
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 9 September 2017, Page No. 22457-22462

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22457

Review on various scheduler used by Hadoop framework

Usha Rani
1
, Anurag Rana, Sahil Barjtya

3

Arni University Dept. of Computer Science Engineering

Kangra Himachal Pradesh, India

Abstract

A distributed system is a collection of independent computers that appears to its user a single coherent

system. This definition can explain several important aspects. The first fact is that a distributed system is the

collection of different types of component’s for example computer, networking devices, storage, printers etc.

In this paper we presented a detailed review of all the scheduling technique used by Hadoop framework this

paper provides you deep insight of these scheduler working.

Keywords — Hadoop, HDFS, MapReduce, FIFO

scheduler. Fair Scheduler

Introduction

Hadoop is a distributed computing architecture

based upon the open source implementation of

Google’s MapReduce which supports processing of

huge amount of data sets across multiple

distributed systems. The present technological era

does not depend only on a standalone computation,

rather demands huge data computation through

distributed computing along with performance.

Almost all the technological giants like Yahoo,

Google and Facebook use data intensive

computation for their business [1, 2]. Handling

high amounts of work load for computation is

somehow a challenging task since it is bounded

with the performance constraints and availability of

the resources. Hadoop has proved to be an effective

platform for this purpose. Hadoop is designed such

that it can accommodate scaling up from a single

standalone systems to excessively large number of

systems where each machine provides both

computation and storage together [1]..

Major components of Hadoop

MapReduce: MapReduce break down the

computation of the jobs in two phases : Map and

Reduce. MapReduce architecture consists of one

master node (Jobtracker) and many worker nodes

(Tasktrackers). The Jobtracker receives the job

submitted from the user and split it down into map

and reduce tasks, assign the task to the

Tasktrackers , monitors the progress of the tasks

and report back to the user once the job is

completed. Task tracker has a fixed number of map

and reduce tasks that it can run at a particular time

[3]. Typically Map phase deals with Map function

created by the user which splits the job into

intermediate sub processes. Reduce phase deals

with Reduce function which merges all the

intermediate sub processes. Following a illustration

of MapReduce for word count process [1].

Figure 1: MapReduce process

http://www.ijecs.in/

DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22458

HDFS: HDFS is a Hadoop distributed file system

that provides high throughput access to the data. It

divides the data into the blocks of size 64 MB and

above. In Hadoop architecture, HDFS work as a

storage system for both the input and output of the

MapReduce jobs. A HDFS cluster primarily

consists of a NameNode that manages the file

system metadata and DataNodes that store the

actual data. Hadoop instance typically has a one

Namenode and a cluster of Datanodes in the

HDFS. HDFS stores large files (gigabytes to

terabytes) spread across multiple machines which

achieves reliability by replicating the data across

multiple hosts. Datanodes can talk to each other to

rebalance data, to move copies around and to keep

the replication of data high . Typically each

Datanode serves up blocks of data over the network

using a block protocol specific to HDFS [2].

Figure 2: Hadoop Ecosystem

Literature Review

Task scheduling process is a critical part of the

Hadoop platform which controls the allocation of

resources and sequence of the tasks. It is directly

related to the utilization of system resources and

overall performance of the platform [3, 4, 5, 6].

Various parameters and suites are applied to

measure the performance of the system [7, 8].

All title and author details must be in single-

column format and must be centered.

Currently the state of art schedulers allocate the

available resources in the form of slots and these

are allocated on the basis of fairness only [9, 10].

These schedulers are limited in packing the

multiple resources to address the requirement of

the particular job. As consequences, it results in the

form of fragmentation, over allocation of resources

and compromise with the performance for

obtaining fairness [10]. These schedulers cannot

pack different resources together because they

define slots usually on the basis of one or two

resources (memory, CPU). Job completion times

and packing efficiency suffer as an effect of this

limitation and degrades the performance [11, 12].

Slots: When scheduler divide resources into slots

(based upon memory and cores) it leads to resource

fragmentation, the extent of which increases with

the number of resources being allocated (over

allocation) [13, 14]. The statically sizing the slots

results in wastage of resources and brings

fragmentation. While dynamically sizing of slots

avoids wastage of resources on slots on which they

are defined, but end up being over allocated [15,

16].

Fairness: Fairness picks tasks from the job

which are farthest from the fair share. But the

problem with fairness based schedulers is that they

uses the few resources and do not consider multiple

resource requirement of the job for scheduling [17].

For an example, due to the problem of

fragmentation and over-allocation of resources, the

state-of-the-art schedulers in Facebook’s and

Bing’s analytics clusters delay job completions and

increase makespan by over 45% [10]. Reference

number [10] addresses the issue of multi packing of

resources. Multi resource cluster scheduler packs

the tasks to the machine based upon the

requirements of the job and overcomes the

allocation issues, but still it suffers from unfairness

to compete with the performance.

Scheduling algorithms in Hadoop

FIFO scheduling

The default Hadoop computing architecture utilize

FIFO . The basic job type is large batch job that a

single user submits [18]. In FIFO the jobs are

submitted to the queue and executed according to

the priority level and as per the sequence of their

DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22459

submission. FIFO is considered to be the cost

effect and simple in implementation. Even though

FIFO is simple, it suffers from large number of

limitations. It is basically developed for single kind

of jobs and demonstrates degradation in

performance when multiple jobs are required to be

executed by multiple users. If a job occupies

resources for a longer period of time, then the

subsequent jobs waiting for the execution may

suffer with longer waiting period [19].

Capacity scheduler

Capacity scheduler provides a provision to support

multiple numbers of queues where individual node

is accommodated with the certain amount of

resources. The resources are bounded with the

comprehensive set of upper and lower limits to

prevent a single job, user and queue from

monopolizing resources of the queue or the cluster

as a whole [19]. Each queue in turn uses FIFO.

Capacity scheduler is elastic in nature and

dynamically provisions resources to the heavily

loaded queues. During scheduling, it may compute

the ratio between computing resources allocated for

computing and the number of tasks in execution

and selects the smallest ratio [20]. The basic

advantages of capacity scheduler are that it

supports multiple jobs along with multiple users

and provide the provision of dynamically adjusting

resource allocation. It also provides job priority

feature (which is disabled by default) where a

higher priority jobs will have access to the

resources. But once a job is running, the

preemption for high priority job is not supported.

The major disadvantage of capacity scheduler is

that user needs to gain knowledge of the system

information to select and set up a queue which

turns out to be a bottleneck in overall performance

of the system.

Fair scheduling

In this scheduling approach , all the jobs on an

average gets the equal amount of resources [11, 19,

20]. Distinct to the default Hadoop scheduler FIFO,

this allows short jobs to finish in reasonable time

while not starving long lived jobs. Fair sharing also

accommodate job priorities, the fair scheduler plan

the fairness decisions only on memory. It can be

further configured to schedule with both memory

and CPU, using the notion of Dominant Resource

Fairness.

Authors Wenhong Tian, GuozhongLitries to grab

attention on-Scheduling element It is observed that

jobs are executed can have a significant impact on

their overall makespans and resource utilization. In

this work, we consider a scheduling model for

multiple MapReduce jobs. The goal is to design a

job scheduler that minimizes the makespan of such

a set of MapReduce jobs. We exploit classical

Johnson model and propose a novel framework

HScheduler, which combines features of both

classical Johnson’s algorithm and MapReduce to

minimize the makespan for both offline and online

jobs. In this work, by adopting a new strategy,

implementation of allocating available MapReduce

slots, and combining the features of classical

Johnson’s algorithm, we propose and validate new

scheduling algorithms for MapReduce framework

to mini-mize the makespan.

Authors Aysan Rasooli, Douglas G. Down tries to

grab attention on-Scheduling elementThe

examination paper authors have described the

major factors of hadoop scheduling. Bunch or

cluster - A Hadoop bunch is a unique kind of

computational group outlined particularly for

putting away and dissecting enormous measures of

unstructured information in a dispersed processing

environment.

Workload - approaching occupations are

heterogeneous with respect to different highlights,

for example, number of errands, information and

reckoning necessities, landing rates, and execution

times. Reported investigation on Hadoop

frameworks discovered their workloads to a great

degree heterogeneous with altogether different

execution times [9]. Besides, the quantity of little

employments (with short execution times)

surpasses bigger size occupations in normal

Hadoop workloads.

Clients (user): Doled out needs and least impart

prerequisites vary between clients. Besides, the sort

and number of employments relegated by every

client can be distinctive.

Here authors was discussed about only three

factors that is users, workload, clusters for batter

performance can consider some more factors also

that is locality, priority. In this paper face problems

with little job starvation.

DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22460

Figure 3 Parameters of mapping and reducing

Authors MichaelIsard et al tries to grab attention

on- Existing Scheduling’s Fair Sharing The authors

have described about fair sharing. The center

thought behind the decent amount scheduler was to

appoint assets to occupations such that by and large

over the long run, every employment gets an

equivalent offer of the accessible assets. The

outcome is that occupations that oblige less time

have the capacity to get to the CPU and completion

intermixed with the execution of employments that

oblige of an opportunity time to execute. This

conduct takes into account some intuitiveness

among Hadoop employments and licenses more

noteworthy responsiveness of the Hadoop bunch to

the mixed bag of occupation sorts submitted. The

reasonable scheduler was produced by Facebook.

The Hadoop usage makes an arrangement of

pools into which employments are set for

determination by the scheduler. Every pool can be

allocated an arrangement of shares to adjust assets

crosswise over employments in pools (more

imparts equivalents more noteworthy assets from

which occupations are executed). Naturally, all

pools have equivalent shares, yet arrangement is

conceivable to give more or less imparts relying on

the employment sort. The quantity of occupations

dynamic at one time can likewise be obliged, if

sought, to minimize blockage and permit work to

complete in an opportune way.

Figure4: Default scheduling scheme

Figure 5: Facebook or fair scheduling scheme

Authors AysanRasooli, Douglas G. Down tries to

grab attention on- COSHH and Capacity schedulers

Figure 5: heterogeneous or coshh scheme

In this paper authors have described about capacity

scheduling for overcome the sticky slot. The limit

scheduler imparts a percentage of the standards of

the reasonable scheduler yet has particular

contrasts, as well. Initially, limit booking was

characterized for substantial groups, which may

have numerous, autonomous buyers and target

applications. Consequently, limit planning gives

more noteworthy control and also the capacity to

DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22461

give a base limit ensure and offer overabundance

limit among clients. The limit scheduler was

created by Yahoo!

In limit booking, rather than pools, a few lines are

made, each with a configurable number of guide

and decrease openings. Every line is additionally

appointed an ensured limit (where the general limit

of the bunch is the aggregate of each line's ability).

The scheduler usage stays informed regarding the

process time for every employment in the

framework. Occasionally, the scheduler examines

occupations to process the distinction between the

register time the occupation got and the time it

ought to have gotten in a perfect scheduler. The

outcome decides the shortage for the assignment.

The employment of the scheduler is then to

guarantee that the errand with the most astounding

shortage is booked next. Authors DongjinYoo,

Kwang Mong Sim tries to grab attention on-

Strength and weakness of scheduling.In fifthreview:

The author introduced why some scheduler

algorithm may fail underheterogeneous

environments. Meanwhile, the paper also discussed

a new scheduleralgorithm called COSHH. To

ensure the validity of its statement, the author

alsoimplemented a series experiment to compare

COSHH with current algorithms. In this fifth

review author was discussed with contradiction of

each available scheduling schemes in current

scenario. Then give some countermeasure for that

like LATE and COSHH.

Conclusions

For the resource allocation at clusters, the current

state of art schedulers such as FIFO, Fair and

capacity are suffering from at least one of the

following problems: fragmentations, over

allocation and scarification of performance over

fair allocation. Even though solutions such as Multi

resource packing scheduler are being developed to

lower down the problem of Fragmentation, over

allocation and improve the performance but still

they are suffering from the problem of fairness. To

gain the performance either fairness is

compromised or to gain the fairness, performance

is sacrificed. Driven by these problems, a full

fledge approach is still required to achieve both

fairness and performance together without

comprising each other. It is a need of the hour to

resolve the problem of over allocation,

fragmentation and alongside address the competing

objectives such as job completion time and

achieving fairness

.

References

1. Hadooptutorial.wikispaces.com, “Hadoop”,

[Online] Available:

http://hadooptutorial.wikispaces.com/Hadoop+

architecture

2. Sachin P Bapallege,”An Introduction to

Apcahe Hadoop,” [Online] Available:

3. http://opensource.com/life/14/8/intro-apache-

hadoop-big-data

4. Balaji Palanisamy, A. Singh and Ling

Liu, "Cost-effective resource provisioning

for MapReduce in a Cloud,” IEEE

Transactions on Parallel and Distributed

Systems, vol. PP, Issue no. 99, p. 1 2014.

5. Yang Wang, Wei Shi, "Budget-Driven

Scheduling Algorithms for Batches of

MapReduce Jobs in Heterogeneous Clouds,”

IEEE transaction on cloud computing, vol. 2,

issue. 1, p. 306-319, 2013.

6. M. Hammoud and M.F. Sakr, “ Locality-aware

reduce task scheduling for mapreduce,” In

Cloud Computing Technology and Science

(CloudCom) IEEE Third International

Conference, p. 570-576, 2011.

7. Jayalath, C., Stephen, J., Eugster, P., "From

the cloud to the atmosphere: Running

MapReduce across Data Centers," IEEE

Transactions on Computers, vol.63, no.1, p.74-

87, 2014.

8. Verma, A., Cherkasova, L., Campbell, R.H.,

"Orchestrating an Ensemble of MapReduce

Jobs for Minimizing Their Makespan," IEEE

Transactions on dependable and secure

Computing, vol.10, no.5, p. 314-327, 2013.

9. Y. Chen, A. Ganapathi, R.Griffith, R. Katz,

“The case for evaluating MapReduce

performance using workload suites,” In IEEE

19th International Symposium on

modeling ,analysis and simulation of computer

and tel. com. systems, p. 390-399, 2011.

10. Weikuan Yu ,Yandong Wang , Xinyu Que ,

“Design and Evaluation of Network-Levitated

Merge for Hadoop Acceleration,” IEEE

Transactions on Parallel and Distributed

Systems, vol. 25, Issue 3, p. 602-611, 2014.

11. Robert Grandi, Ganesh A, S Kandula, S Rao,

A AAkella, “Multi resource packing for cluster

schedulers,” In Proc. of the ACM Conference

on SIGCOMM 14, p. 445-446, 2014.

http://hadooptutorial.wikispaces.com/Hadoop+architecture
http://hadooptutorial.wikispaces.com/Hadoop+architecture

DOI: 10.18535/ijecs/v6i9.11

Usha Rani, IJECS Volume 6 Issue 9 September 2017 Page No. 22447-22462 Page 22462

12. M. Zaharia et al. Delay Scheduling, “Delay

Scheduling :A Technique For Achieving

Locality And Fairness In Cluster Scheduling,”

In EuroSys 5th European conference on

Computer systems, p. 265-278, 2010.

13. Zhuo Tang, Junqing Zhou, Kenli Li, Ruixuan

Li, “A Task Scheduling Algorithm for

MapReduce Base on Deadline Constraints,” In

Proc. of IEEE International Symposium on

Parallel & Distributed Processing, Workshops

and Phd Forum, 2013.

14. A. Ghodsi et al., “Dominant Resource

Fairness : Fair Allocation Of Multiple

Resource Types,” In ACM 8th USENIX

conference on Networked systems design and

implementation, p. 323-336, 2011.

15. Kamal Kc, Kemafor Anyanwu, “Scheduling

Hadoop Jobs to Meet Deadlines,” IEEE

Second International Conference on Cloud

Computing Technology and Science

(CloudCom), IEEE , p. 338-392, 2010.

16. Aysan Rassoli, Douglas G Down, “A hybrid

scheduling approach for scalable

heterogeneous Hadoop systems,” In ACM

proceedings of SCC’12, p. 1284-1291, 2012.

17. Jeffrey Dean, Sanjay Ghemawat, “MapReduce:

simplified data processing on large clusters,”

Communications of the ACM, vol. 51 Issue 1,

p. 107-113, 2008.

18. M. Zaharia et al., “Delay scheduling : A

simple technique for achieving locality and

fairness in cluster scheduling,” In Proc. of

ACM EuroSys, p. 265-278, 2010.

19. M. Isard, M. Budiu, Y. Yu, “Distributed Data-

Parallel Programs from Sequential Building

Blocks,” In Proc. of the 2nd ACM

SIGOPS/EuroSys European Conference on

Computer Systems, p.59-72, 2009.

20. Jilan Chen,Dan Wang and Wenbing Zhao, “A

task scheduling algorithm for hadoop

platform,” Journal of computers,” vol. 8, no.4,

2013.

21. Apache, “Capacity Scheduler Guide,” [Online]

22. Available:

http://hadoop.apache.org/docs/stable/capacity_

scheduler.html

23. Yong Chul Kwon1, Kai Ren2, Magdalna

Balazinska1, and Bill Howe11, “Managing

Skew in Hadoop,” In IEEE Data engineering

Bulletin, vol. 36, no. 1, p. 350- 353, 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5706873
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5706873
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5706873
http://hadoop.apache.org/docs/stable/capacity_scheduler.html
http://hadoop.apache.org/docs/stable/capacity_scheduler.html

