
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 4 Issue 11 Nov 2015, Page No. 14953-14959

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14953

Programming Paradigms in the Context of the Programming

Language

1Sonia Kumari, 2 Pratibha Yadav, 3 Kumari Seema Rani

1, 2, 3Shyama Prasad Mukherji College (For Women), University Of Delhi, India

1 soniakumari.ducs@gmail.com, 2pratibhamcadu2011@gmail.com, 3raniseemabca@gmail.com

ABSTRACT

The choice of the first programming language and the corresponding programming paradigm is critical

development of a programmer. In computer science, several programming paradigms can be recognized.

There is the huge number of programming languages introduced over the last fifty years, the key issues in

programming education remain the same and choosing appropriate programming language is still

challenging. In this paper we overview some of the most important issues relevant for programming, the

challenges in programming both in terms of programming paradigms and in terms of the programming

languages. In this paper, we have also overviewed the concept of abstract machine and operations performed

by the interpreter. Some results about the usage of programming language are also presented.

Keywords

Programming Paradigms, Programming language,

Abstract Machine, Interpreter.

1. Introduction

In the modern society, relying on information

technologies, programming education is extremely

important. It is clear that the choice of the first

programming language and the corresponding

programming paradigm is critical for later

development of an IT professional. Over the last

fifty years, there was thousands of programming

languages introduced, belonging to several

programming paradigms. However, despite the

big number of programming languages, there are

just a few truly important programming concepts

and there are not many languages that survived for

more than ten years. It is very important to detect

what are suitable features of a programming

language. It is important to consider these issues

both in terms of individual programming

languages and in terms of programming

paradigms. Over the last decades, several

programming paradigms emerged and profiled.

The most important ones are: imperative, object-

oriented, functional, and logic paradigm. In this

paper, we overview the concept of abstract

machine, interpreter and paradigms related to

programming languages. Also, we discuss the

challenges, in programming both in terms of

programming paradigms and in terms of the

programming languages.

2. Abstract Machine

An Electronic, digital computer is a physical

machine that executes algorithms which are

suitably formalized so that the machine can

understand them. Intuitively an abstract machine

is nothing more than an abstraction machine is

nothing more than abstraction of concept of a

physical computer [21].

 For actual execution, the algorithm must be

properly formalized using the constructs provided

by a programming language. In other words, the

algorithms

We want to execute must be represented using the

instructions of a programming language. This

language will be formally defined in term of a

specific syntax and semantics.

http://www.ijecs.in/

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14954

 The Syntax of a computer language is the

set of rules that defines the combinations

of symbols that are considered to be a

correctly structured document or fragment

in that language. This applies both

to programming languages, where the

document represents source code,

and mark up languages, where the

document represents data. The syntax of a

language defines its surface form.

Documents that are syntactically invalid

are said to have a syntax error.

 The Semantics means the meaning.

Computer languages, semantic processing

generally comes after syntactic processing,

but in some cases semantic processing is

necessary for complete syntactic analysis,

and these are done together

or concurrently.

3. INTERPRETER

The interpreter performs the operations that are

specific to the language it is interpreting.

However, even with the different types of

languages, it is possible to define the type of

operations and an “execution method “common to

all the interpreters.

The type of operation executed by the

interpreter and associated data structures, fall into

the following categories [22]:

 Operations for processing primitive data:

A machine, even an abstract one, runs by

executing algorithms, so it must have

operations for manipulating primitive data

items. These items can be directly

represented by a machine. For example for

physical abstract machines, used by many

programming languages, numbers (integer

or real) are almost always primitive data.

The machine directly implements the

various operations required to perform

arithmetic (addition, multiplication, etc.)

There arithmetic operations are therefore

primitive operations as far as abstract

machine is concerned.

 Operations and data structures for

controlling for controlling the sequence

of execution of operations: Operations and

structures for “sequence control” allow

controlling the execution flow of instruction

in a program. The normal sequential

execution of a program might have to be

modified when some conditions are

satisfied. The interpreter therefore makes

use of data structures (for example to hold

the next instruction to execute) which are

manipulated by specific operations that are

different from those used for data

manipulation.

 Operations for controlling data transfers:

These operations are included in order to

control how the operands and the data are to

be transferred from the memory to the

interpreter and vice versa. These operations

deal with the different store addressing

modes and the order in which operands are

to be retrieved from store. In some cases,

auxiliary data structures might be necessary

to handle data transfers. For example, some

types of machine use stacks (implemented

either in hardware or software) for this

purpose.

 Operations and data structures for

memory management :

This concerns the operations used to

allocate data and program in memory. In the

case of abstract machines that are similar to

hardware machines, storage management is

relatively simple. A program and its

associated data could be allocated in a zone

of memory at the start of execution and

remains there until the end, without much

need for memory management Abstract

machine for the common programming

languages uses more sophisticated memory

management techniques. In fact, some

construct in these languages either directly

or indirectly cause memory to be allocated

or reallocated.

4. Challenges of Programming

Acquiring and developing knowledge about

programming is a highly complex process. New

programmers have to overcome a wide range of

difficulties [11][12]. In this section we discuss

https://en.wikipedia.org/wiki/Computer_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Syntax_error
https://en.wikipedia.org/wiki/Semantics_(computer_science)
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14955

some of the goals and problems of programming

education.

 Goals, Objectives, and Outcomes

There are five overlapping domains that students

should acquire in an introductory course [1]:

 General Orientation — the capabilities and

applications of programs.

 The notional machine — an abstract model

of the computer used for executing

programs.

 Notation — the syntax and semantics of a

particular programming language.

 Structures — the structuring of basic

operations into schemas and plans.

 Pragmatics — the skills of planning,

developing, testing, debugging,

documenting etc.

Goals and objectives of a programming course can

be summarized as follows [8]:

Main goals:

– Become familiar with the fundamental

concepts of computer science.

– Develop proficiency in an engineering

problem solving and design methodology.

– Understand the importance of advanced

information technologies.

Main objectives:

– Use computers and application software as

tools to solve problems.

– Analyze, design, build and test operational

solutions.

– Acquire the foundation of algorithmic

processes.

– Learn to exploit the educational and

professional resources available on the

Internet and World Wide Web.

– Develop a framework for considering the

ethical implications of advanced.

5. Main Obstacles in Learning a Specific

Programming Language

In acquiring syntax and semantics of a particular

programming language, programmers are faced

with problems arising from the fact that the

designers of the language are domain experts that

do not pay attention about the about the influence

of the language design in the learning process

[5][6]. According to, seven principles, often

applied in the design of programming languages,

could be the source of problems to novice

programmers:

Less is more — this principle can appear in many

different forms. The most

Obvious example is in Scheme language where

exists only one data type (the list) and one

operation (evaluation of the list). While this

abstraction is very simple to explain and not

difficult for the beginner to understand, it results

in code difficult to read because of large numbers

of nested parentheses and the absence of other

structuring punctuation.

More is more — some programming languages

provide too many features. Since most of the

textbooks and compilers attempt to cover the full

language, new programmers are forced to get

informed about all of these features. For example,

C++ provides over 50 distinct operators at 17

levels of precedence, Ada9X has 68 reserved

words and over 50 predefined attributes, Modula 3

reserves over 100 keywords and some Lisp

dialects define over 500 special functions.

Grammatical traps — Syntactic synonyms (two

or more syntaxes that are available to specify a

single construct), syntactic homonyms

(syntactically the same constructs having two or

more different semantics depending on context),

And elisions (the omission of a syntactic

component) are very confusing from the new

point of view.

Hardware dependence - The programmer is

often forced to contend not only with syntactical

and semantic issues, but also with the constraints

of the underlying hardware. For example, in the

programming language C the standard int type

varies from 16 to 32 bit representations depending

on the machine and the compiler implementation.

Backwards compatibility - This is a useful

property from the experienced programmer’s

point of view, as it promotes reuse of both code

and programming skills. The novice, however, can

take no advantage of these benefits, and instead,

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14956

has to accept some counterintuitive rules

(introduced for the sake of backwards

compatibility).

Excessive cleverness -Some programming

languages aim at providing features for easier

programming based on clever support. However,

by enabling large freedom and wide ranges for

interpreting syntax rules, some of such features

rather add to confusion of novice programmers.

Sometimes, such “cleverness” is the cause of

complete misunderstanding of supposedly simple

concept.

Violation of expectations — Violations of

syntactical and semantically expectations are the

most undesirable features for the introductory

programming language. For example, in

programming language C/C++, the following code

"if (x=1 || y<10) f ... g" is syntactically correct,

although the condition involves the assignment

operator (rather than the comparison operator).

The condition is always evaluated to true

(regardless of the values of |x| and |y|) while the

value of |x| is silently reset to one.

Choosing Appropriate Programming Language

A programming language should have [5]:

 Simple usage of input/output operations,

 Readable and consistent language syntax,

 Small and orthogonal set of features,

 Clearly syntactically differentiated all

programming constructs (even if they are

similar in concept, functionality, or

implementation).

6. Programming Paradigms

In computer science, several programming

paradigms can be recognized. Moreover, the four

main problem-solving approaches, i.e.,

programming paradigms, are recognized as

fundamental [6][15]. Each of these approaches

involves a distinct way of thinking and each is

supported by a range of programming languages.

These paradigms are:

 Imperative paradigm

 Object-oriented paradigm

 Functional paradigm

 Logic paradigm.

 Imperative Programming

The imperative programming paradigm is based

on the Von Neumann architecture of computers,

introduced in 1940’s. Von Neumann architecture

is the dominant computer hardware architecture

which consists of a single sequential CPU separate

from memory, and with data piped between CPU

and memory. This is reflected in the design of t he

imperative languages, with [16]

 States — representing memory cells with

changing values,

 Sequential orders — reflecting the single

sequential CPU, and

 Assignment statements — reflecting

piping.

Imperative programs are sequences of directions

(or orders) for performing an action. Imperative

programs are characterized by sequences of

bindings (state changes) in which a name may be

bound to a value at one point in the program and

later bound to a different value. Since the order of

the bindings affects the value of expressions, an

important issue is the proper sequencing of

bindings. Therefore, imperative programming is

characterized by programming with states and

commands

Which modify these states? Imperative

programming languages provide a variety of

commands in order to structure the code and to

manipulate the states. Usually, in imperative

programming languages, a sequence of commands

can be named and the name can be used to invoke

the sequence of commands. Named sequence

Of commands is called subprogram, procedure or

function. When imperative

Programming is combined with subprograms it is

called procedural programming. Imperative

paradigm is supported by languages such as

FORTRAN (introduced in 1954), COBOL (1959),

Pascal (1970), C (1971), and Ada (1979)

 Object-Oriented Programming

The object-oriented programming is a

generalization of imperative programming.

The conceptual model of this paradigm is

developed from simulation of events. The main

underlying idea of this model is: the structure of

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14957

the simulation should reflect the environment that

is being simulated. If real world phenomena are

simulated, then there should be an object for each

entity involved in the phenomena. Object is an

entity encapsulating data and related operations.

As in the real world, objects interact—so, object-

oriented programming uses message passing to

capture interactions between objects [4].

 A programming language supporting this

concept and using objects is called object- based.

Object -oriented programming languages support

additional features, with the following most

important ones:

 Abstract data type definitions are used to

define properties of classes of objects.

 Inheritance is a mechanism that allows

definition of one abstract data type by

deriving it from an existing abstract data

type—the newly defined type inherits the

properties of the parent type.

 Inclusion polymorphism allows a variable

to refer to an object of a class or an object

of any of its derived classes.

 Dynamic binding of function calls

supports the use of polymorphic functions.

The identity of a function applied to a

polymorphic variable is resolved

dynamically based on the type of the

object referred to by the variable.

Object-oriented programming is characterized by

programming with objects, messages, and

hierarchies of objects. It is focused on generality

and reusability of the written code.

Comparing to other programming paradigms,

object-oriented programming shifts the emphasis

from data as passive elements defined by relations

(as in logic paradigm) or acted on by functions (as

in functional paradigm) or procedures (as in

imperative paradigm) to active elements

interacting with their environment.

Object-oriented paradigm is supported by

languages such as Smalltalk (1969), C++ (1983),

Java (1995), C#(2000) , Ruby(1995) ,

JavaScript(1995) , Ada (2012) , Jade (1996),

Visual Basic(1998).

Etc.

 Functional Programming

The functional programming paradigm is based on

the theory of mathematical functions, more

precisely on the lambda-calculus. It allows the

programmer to think about the problem at a higher

level of abstraction—it encourages thinking about

the nature of the problem rather than about

sequential nature of the underlying computing

engine[18][19].

A functional programming language usually has

three main sets of components:

1. Data objects — such as a list or an array.

2. Built-in functions — for manipulating the basic

data objects.

3. Functional forms — also called high-order

functions, for building new functions

(Such as composition and reduction).

Functional programming languages are called

applicative since the functions are applied to their

arguments, and non-procedural or declarative

since the definitions specify what is computed and

not how it is computed.

Functional paradigm is supported by languages

such as LISP (1958), ML (1973), Scheme (1975),

Miranda (1982), and Haskell (1987)

 Logic Programming

The logic programming paradigm is based on

first-order predicate calculus. This programming

style emphasizes the declarative description of a

problem rather

than the decomposition of the problem into an

algorithmic implementation. A logic program is a

collection of logical declarations describing the

problem to be solved. As such, logic programs are

close to specifications [17][20]. The problem

description is used by an inference engine to find

a solution. More precisely, a logic program

consists of:

 Axioms — defining facts about objects,

 Rules — defining ways for inference new

facts,

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14958

 Goal statement — defining a theorem,

potentially provable by given axioms

Logic programming is characterized by

programming with relations and inference.

The programmer is responsible for specifying the

basic logical relationships and does not specify the

manner in which the inference rules are applied.

Logic languages are usually more demanding in

computational resources than procedural and

object-oriented languages.

Logic paradigm is supported by languages such as

Prolog (1970), and Gödel (1994). Curry (1997) is

a multiparadigm programming language merging

elements

of functional and logic programming.

7. Statistics on Programming Languages

Statistical data can help in understanding the role

of programming languages and paradigms in

teaching of programming. Unfortunately, the

exact statistical overview of the first programming

language at different universities and colleges in

the whole world is almost impossible to get. But

there is some research related to the smaller

patterns which could be used for making general

conclusions. The data are being changed every

year, so trends in using the programming language

are more important than the present situation

itself. Therefore, we will consider the situation

and analyse the usage of programming languages

in these years and make some conclusions.

Figure 1 : Increase in the number of the users in each language in

the year 2015.

The trends after the end of 20th century changed

as the popularity of Java and JavaScript in IT

industry significantly increased. There are a

number of forums and blogs on Internet with polls

concerning the best first programming language

[9]. The results of these polls are interesting since

they show the opinion of a wide range of people

(not only experts), but these results are not

discussed here.

8. CONCLUSION

Acquiring and developing knowledge about

programming is a highly complex Process.

Choosing right programming language is most

important. This problem should be considered not

only in terms of individual programming

languages, but also in terms of different

paradigms. In this paper we surveyed

programming language paradigms in the light of

computer science education, and discussed the

problem of choosing a first programming

language. it seems that nowadays the most popular

paradigms are the procedural, with programming

language C and procedural part of C++, the

object-oriented, with languages Java , JavaScript

and C++ etc. In any case, it should be always kept

in mind that beside of specifics of some

programming language one should focus on

general programming ideas and concepts, while

considering both basic and more advanced

concepts.

REFERENCES
.

1. T. DeClue, “Object-orientation and principles

of learning theory: A new look at problems and

benefits”, Proc. 27th SIGCSE Technical

Symposium on Computer Science Education, pp.

232–235–86, February 1996.

2. B. du Boulay, “Some difficulties of learning to

program”, In: Soloway, E. and Spohrer, J.C.

(Eds), pp. 283–299, Hillsdale, NJ:Lawrence

Erlbaum, 1989.

3. Educational programming language, 2008,

http://en.wikipedia.org/wiki/-

Educational programming language.

4. C. Ghezzi and M. Jazayeri, “Programming

Language Concepts”, John Wiley and Sons, New

York, 1996.

5. D. Gupta, “What is a good first programming

language?” Crossroads, 10(4), 7–7, 2004.

DOI: 10.18535/Ijecs/v4i1.13

1Sonia Kumari, IJECS Volume 04 Issue 11 November, 2015 Page No.14953-14959 Page 14959

6. L. McIver, “The effect of programming

language on error rates of novice programmers”,

2000.

7. L. McIver and D. Conway, “Seven deadly sins

of introductory programming language design”,

Technical Report 95/234, 1995.

8. J. L. Murtagh and J.A. Hamilton, “A

comparison of Ada and Pascal in an introductory

computer science course”, SIGAda ’98:

Proceedings of the 1998 annual ACM SIGAda

international

conference on Ada, pp. 75–80, New York, NY,

USA, 1998. ACM.

9. Programming language trends, 2008,

http://www.caffeinatedcoder.com/programming-

language-trends/.

10. de M. Raadt, R. Watson, and M. Toleman,

“Language trends in introductory programming

courses”, Informing Science InSITE, pp. 320–337,

2002.

11. A. Robins, J. Rountree, and N. Rountree,

“Learning and teaching programming: A review

and discussion”, Computer Science Education,

13(2), 137–172, 2003.

12. J. Rogalski and R. Samurcay, “Acquisition of

programming knowledge and skills”, Psychology

of programming, pp. 157–174, 1990.

13. J. Spolsky, “The perils of

Javaschools”,2005,http://www.joelonsoftware.co

m/articles/ThePerilsofJavaSchools.html.

14. M. W. van Someren, “Whats wrong?

understanding beginners problems with Prolog”,

Instructional Science, 19(4–5), 257–282, 1990.

15. R. L. Wexelblat, “The consequences of one

are first programming language”, SIGSMALL

’80: Proc. 3rd ACM SIGSMALL symposium and

the first SIGPC symposium on Small systems,

52–55, New York, NY, USA, 1980. ACM.

16. P. Van Roy and S. Haridi,” Teaching

programming broadly and deeply: The kernel

language approach”, Informatics Curricula and

Teaching Methods, 53–62, 2002.

17. A. Kumar, “Prolog for imperative

programmers”, J. Computing Sciences in

Colleges, 17(6), 167–181, 2002.

18. R. Harrison, “The use of functional languages

in teaching computer science”, J. Functional

Programming, 3(1), 67–75, 1993.

19. J. E. Howland, “Functional Languages and

Introductory Computer Science”, 1998.

20. A. M. Lopez, “Supporting declarative

programming through analogy”, J. Computing

Sciences in

Colleges, 16(4), 53–65, 2001.

21. Basic Abstract Machine, 2015,

http://en.wikipedia.org/wiki/Basic Abstract

Machine.

22. Operations performed by the interpreter, 2015,

http://en.wikipedia.org/wiki/Operations performed

by the interpreter

