

4.2 Experimental Stages 

 

In the current study, a network with a 4x4 2D mesh 

topology was deployed; in which each node had unique xy 

coordinates described by the following four arrays: 

 

   X1[] = 1, 0, 2, 2, 0, 3, 2, 1; 

y1 [] = 1, 2, 1, 0, 1, 3, 2, 0; 

X2[] = 2, 1, 3, 3, 1, 2, 1, 2; 

y2[] = 2,3,1,2,2,3,1,1; . 

 

A random function was used to generate data packets.  An 

XY routing algorithm was used to determine the route that 

each packet should follow. The Java language has no global 

concept dictating that each variable should belong to a 

specific class or method.  Thus, access to shared data should 

be explicitly managed among threads because they share 

several variables in the SMP architecture. This problem was 

solved by declaring a specific public class including 

variables that must be shared.  This declared  class must,  in 

turn,  be accessed  by other  program  classes, which  may  

require  the  exchange  of data values among threads. 

 

Shared  data  can  have  a  position  class  (x,  y),  whereas  

private  data  files are  generated randomly.  Thus, four 

threads were created in this study, and each acted as a 

sender.  Each sender took a text file as input and read the 

data, which contained the header source, destination 

position, and data packet. The following points must be 

considered when comparing the performance of different 

versions of a program, such as sequential and parallel 

versions: 

 

The  programs  must  be executed  on the  same computer 

All parallel  computer  processors must possess the same 

hardware characteristics, such as clock speed The same key 

algorithm  must  be incorporated into both  programs 

 

The  main  factor  that affects a programs  performance  is 

its run  time,  regardless  of other  algorithm and  hardware 

factors.  The  run  time  (T)  of any program  is the  time  

required  by  that program  to  compute  an  answer  to  a 

problem.  This  value depends  on the  number  of 

processors  (K)  and  the  problem  size (N),  which  is 

defined  as  the  number  of computations required  to 

determine the result.  Thus, T is a function of both K and N: 

T (N, K). There- fore, all programs were created by 

preparing various input datasets covering a range of problem 

sizes N. The smallest problem size such that Tseq (N, 1)60 

seconds was then selected.  This amount of time was 

considered sufficient to compensate for the warm-up 

overhead time consumed by the JVM. 

 

The sequential programming implementation was executed 

ten times for each input dataset. The  shortest run  time  was 

subsequently determined on the  basis  of the  measured  

value  of Tseq  (N,1),  following a Gaussian  distribution.  

This procedure resulted in a number of packets equal to 

350000 for each dataset. The parallel programming 

implementation was also executed ten times for each value 

of K, from 2 to the maximum number of available process- 

sores. Finally,  both the speedup and efficiency were plotted 

against  the number of processors  (K),  and the  run  time  

(T)  was plotted against  the  problem  size (N) for each 

value of K. Amdahl's  law was then  computed. 

 
5 Results and Analysis 

For the sequential programming implementation, the 

achieved Tseq (N, 1) was equal to 69.057 seconds.  All 

threads started at the same time in the parallel programming 

implementation.  However, the results revealed a dramatic 

decrease in the execution time for three threads. 

 

Table 1 Measured metrics for different numbers of threads 

in the parallel programming implementation 
 

Tseq Tpar Degree  of parallelism Speedup Efficiency Amdahl's Speedup Amdahl's Efficiency 

69 68 2 1.01 1.01 1.62 0.81 
69 44 3 1.53 0.76 2.05 0.68 

69 42 4 1.62 0.81 2.37 0.59 

 

 
 

 
Figure 6: Speedup versus the degree of parallelism 

 
The degree of parallelism represents the number of cores, 

which was equal to two in this study.  The  achieved  Tpar  

value for each thread was as follows: Tpar  

(core1,thread1)=70.066 seconds, Tpar  

(core1,thread2)=68.112  seconds, Tpar  

(core2,thread1)=44.869 seconds  and  Tpar  

(core2,thread2)=42.412 sec- nods. The highest run time, 

which was associated with the first thread in the first core, 

was used to measure the parallel overhead.  The computed 

speedup and  efficiency values  of the  parallel  

programming implementation  with  the addition  of the 

other  three  threads are presented in the table  1. 

 

The following figures illustrate how the speedup and 

efficiency are related to the degree parallelism.  The selected 

number of packets was 350000 because this value was the 

smallest number for which a sequential time of Tseq (N, 1) 

mailto:@2.40
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=60 seconds. Was achieved. 

As seen from the figure 6, there is a direct relationship 

between the degree of parallelism and the resultant speedup 

value. 

 

Moreover, the figure 7 illustrates that when the degree of 

parallelism is equal to two, the resultant efficiency is one, 

because the parallel time is similar to the sequential time.  

However, this cannot be considered the optimal case. The 

figures 8 and 9 illustrate how the Amdahl speedup and 

efficiency are related to the degree of parallelism. 

 
 

 
 

 
Figure 7: Efficiency versus the degree of parallelism 

 

 

 
 

 
Figure 8: Amdahl Speedup versus the degree of parallelism. 

 

As seen  from  figure  8, there  is a  direct  linear  

relationship between  the Amdahl  speedup  and the degree 

of parallelism. Furthermore, figure 9 demonstrates that there 

is an inverse linear relation- ship between the Amdahl 

efficiency and the degree of parallelism. The  scalability  is 

defined  as the  number  of packets  at  which  the  system 

failed (3500000) divided  by the  number  of packets  used 

in the  initial  experiments  (350000), which is equal to 10. 

As shown in figure 10, as the number of packets increases, 

the run time 

 

 

 
 

Figure 9: Amdahl efficiency versus the degree of 

parallelism 

 

 

 
 

Figure 10: Scalability: time versus number of packets 

 

 

6 Conclusions and Future Work 
 

This  paper  presents  the  application of XY deterministic 

routing  in an  SMP system  based  on a 4x4 2D mesh  

topology  network  with  two cores and  two threads per 

core. A public class including variables to be shared was 

declared to explicitly manage access to the shared data 

among the threads. Both sequential and parallel 

programming implementations were considered, each was 

executed ten times for each prepared input dataset. The run 

time of a program, which is a function of the number of 

processors and the problem size, has a major effect on 

performance.  According to the findings of this study, the 

sequential time that must be achieved to compensate 

 

for the  warm-up  overhead  time  consumed  by the  JVM  

should be equal to or greater  than  60 seconds.  Here, the  

achieved  Tseq  (N,1)  was 69.057 seconds, whereas  the  

achieved  Tpar  values  for threads 1 and  2 of the  first core 

and threads 1 and  2 of the  second  core were 70.066, 

68.112, 44.869, and  42.412 seconds,  respectively.  The 

highest run time, which was associated with the first thread 

of the first core, was used to measure the parallel overhead. 

 

This  parallel  programming performance  evaluation 

revealed  that speedup increases  with  an  increasing  degree  

of parallelism,   whereas  efficiency is inversely correlated 

with the degree of parallelism.  This study may be enhanced 
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in the future by choosing the source and destination nodes 

randomly and by scaling the mesh size. 
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