
www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 6 Issue 6 June 2017, Page No. 21663-21678 

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i6.19 

  

 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678  Page 21663 
 

Mining High Utility Patterns in One Phase without Generating Candidates 

Rashmi Reddy M, Kavitha Juilet  

Asst.Prof,RYMEC 

Email Id: Rashmireddy66@gmail.com,Kavi.sayu@gmail.com 

ABSTRACT 

Utility mining is a new development of data mining technology. Among utility mining problems, utility 

mining with the itemset share framework is a hard one as no anti-monotonicity property holds with the 

interestingness measure. Prior works on this problem all employ a two-phase, candidate generation approach 

with one exception that is however inefficient and not scalable with large databases. The two-phase 

approach suffers from scalability issue due to the huge number of candidates. This paper proposes a novel 

algorithm that finds high utility patterns in a single phase without generating candidates. The novelties lie in 

a high utility pattern growth approach, a lookahead strategy, and a linear data structure. Concretely, our 

pattern growth approach is to search a reverse  set enumeration tree and to prune search space by utility 

upper bounding. We also look ahead to identify high utility patterns without enumeration by a closure 

property and a singleton property. Our linear data structure enables us to compute a tight bound for powerful 

pruning and to directly identify high utility patterns in an efficient and scalable way, which targets the root 

cause with prior algorithms. Extensive experiments on sparse and dense, synthetic and real world data 

suggest that our algorithm is up to 1 to 3 orders of magnitude more efficient and is more scalable than the 

state-of-the-art algorithm 

Index Terms—Data mining, utility mining, high 

utility patterns, frequent patterns, pattern mining 

1 INTRODUCTION 

FINDING interesting patterns has been an 

important data mining task, and has a variety of 

applications, for exam-ple, genome analysis, 

condition monitoring, cross marketing, and 

inventory prediction, where interestingness 

measures [17], [36], [41] play an important role. 

With frequent pattern mining [2], [3], [18], [43], a 

pattern is regarded as interesting if its occurrence 

frequency exceeds a user-specified threshold. For 

example, mining frequent patterns from a 

shopping transaction database refers to the 

discovery of sets of products that are frequently 

purchased together by customers. However, a 

user‘s interest may relate to many factors that are 

not necessarily expressed in terms of the 

occurrence frequency. For example, a supermarket 

manager may be interested in discovering 

combinations of products with high profits or 

revenues, which relates to the unit profits and 

purchased quantities of products that are not 

considered in frequent pattern mining. 

http://www.ijecs.in/


DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21664 

Utility mining [41] emerged recently to address 

the limitation of frequent pattern mining by 

considering the user‘s expectation or goal as well 

as the raw data. Utility mining with the itemset 

share framework [19], [39], [40], for example, 

discovering combinations of products with high 

profits or revenues, is much harder than other 

categories of utility mining problems, for 

example, weighted itemset mining [10], [25], [30] 

and objective-oriented utility-based association 

mining [11], [35]. Concretely, the interestingness 

measures in the latter categories observe an anti-

monotonic-ity property, that is, a superset of an 

uninteresting pattern is also uninteresting. Such a 

property can be employed in pruning search 

space, which is also the foundation of all frequent 

pattern mining algorithms [3]. Unfortunately, the 

anti-monotonicity property does not apply to 

utility mining with the itemset share framework 

[39], [40]. Therefore, utility mining with the 

itemset share framework is more challenging than 

the other categories of utility mining as well as 

frequent pattern mining. 

Most of the prior utility mining algorithms with 

the item-set share framework [4], [15], [24], [29], 

[38], [39] adopt a two-phase, candidate generation 

approach, that is, first find candidates of high 

utility patterns in the first phase, and then scan the 

raw data one more time to identify high utility 

patterns from the candidates in the second phase. 

To address the challenge, this paper proposes a 

new algorithm, d
2
HUP, for utility mining with the 

itemset share framework, which employs several 

techniques proposed for mining frequent patterns, 

including exploring a regular set enumeration in a 

reverse lexicographic order [43] and heuristics for 

ordering items [18], [43]. Our contributions are as 

follows: 

A high utility pattern growth approach is 

proposed, which we argue is one without 

candidate generation because while the two-phase, 

candidate generation approach employed by prior 

algorithms first generates high TWU patterns 

(candidates) with TWU being an interim, anti-

monotone measure and then identifies high utility 

patterns from high TWU patterns, our approach 

directly discovers high utility patterns in a single 

phase without generating high TWU patterns 

(candidates). The strength of our approach comes 

from powerful pruning techniques based on tight 

upper bounds on utilities.  

A lookahead strategy is incorporated with our 

approach, which tries to identify high utility 

patterns earlier without recursive enumeration. 

Such a strategy is based on a closure property and 

a singleton property, enhancesthe efficiency in 

dealing with dense data. The rest of the paper is 

organized as follows. Section 2 defines the utility 

mining problem. Section 3 surveys related works. 

Section 4 proposes our pattern growth approach. 

Section 5 presents our algorithm. Section 6 

discusses the data structure and implementation. 

Section 7 experimen-tally evaluates our algorithm. 

Section 8 analyzes individual techniques. Section 

9 concludes the paper. 

 

2: UTILITY MINING PROBLEM 

This section defines the utility mining problem 

with the itemset share framework that we study. 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21665 

Let I be the universe of items. Let D be a database 

of transactions{t1,...tn}, where each transaction 

ti∩I. Each item in a transaction is assigned a non-

zero share. Each distinct item has a weight 

independent of any transaction,given by an 

eXternal Utility Table(XUT).The research 

problem of finding all high utility patterns is 

formally defined as follows. 

Definition 1: The internal utility of an item i in a 

transaction t, denoted by iu(i,t), is the share of i in 

t. The external utility of an item i, denoted by 

eu(i), is the weight of i independent of any 

transaction. The utility of an item i in a transaction 

t, denoted by u(i,t),is the function f of iu(i,t) and 

eu(i) ,that is,u(i,t)=f(iu(i,t),eu(i)).We assume that 

the range of f is non-negative, that is,u(i,t)≥0. 

 

TABLE 1 

Database D and eXternal Utility Table XUT 

 

 

 

 

 

Running example. Consider the data of a 

supermarket. Table 1a lists the quantity (share) of 

each product (item) in each shopping transaction 

where I = {a, b, c, d, e, f, g} and D = {t1, t2, t3, t4, 

t5}, and Table 1b lists the price (weight) of each 

product. For transaction t2 = {a, b, c, f}, we have 

iu(a, t2)= 6, iu(b, t2) = 2, iu(c, t2) = 2, iu(f, t2) = 5, 

eu(a) = 1, eu(b) = 3, eu(c) = 5, and eu(f) = 1. Here, 

u(i, t) is the product of iu(i, t) and eu(i). Thus, u(a, 

t2) = 6, u(b, t2) = 6, u(c; t2) = 10, u(f, t2Þ) = 5, and 

so on. 

Definition 2: (a) A transaction t contains a pattern 

X if X is a subset of t, that is, X ≥ t, which means 

that every item i in X has a non-zero share in t, 

that is, iu(i,t) ≠ 0. (b) The transaction set of a 

pattern X, denoted by TS(X), is the set of trans-

actions that contain X. The number of transactions 

in TS(X) is the support of X, denoted by s(X). 

Definition 3: (a) For a pattern X contained in a 

transaction t, that is, X ≤t, the utility of X in t, 

denoted by u(X,t) , is the sum of the utility of 

every constituent item of X in t, that is, 

U(X, t) =∑u ( i , t). 

(b) The utility of X, denoted by u(X), is the sum 

of the utility of X in every transaction containing 

X, that is, 

u(X)=∑u(X,t)=∑ u(i,t). 

Definition 4: A pattern X is a high utility pattern, 

abbreviated as HUP, if the utility of X is no less 

than a user-defined mini-mum utility threshold, 

denoted by minU. High utility pat-tern mining is 

to discover all high utility patterns, that is, 

HUP set = {X|X≤ I, u(X)≥ min U}. 

In the running example, the manager wants to 

know every combination of products with sales 

revenue no less than 30, that is, minU = 30. Since 

TS({a,b}), =  {t2, t3, t4, t5},we have u({a; b})= 

u({a, b} t2) + u({a,b},t3 ) + u({a,b}, t4)  ({a,b},t5) 

= u(a, t2) +  u(b, t2)  + u(a, t3)  + u(b, t3) +  u(a, t4) + 

u(b, t4 ) + u(a, t5) + u(b, t5) + = 27. Similarly, u({a, 

c})= 28, u({b,c})= 24, u({a,b,c})= 31, 

u({a,b,c,d})= 13 and so on. Therefore, HUPset = { 

{a, b, c}, {a, b, d}, {a, d, e}, {a, b, d, e}, {b, d, e}, 

{d, e}, {a, b, c, d, e, g} }.An observation is that 

the utilities of patterns are neither anti-monotone 

nor monoto. 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21666 

 

3 : RELATED WORKS 

High utility pattern mining problem is closely 

related to fre-quent pattern mining, including 

constraint-based mining. In this section, we 

briefly review prior works both on fre-quent 

pattern mining and on utility mining, and discuss 

how our work connects to and differs from the 

prior works. 

 

3.1:Frequent Pattern Mining  

Frequent pattern mining was first proposed by 

Agrawal et al. [2], which is to discover all patterns 

whose supports are no less than a user-defined 

minimum support threshold. Fre-quent pattern 

mining employs the anti-monotonicity property: 

the support of a superset of a pattern is no more 

than the support of the pattern. Algorithms for 

mining frequent patterns as well as algorithms for 

mining high utility pat-terns fall into three 

categories, breadth-first search, depth-first search, 

and hybrid search.  

This paper adopts a depth-first strategy since 

breadth-first search is typically more memory-

intensive and more likely to exhaust main memory 

and thus slower. Concretely, our algorithm depth-

first searches a reverse set enumeration tree, 

which can be thought of as exploring a regular set 

enumeration tree [1], [18], [33] right-to-left in a 

reverse lexicographic order [43]. While Eclat [43] 

also explores such an order, our algorithm is the 

first fully exploiting the benefit in mining high 

utility patterns. 

3.2:Constraint-Based Mining  

Constraint-based mining is a milestone in 

evolving from frequent pattern mining to utility 

mining. Works on this area mainly focus on how 

to push constraints into frequent pat-tern mining 

algorithms. 

Pei et al. [32] discussed constraints that are similar 

to (normalized) weighted supports [10], and first 

observed an interesting property, called 

convertible antimonotonicity, by arranging the 

items in weight-descending order. The authors 

demonstrated how to push them into the FP-

growth algorithm [18] . 

Bucila et al. [9] considered mining patterns that 

satisfy a conjunction of anti-monotone and 

monotone constraints, and proposed an algorithm, 

DualMiner, that efficiently prunes its search space 

using both anti-monotone and monotone 

constraints.Bonchi et al. [6] introduced the 

ExAnte property which states that any transaction 

that does not satisfy the given monotone 

constraint can be removed from the input data-

base, and integrated the property with Apriori-

style algo-rithms. Bonchi and Goethals [7] applied 

the ExAnte property with the FP-growth 

algorithm. Bonchi and Lucchese [8] gen-eralized 

the data reduction technique to a unified 

framework. 

De Raedt et al. [14] investigated how standard 

constraint programming techniques can be applied 

to constraint-based mining problems with 

constraints that are monotone, anti-monotone, and 

convertible.Bayardo and Agrawal [5], and 

Morishita and Sese [31] proposed techniques of 

pruning based on upper bounds when the 

constraint is neither monotone, anti-monotone, nor 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21667 

convertible. This paper also employs such a 

standard technique. Our contribution is to develop 

tight upper bounds on the utility. 

3.3 Some Categories of Utility Mining: 

Interestingness measures can be classified as 

objective measures, subjective measures, and 

semantic measures [17]. Objective measures [20], 

[37], such as support or confidence, are based 

only on data; Subjective measures [13], [36], such 

as unexpectedness or novelty, take into account 

the user‘s domain knowledge; Semantic measures 

[41], also known as utilities, consider the data as 

well as the user‘s expectation. Below, we discuss 

three categories in detail. Yao et al. [39], [40] 

proposed a utility measure equivalent to 

Definition 3 that instantiates this framework. This 

paper falls into that category. 

Cai et al. [10] proposed weighted itemset mining. 

Lin et al. [25] proposed value added association 

mining. Both works assigns each item a weight 

representing its impor-tance, which results in 

(normalized) weighted supports, also known as 

horizontal weights. Lu et al. [30] proposed to 

assign a weight to each transaction representing 

the significance of the transaction, also known as 

vertical weights. 

Shen et al. [35] and Chan et al. [11] proposed 

objective oriented utility-based association mining 

that explicitly models associations of a specific 

form ―Pattern ! Objective‖ where Pattern is a set 

of nonobjective-attribute value pairs, and 

Objective is a logic expression asserting 

objective-attributes with each objective-attribute 

value satisfying (violating) Objective assigned a 

positive (negative) utility. 

3.4:Algorithm With the Itemset Share 

Framework: 

As the utility measure with the itemset share 

framework is neither anti-monotone, monotone, 

nor convertible, most prior algorithms resort to an 

interim measure, (TWU), pro-posed by Liu et al. 

[29], and adopt a two-phase, candidate generation 

approach. 

Transaction weighted utilization of a pattern is the 

sum of the transaction utilities of all the 

transactions containing the pattern. For the 

running example, TWU({a, b}) = 88, the sum of 

the utilities of transactions t2, t3, t4, and t5, TWU 

({a, b, c})= 57, that of t2 and t3, and TWU({a, b, c, 

d})= 30, that of t3. Clearly, TWU is anti-

monotone. 

TWU or its variants is employed by most prior 

algorithms, which first invoke either Apriori [3] or 

FP-growth [18] to find high TWU patterns 

(candidates), and then scan the raw data once 

more to identify high utility patterns from the 

candidates. An exception is that Yao et al. [40], 

[41]presented an upper bound property, that is, the 

utility of a size-k pattern is no more than the 

average utility of its size-(k-1) subsets, which is 

however looser than the TWU property. 

Liu et al. [29] proposed the anti-monotonicity 

property with TWU, based on which they 

developed the TwoPhase algorithm by adapting 

Apriori [3]. 

Lan et al. [23] proposed an projection-based 

algorithm, based on the TWU model [29], that 

speeds up the execution by an indexing 

mechanism. 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21668 

Erwin et al. [15] proposed the CTU-PROL 

algorithm for mining high utility patterns that 

integrates the TWU anti-monotonicity property 

and pattern growth approach [18] in the first 

phase, which is facilitated by a compact utility 

pat-tern tree structure, CUP-tree. 

Tseng et al. [38] proposed the latest, FP-growth 

based algorithm, UP-Growth, which uses an UP-

tree to maintain the revised TWU information, 

improves the TWU property based pruning, and 

thus generates fewer candidates in the first phase. 

Yun et al. [42] and Dawar and Goyal [12] 

improved UP-Growth [38] by pruning more 

candidates, while the inherent issue of the two-

phase approach remains. 

Fournier-Viger et al. [16] improved HUIMiner 

[28] by pre-computing the TWUs of pairs of items 

to reduce the number of join operations. 

Krishnamoorthy [22] improved HUIMiner [28] by 

a partition strategy. Their improvement is within a 

factor of 2 to 6, while our algorithm is up to 45 

times faster than HUIMiner [28] on the same 

databases .This paper has enhanced our 

preliminary work [27] with efficient computation 

by pseudo projection, and with optimizations by  

implementation. Moreover, comparative 

experiments with state-of-art algorithms and 

experimental anatomy of our individual 

techniques have been performed. 

 

 

 

 

 

 

 

Fig.1. Reverse set enumeration tree where each 

node is numbered in the order of depth-first 

search. 

4:HIGH UTILITY PATTERN 

GROWTH 

The general approach to mining high utility 

pattern is to enumerate each subset X of I, and test 

if X has a utility over the threshold. However, an 

exhaustive enumeration is infeasible due to the 

huge number of subsets of I, and hence it is 

critical to employ strong pruning techniques. 

This section proposes a new approach to the 

problem, that is, a high utility pattern growth 

approach. We first introduce a reverse set 

enumeration tree as a way to enumerate pat-terns, 

and then propose strong  pruning techniques that 

drastically reduces the number of patterns to be 

enumerated, which lays the theoretical foundation 

for our algorithm. 

4.1 GROWING REVERSE SET 

ENUMERATION TREE 

Our pattern growth approach can be thought of as 

growing or searching a reverse set enumeration 

tree in a depth-first manner as shown in Fig. 1. 

The construction of the reverse set enumeration 

tree follows an imposed ordering Ω of items. 

Concretely, the root is labelled by no item, each 

node N other than the root is labelled by an item, 

denoted by item(N), the path from N to the root 

represents a pattern, denoted by pat(N), and the 

child nodes of N are labelled by items listed 

before item(N) in Ω.  



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21669 

Definition 5: The imposed ordering of items, 

denoted by Ω, is a pre-determined, ordered 

sequence of all the items in I. Accordingly, for 

items i and j, i α j denotes that i is listed before 

j; i _α X denotes that i α j for every j € X, and W α 

X denotes that i α X for every i € W, in 

accordance with Ω. 

The imposed ordering Ω of items can be 

determined by a heuristic proposed by [43]. Given 

Ω, a pattern can also be represented as an ordered 

sequence. For brevity, we use the set notation, for 

example, {a, b, c}, in place of the sequence 

notation, for example, < a, b, c > . For example in 

Fig. 1, the imposed ordering is the lexicographic 

order, i.e., Ω={a, b, c, d, e, f, g}, then a α b, a α c, 

a α {b, c}, {a, b}α {c, d}, and so on. 

Most importantly, by such a construction, the 

transaction set supporting the enumerated pattern 

can be determined by a pseudo projection, for 

example, TS({a,b}) can be pro-jected from 

TS({b}) without materialization, and thus we can 

compute the utility of the pattern and a utility 

upper bound used for pruning in an efficient and 

scalable way. 

 

4.2PRUNING BY UTILITY UPPER 

BOUNDING  

It is computationally infeasible to enumerate all 

patterns, and a standard technique is to prune the 

search space. However, for utility mining with the 

itemset share framework, no anti-monotonicity 

property can be employed for pruning. An 

alternative is pruning based on utility upper 

bound-ing [5], [31]. 

With our pattern growth approach, it is to estimate 

an upper bound on utilitie nodes in the subtree 

rooted at the node currently being explored, when 

growing the reverse set enumeration tree. subtree 

can be pruned as all patterns in the subtree are not 

high utility patterns. 

Definition 6: Given an ordering Ω, a pattern Y is 

a prefix extension of a pattern X, if X is a suffix of 

Y , that is if Y = W ∩ X for some W with W α X 

in Ω. 

Definition 7: Given an ordering Ω, a pattern Y is 

the full prefix extension of a pattern X w.r.t. a 

transaction t containing X, denoted as Y = fpe(X, 

t), if Y is a prefix extension of X derived by 

adding exactly all the items in t that are listed 

before X in Ω, that is, if Y = W ∩ X with 

W={i|i€t∩iαX∩X≤t}. 

For the running example, the full prefix 

extensions of {c} w.r.t. t1 and t2 are fpe({c}, t1) = 

{a,c} and fpe({c}, t2) = {a, b, c} respectively. 

Theorem 1 (Basic upper bounds). For a pattern 

X, the sum of the utility of the full prefix 

extension of X w.r.t. each transaction in TS(X), 

denoted by uBfpe(X), is no less than the utility of 

any prefix extension Y of X, that is, 

 

Proof. The premise, Y is a prefix extension of X, 

means X ≤ Y , and thus has two implications. 

First, TS(Y) _TS(X).Second, ≦t € TS(Y ), Y 

≤fpe(X, t). As the utility function is nonnegative, 

we haveminU, and so on. Thus, Nodes 1 and 2 

      uBfpe(X)=∑ u(fpe(X, t), t)≥u(Y ). (1) 

   



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21670 

(with Node 3) are pruned, and Nodes 4, 8, 16, 32, 

and 64 will be visited. 

5 Mining Patterns In One Phase            

Without Candidate Generation 

This  section  presents  our  algorithm,  d
2
HUP,  

namely Direct Discovery of High Utility Patterns, 

which is an   reduces the number of patterns to be 

enumerated, and a novel data structure that 

enables efficient computation of utilitiesw and 

upper bounds which will be detailed in section 

6.1. 

Moreover ,our algorithm lists items in the 

descending order of uBitem based on a heuristic 

proposed by[43].The pseudo code of d2HUP is 

shown in Algorithm 1,which works as follows.  

 

 

5.1:Revisit the Running Example  

 

The execution process of d
2
HUP can be thought 

of as searching a pruned version of a reverse set 

enumeration tree, which is shown in Fig. 2 for our 

running example where each node N is labelled 

with item(N), s(pat(N)), and u(pat(N)). 

Such a summary table is also attached to N in Fig. 

2. 

When visiting Node 4, the utilities and bounds for 

i €{a,b} are already maintained in TS({c}) which 

is derived from TS({}) by a pseudo projection 

presented in Section 6.3.  

It turns out that {c} represented by Node 4 is not a 

high util-ity pattern, neither the closure property 

nor the singleton property holds, and Node 5 is 

pruned as uBfpe({a, c})<minU. Subsequently, DFS 

will recursively visits Node 6 where the closure 

property holds and hence {a, b, c} is out-put as a 

high utility pattern without visiting Node 7. 

The remaining nodes that will be explored in the 

order of depth-first search are Node  

8, Node 10 where the closure property holds, 

Node 16, Node 24 where the closure prop-erty 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21671 

also holds, Node 32, and Node 64 where the 

singleton property holds and hence {a, b, c, d, e, 

g} is identified as the only high utility pattern 

without searching the subtree under Node 64. 

In short, d
2
HUP only enumerates Nodes 0, 4, 6, 8, 

10, 16, 24, 32, and 64, a total of nine nodes, in 

finding all the high utility patterns, while the 

entire reverse set enumeration tree consists of 2
7
 

¼ 128 nodes. 

6:EFFICIENT IMPLEMENTATION BY 

REPRESENTING TRANSACTIONS 

SCALABLY 

When growing the reverse set enumeration tree, 

the d
2
HUP algorithm needs to determine 

TS(pat(N)) for each node N being visited for 

computing utilities and utility upper bounds for 

prefix extensions of pat(N) as shown at line 1 and 

line 13 in Algorithm 1. How to represent and 

maintain TS(pat(N)) together with related utilities 

and upper bounds is the key to the scalability and 

efficiency of the proposed algorithm. 

This section introduces a linear data structure, 

CAUL, namely a Chain of Accurate Utility Lists, 

which is not tree-based, nor graph-based, but 

simply consists of linear lists. CAUL maintains 

the original utility information for each 

enumerated pattern in a way that enables us to 

compute the utility and to estimate tight utility 

upper bounds efficiently. 

6.1:Scalable Representation of Utility 

Information 

For the pattern, pat(N), represented by a reverse 

set enumeration tree node N currently visited by a 

depth-first search, we use CAUL to maintain the 

utility information in the transaction set 

TS(pat(N)) of the node N, denoted by 

TScaul(pat(N)), which is necessary for computing 

the utilities and upper bounds of its prefix 

extensions. TScaul(pat(N)) consists of two parts, 

utility lists and a summary table. 

For each transaction t € TS(pat(N)), there is a 

utility list holding the utilities of all the items in t 

relevant in growing prefix extensions of pat(N). 

That is, In addition, an extra element is appended 

to the utility list to maintain u(pat(N), t). 

The summary table maintains an entry for each 

distinct item j relevant in growing prefix 

extensions of pat(N), which is denoted as a 

quintuple, summary[j]& = (s[j];u[j]; uBitem[j]; 

uBfpe[j]; link[j]), as described in the following. 

Summary 

entries are also arranged in the imposed ordering 

Ω . 

TScaul({}) is built by scanning the database d and 

the external utility table XUT, filtering out 

globally irrelevant items ,and computing 

s[j],u[j],uBitem[j],and uB 

For example, Fig 3 shows TScaul({}) for Node 0 

in Figs1 and 2. The first list representation t1 with 

its first element storing item a and u(a,t1), its 

second element storing item c and u(c,t1)=5, and 

so on .In any of the five lists, there is no extra 

element to hold the utility of{} in the transaction 

since it is 0. The occurrences of item a in all the 

five lists are threaded by link[a] of the first 

summary entry. The other components , s[a], 

u[a],uBitem[a],and uBfpe[a],of the first summary 

entry keep s({a}),u({a}),uBitem(a,{}),and 

uBitem({a}) respectively 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21672 

 

Fig. 3.TScaulðfgÞ: CAUL representing transaction 

set TSðfgÞ, derived from D in Table 1, for the 

null root of the reverse set enumeration trees 

in Figs. 1 and 2.  

6.2: Approach Generating No Candidates 

Enabled 

One difference between our CAUL and the data 

structures by prior algorithm 

[4],[15],[24],[29],[38] is that CAUL keeps the 

original utility information for each transaction, 

while the latter keep the utility estimate, TWU, 

instead. This is the root cause why we are able to 

mine high utility patterns without generating 

candidates ,while the prior algorithms have to take 

a two-phase, candidate generation approach. 

6.3:  Computation by Pseudo Projection 

For any node N and its parent node P with pat(N) 

=(i) ∩ pat(P) on the reverse set enumeration tree, 

TScaul(pat(N)) can be efficiently computed by a 

pseudo projection [26], where the pseudo 

TScaul(pat(N)) shares the same memory space with 

TScaul(pat(P). 

projection [26], where the pseudo TScaul(pat(N)) 

shares the same memory space with TScaul(pat(P). 

The utility lists of the pseudo TScaul(pat(N)) are 

delimited by following link[i] in TScaul(pat(P)), 

and the summary entry for each item j α i of the 

pseudo TScaul(pat(N)) is computed by scanning 

each delimited utility list. 

 

 

6.4 :MATERIALIZATION VERSUS PSEUDO 

PROJECTION 

   We may only keep TScaul({}) in memory and get 

TScaul for all patterns 

by recursive pseudo projection, which is 

 

 

 

 

 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21673 

Fig. 4.Projections from TScaulðfgÞ. 

The most scalable way to maintain original utility 

information and is the core of our approach. 

Furthermore, we can optimize our approach by 

considering two trade-offs. 

Maximum number of rounds g for irrelevant item 

filtering. The body of the Pseudo Project 

algorithm iterates multiple rounds to filter out 

irrelevant items. We introduce a parameter, g, to 

make a tradeoff between the benefit of mpruning 

by tightening upper bounds and the additional 

computational overheaiterative irrelevant item 

filter-ing. When no more irrelevant items are 

identified by Corol-lary 2 or a maximum number 

of rounds has been reached, the iteration 

terminates. 

Materialization threshold f for space-time 

tradeoff. We introduce a materialization threshold 

f to make a tradeoff between the scalability 

resulted from representing TScaul(pat(N)) by 

pseudo projection and the efficiency resulted from 

leaving out irrelevant items by materializing 

TScaul(pat(N)). When the percentage of relevant 

items is below the threshold, a materialized copy 

will be made by copying the pseudo TScaul(pat(N)) 

to memory space separate from TScaul(pat))) 

 

For example, Fig. 4c shows the materialized 

TScaul({c}) where the summary entries are copied 

from 4a, the first list has an element for the only 

relevant item, a, in t1, and a special element for 

u({c},t1). As the sets  relevant items are identical, 

t2 and t3 are merged into the second list. 

 

7:COMPARATIVE EVALUATION 

We evaluate our d
2
HUP algorithm by comparing 

with the state-of-the-art algorithms, TwoPhase 

[29], IHUPTWU [4], UP-Growth [38], and 

HUIMiner [28]. The code of 

TABLE 2 

Characteristics of Six Datasets 

Dataset Jtj jIj jDj Type 

T10I6D1M 10 : 33 1,000 933;493 mixed 

WebView-

1 2:5 : 267 497 59;602 sparse 

Chess 37 : 37 76 3;197 dense 

Chain-store 7:2 : 170 46,086 1;112;949 sparse 

T20I6D1M 20 : 49 1,000 999;287 mixed 

Foodmart 4:8 : 27 1,559 34;015 dense 

     

 

TwoPhase [29] and HUIMiner [28] were provided 

by the original authors. Due to unavailability, we 

implemented an improved version of IHUPTWU [4] 

and an improved version of UP-Growth [38], 

namely IHUP
þ

TWU and UP
þ
UPG respectively. The 

latter employ a search tree to compactly represent 

all candidates, facilitate fast matching between 

candidates and transactions, and improve the 

efficiency of the second phase greatly. When 

mining large databases, UP
þ
UPG is even faster than 

HUIMiner [28], and UP-Growth [38] simply did 

not report the running time of the second phase 

because it is too long [38]. 

Six datasets are used in comparative experiments. 

T10I6D1M and T20I6D1M with utility 

information are exactly the same dataset as in 

[29], and Chain-store is the same as in [4], [28], 

[29], [38]. WebView-1 and Chess contain no 

utility information originally. We generate the 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21674 

utility information by following the method in 

[29]. So do [28], [38]. Thus, Chess with utility 

information used by [28], [38] and us share the 

same features, but are not the same datasets. 

Foodmart is from the Microsoft foodmart 

database. The datasets are sum-marized by Table 

2 where the first column is the name of a dataset, 

the second (|t|) is the average and maximum 

length of transactions, the third (|I|) is the number 

of distinct items, the fourth (|D|) is the number of 

transactions, and the fifth (Type) is a rough 

categorization based on the number of high utility 

patterns to be mined, partially depending on the 

mini-mum utility threshold as in Table 3. 

The minimum utility thresholds minU(percent) in 

terms of the percentage of overall utility for each 

dataset are selected in a way that the results can be 

verified with [4], [28], [29], [38]. The experiments 

were performed on a PC with 1.80 GHz CPU and 

8 GB memory running CentOS 6.3. The parameter 

setting of g = 3 and f = 0:5 is used as the default 

for d
2
HUP unless specified otherwise, which is 

discussed in Section 8.1. 

CAUL enables tightening upper bounds iteratively 

in the mining process while the data structures by 

UP
þ
UPG, IHUP

þ
TWU , and TwoPhase cannot.  

7.1:Enumerated Patterns and Candidates 

Table3 shows the number of high utility 

patterns(hups), the maximum length utility 

patterns(ml),the numbers of patterns enumerated 

by our d2HUP algorithm and HUI-Miner 

respectively, and the numbers of candidates 

generated in the first phase by the TwoPhase 

respectively, with different datasets and varying 

minU. 

7.2:Running Time and Memory Usage  

Fig. 5 shows the running time by the five 

algorithms. For example, for T10I6D1M with 

minU¼ 0:01%, d
2
HUP takes 27 seconds, 

HUIMiner 154, UP
þ
UPG 101, IHUP

þ
TWU 109, and 

Two-Phase runs out of memory. The observations 

are as follows. 

First, d
2
HUP is up to 1 to 3 orders of magnitude 

more efficient than UP
þ
UPG, IHUP

þ
TWU , and 

TwoPhase. In particular, 

 

Fig. 5.Running time versus minU (percent). 

d
2
HUP is up to 6.6, 6.8, 7.8, 261, 472, and 1,502 

times faster than UP
þ
UPG on T20I6D1M, 

T10I6D1M, Chain-store, Web-View 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21675 

 

 

 

 

Fig. 6.Running time with varying data 

characteristic. 

for d
2
HUP is to make a materialized copy of the 

pseudo CAUL (f ¼ 1). 

Memory usage. We collect the peak memory 

usage statistics by every algorithm during its 

execution except TwoPhase as shown in Fig. 6. 

For example, for T10I6D1M with minU = 0:1%, 

the peak memory usage by d
2
HUP is 

147 MB, and that by HUIMiner, by UP
þ
UPG, and 

by IHUP
þ

TWU are 191, 153, and 154 MB 

respectively. The fol Our d
2
HUP algorithm uses 

the least amount of mem-ory because d
2
HUP uses 

CAUL that is more compact than the vertical data 

structure by HUIMiner, and d
2
HUP does not 

materialize candidates in memory while UP
þ
UPG, 

IHUP
þ
TWU , and TwoPhase do.  

 

 

Fig. 7.Peak memory usage versus minU (percent). 

Our d
2
HUP algorithm uses the least amount of 

mem-ory because d
2
HUP uses CAUL that is more 

compact than the vertical data structure by 

HUIMiner, and d
2
HUP does not materialize 

candidates in memory while UP
þ
UPG, IHUP

þ
TWU , 

and TwoPhase do.  

The memory usage by UP
þ
UPG and IHUP

þ
TWU are 

50 percent to 2 orders, and 90 percent to 2 orders 

of magnitude more than d
2
HUP respectively. 

Two-Phase uses the most, and usually runs out of 

mem-ory when minU is small.  

Comparison with Varying Data Characteristics  

7.2:Comparsion with Varying Data 

Characteristics 

We compare our d
2
HUP algorithm with the best 

prior algo-rithms, HUIMiner and UP
þ
UPG on 

varying data characteris-tics, including different 

utility distributions, changing number of items, 

different average length of transactions, and 

changing data size based on the T10I6D1M 

dataset as it is large and of a mixed type.  

First, we generate external utilities anti-

proportional to supports and proportional to 

supports, in addition to generating external 

utilities randomly. Fig. 7a shows the running time 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21676 

of the three algorithms on the respective resulting 

data-set with minU ranging from 0.1 percent 

down to 0.001 per-cent. The running time with 

external utilities anti-proportional to supports, as 

depicted by ‗(a)‘, is less than that proportional to 

supports, as depicted by ‗(p)‘, and the latter is less 

than that generated randomly. For every utility 

distribution, d
2
HUP takes much less time than 

HUIMiner andUP
þ
UPG. 

Second, we conduct a comparative experiment 

with the number of items ranging from 1K to 10K 

as shown inFig. 7b. The running time by d
2
HUP 

and by UP
þ
UPG do not change much because 

relevant items do not increase muchwith the 

increase of items. However, the running time by 

HUIMiner increases sharply with the increase of 

items. 

Third, we evaluate the effect of the transaction 

lengths by comparing results both on T10I6D1M 

and on T20I6D1M. As in Fig. 7c where the results 

with T20I6D1M are depicted by ‗(T20)‘, the 

running time increases with the average length of 

transactions since both the average length and the 

num-ber of high utility patterns also increase, so 

do the running time gaps among d
2
HUP, 

HUIMiner, and UP
þ
UPG. 

Finally, Fig. 7d shows the scalability evaluation 

result with jDj varying from 100K to 1000K. 

Clearly, d
2
HUP has better scalability than 

HUIMiner and UP
þ
UPG according to the slopes of 

the curves. 

 

8:EXPERIMENTAL ANATOMY OF 

D
2
HUP 

8.1:Analysis of Additional Pruning Techniques 

First of all, let us note that our ―basic approach‖ is 

to depth-first search the reverse set enumeration 

tree with pruning by basic upper bounding 

(Theorem 1) which is enabled by the pseudo 

projection of CAUL. In terms of the maximum 

number of rounds g for iterative irrelevant item 

filtering and the materialization threshold f, our 

―basic approach‖ corresponds to the setting of g ¼ 

1 and f ¼ 0 without lookahead. 

 

Fig. 8 Running time of d
2
HUP with varying g and 

f reports the running time with g ranging from 1 to 

6 and f ranging from 0 to 1 both with and without 

lookahead. By comparing with Fig. 5 we can find 

that our ―basic approach‖ already outperforms 

prior algorithms signifi-cantly. For example, for 

the T10I6D1M dataset (minU = 0:001%). 



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21677 

  

Fig. 9.Memory footprints of trans. representations 

Third, in terms of pruning the search space, more 

irrelevant item filtering (Corollaries 2 and 3) by 

increasing g, as depicted by ‗rec‘, and more 

CAUL materialization by increasing f, as depicted 

by ‗mat‘, are very helpful as the utility upper 

bounds become tighter, which also decreases the 

running time with sparse data, for example, for 

WebView-1. However, it comes with additional 

computational overhead and thus the running time 

does not always decrease with the increase of g 

and f, for example, for Chain-store.In short, while 

the setting of g = 1 and f = 0 with look-ahead is 

good, we recommend to use the setting of g = 3 

and f = 0:5 with lookahead as the default. 

Evaluating the Transaction Representation We 

evaluate the memory footprints of thepseudo 

CAUL and the materialized CAUL by d
2
HUP, the 

memory footprint ofthe tree based structure, UP-

tree [38]. 

Third, U-List has the largest memory footprint 

because U-List has no compression at all.Finally, 

materializing CAUL usually increases the mem-

ory footprint by a small percentage, but by a large 

percent-age for a dense dataset, like Chess. In the 

latter case, the overall memory footprint may still 

be small as a dense data-set is usually not that 

large. 

9:CONCLUSION AND FUTURE WORK 

 

This paper proposes a new algorithm, d
2
HUP, for 

utility mining with the itemset share framework, 

which finds high utility patterns without candidate 

generation. Our contributions include: 1) A linear 

data structure, CAUL, is proposed, which targets 

the root cause of the two-phase, candidate 

generation approach adopted by prior algorithms, 

that is, their data structures cannot keep the 

original utility information. 2) A high utility 

pattern growth approach is presented, which 

integrates a pattern enumeration strategy, pruning 

by utility upper bound-ing, and CAUL. This basic 

approach outperforms prior algorithms strikingly. 

3) Our approach is enhanced sig-nificantly by the 

lookahead strategy that identifies high utility 

patterns without enumeration. 

In the future, we will work on high utility 

sequential pat-tern mining, parallel and distributed 

algorithms, and their application in big data 

analytics. 

REFERENCES : 

R. Agarwal, C. Aggarwal, and V. Prasad, ―Depth 

first generation of long patterns,‖ in Proc. ACM 

SIGKDD Int. Conf. Knowl. Discov-ery Data 

Mining, 2000, pp. 108–118.  

R. Agrawal, T. Imielinski, and A. Swami, 

―Mining association rules between sets of items in 

large databases,‖ in Proc. ACM SIG-MOD Int. 

Conf. Manage. Data, 1993, pp. 207–216.  



DOI: 10.18535/ijecs/v6i6.19 
 

Rashmi Reddy M, IJECS Volume 6 Issue 6 June, 2017 Page No. 21663-21678 Page 21678 

R. Agrawal and R. Srikant, ―Fast algorithms for 

mining associa-tion rules,‖ in Proc. 20th Int. Conf. 

Very Large Databases, 1994, pp. 487–499.  

C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-

K. Lee, ―Efficient tree structures for high utility 

pattern mining in incremental data-bases,‖ IEEE 

Trans. Knowl. Data Eng., vol. 21, no. 12, pp. 

1708– 1721, Dec. 2009.  

R. Bayardo and R. Agrawal, ―Mining the most 

interesting rules,‖ in Proc. 5th ACM

 


