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Abstract: Frequent itemset mining is one of the most necessary problems in data extraction. The chance of devious a discrepancy private 

frequent itemset mining algorithm which can not only accomplish high data usefulness and a high level of secrecy, but also offer high time 

effectiveness. To this end, offer a discrepancy frequent itemset mining algorithm based on the Frequent Pattern-growth algorithm, which is 

referred to as Private Frequent Pattern-growth. The Private frequent Pattern -growth algorithm consists of a preprocessing phase and a 

mining phase. To improve the utility and secrecy tradeoff, a innovative smart splitting method is proposed to change the database in 

preprocessing phase. It needs to be performed only once for a given database. To compensate the information loss caused by transaction 

splitting, To estimate the definite support of itemsets in the original database in mining segment utilize run time estimation method. In 

accumulation, develop a dynamic reduction method to dynamically reduce the amount of noise added to guarantee privacy during the 

extracting process by leveraging the downward closure property. Private common pattern-growth algorithm is shown it is ε-differentially 

private through formal privacy analysis; explain that  PFP-growth algorithm is ε- discrepancy secrecy. Extensive experiments on real 

datasets exemplify that our PFP-growth algorithm considerably outperforms the state-of-the-art techniques. 

Keywords: Frequent itemset mining, differential privacy, transaction splitting.  

 

1. Introduction 

Frequent itemset mining is one of the most fundamental 

problems in data extracting. It has practical significance in a 

wide range of application areas such as decision support. 

Frequent itemset mining tries to find itemsets that occur in 

transactions more commonly than a given threshold, where 

each operation contains a set of items for a given database. In 

spite of valuable insights the discovery of frequent itemsets can 

potentially provide, if the data is perceptive (e.g., web 

browsing history and medical records), releasing the 

discovered frequent itemsets might pose considerable threats to 

individual privacy. Differential privacy[1] has been planned as 

a way to address such problem. Unlike the anonymization-

based solitude models (e.g.-anonymity[2] and –diversity[3]), 

discrepancy privacy offers strong hypothetical guarantee on the 

privacy of released data without making assumptions about an 

attacker’s background information. In particular, Differential 

privacy assures that the output of a computation is insensitive 

to changes in any individual’s record, and thus restricting 

secrecy leaks through the results by adding a carefully chosen 

amount of noise . For mining frequent itemsets a variety of 

algorithms have been proposed. The frequent pattern-growth[5] 

and Apriori[4]  are the two most high-flying ones. In particular, 

Apriori is a breadth-first search, candidate set generation-and-

test algorithm. If the maximal length of frequent itemsets is l it 

needs l database scan. In contrast, frequent pattern-growth 

which requires no candidate generation is a depth-first search. 

Compared with Apriori, frequent pattern-growth only performs 

two database scans, which makes common-growth an order of 

degree faster than Apriori. The interesting features of frequent  

pattern-growth motivate us to design a discrepancy private 

Frequent itemset mining  algorithm into several subsets  and 

guarantee each subset is under the limit. Develop a novel smart 

splitting method to transform the database. To ensure applying 

ε- discrepancy private algorithm on the transformed database 

still satisfies ε- discrepancy privacy for the original database, 

develop a weighted splitting operation. Moreover, to preserve 

more occurrence information in subsets. A graph-based 

approach to expose the association of items within transactions 

and make use of such correlation to guide the splitting method. 

In the extracting phase, motivated by the double standards 

method  in , a run-time estimation method to reduce such 

information loss. Given the noisy support of an itemset in the 

database transformed by transaction splitting, firstly calculate  

its actual support in the transformed database, and then further 

compute its definite support in the original database. In 

addition, by maximizing the downward closure property[4] 

(i.e., any supersets of an infrequent itemset are infrequent), put 

forward a dynamic reduction method. During the extracting 

process, dynamically evaluation the number of support 

computations, so that progressively reduce the amount of noise 

required by discrepant confidentiality. Through formal privacy 

analysis, show that our secret common method of design -

growth algorithm is ε-discrepancy secrecy. Wide experimental 

results on real datasets show that our algorithm outperforms 

existing discrepant private common itemset mining algorithms. 

Moreover, to exhibit the simplification of our transaction 

splitting techniques and further develop the application variety, 

apply  transaction splitting techniques, including the smart 

splitting and run-time estimation methods, to Apriori  by 

modifying the algorithm.  

 

2 PRELIMINARIES 

2.1 Differential Privacy 
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Differential  privacy has progressively emerged as the de facto 

regular notion of privacy in data analysis. For two databases D 

and D’, they are nearby databases if they diverge by at most 

one record. Formally, the differential privacy is defined as 

follows. 

 

Definition1 :(ε- differential  privacy). A private algorithm A 

satisfies ε- differential  privacy iff for any two neighboring 

databases D and D’, and any subset of outputs S ⊆ Range 

(A),Pr[A(D)∈ S]≤eε×Pr[A(D′)∈ S], where the possibility is 

taken over the arbitrariness of A . A fundamental concept in 

differential privacy is the sensitivity. The amount of injected 

noise is carefully calibrated to the sensitivity. The sensitivity of 

count queries is used to measure the maximum possible change 

in the outputs over any two neighboring databases.  

 

Definition2: (Sensitivity). Given p count queries Q, for any 

neighboring databases D, D′, the sensitivity of Q is:∆Q= 

max||Q(D)−Q(D′)|. For the computation whose outputs are real, 

D. The Laplace mechanism. The noise drawn randomly from 

the Laplace distribution is added laplace mechanism . The 

Laplace distribution with magnitude λ , i.e., Lap(λ), follows the 

probability density function as Pr[x|λ] =12λe−|x|/λ, where 

λ=∆Qε is determined by both the sensitivity ∆Q and the privacy 

budget ε. 

 

Theorem1: Let Q denote a query sequence of length p with 

sensitivity ∆ Q. Let⟨ξ1, ...,ξ p⟩ be a p-length vector ,where ξ i is 

drawn i.e. from a Laplace distribution with scale ∆ Q /ε . Then, 

the algorithm A(D) =Q(D) +⟨ξ1, ..., ξp⟩ achieves ε-differential 

privacy. For the computation whose outputs are integer the 

Geometric mechanism has been proposed. The magnitude of 

injected noise conforms to a two-sided geometric distribution 

G (α) with the probability mass function 

        Pr [x|] =exp (α)−1exp(α)+1·exp(α)−|x|   where α >0. 

 

Theorem2: Let Q be a query sequence of length p with integer 

outputs, and its sensitivity is ∆Q. The algorithm A(D) =Q(D) 

+⟨ξ1, ..., ξp  ⟩ gives ε-differentia privacy, where ξi .i.d. samples 

from a distribution G(ε/∆Q).To support multiple differentially 

private computations, sequential symphony guarantees the 

overall privacy. 

 

Theorem3 :( Chronological symphony). Let f1... fm be m 

randomized algorithms, where fi provides εi-differential 

privacy (1≤i≤m). A sequence of fi (D) over database D 

provides (∑εi) -differential privacy. 

 

3 Frequent Itemset Mining 

Given the alphabet I= {i1, ...,in}, and a transaction database D is 

a multiset of transactions a transaction is a subset of I. Each 

transaction represents an individual’s record, shows a simple 

transaction database. an itemset  is a non-empty set X⊂ I . The 

length of an itemset is the number of items in it. If itemset 

contains k Items ,itemset  is called a k-itemset. A transaction 

contains an itemset X. If X is a subset of t. The support of 

itemset X is the number of transactions containing X in the 

database in the header table HT, by following the  

                                 

Table 1 

A Simple Transaction Database 

TID Items 

101 f,a,b,c,d 

202 b,c,e 

303 e,f,a,c,g 

404 b,c,d,e 

505 a,c 

  

linked list starting at ik in HT , branches that contain item ik 

are found. The portion of these branches from i k to the root 

forms ik’s conditional pattern base D i k. Then, for the first (k-1) 

items in HT, FP-growth computes their supports in Dik and 

determines the frequent items in Dik. For each frequent item i in  

Dik, itemset {i, i k} is a frequent 2-itemset in the original 

databases. Next, based on the frequent items found in Dik, FP-

growth generates the header table HT ik and FP-tree ik for Dik. 

The FP-tree constructed from Dik is called ik’s conditional FP-

tree. By using header table HTik and conditional FP-tree  ik, 

FP-growth progressively grows each 

generated frequent 2-itemset by producing and mining its 

conditional pattern base. The above procedure is applied 

repetitively until no conditional pattern base can be generated. 
 

4 A  STRAIGHTFORWARDAPPROACH: 

 A straightforward approach to make FP-growth achieve ε-

differential privacy. Foremost idea is to add  noise to the 

support of itemsets and use their noisy supports to determine 

which itemsets are common. In particular, expect the maximal 

length of frequent itemsets is Lf  and the alphabet size is n. We 

uniformly assign the support computations of i-itemsets a 

privacy budget ε/Lf(1≤i≤Lf). Then, we add geometric noisy G 

(εLf×C1n) to the support of items. If the noisy support of an 

item exceeds the threshold, we output it as a frequent 1-itemset. 

Next, based on the frequent 1-itemsets, we generate the header 

table and FP-tree, and progressively grow each frequent 1-

itemset by producing and mining its conditional pattern base. 

Assume the conditional pattern base of an (i-1)-itemset X is 

DX, and HTX is the header table in DX. For the k-th item ik in 

HTX, we first create the conditional pattern base of itemset Y= 

{X∪ik}. Then, for the first (k-1) items in HTX, we add 

geometric noisy (εLf×Cin) to their local supports in Y’s 

conditional pattern base D Y. If the noisy support of an item i 

in DY exceeds the threshold, we output itemset {Y∪i} as a 

frequent (i+1)-itemset. Next, we create the header table and 

conditional common method of design -tree for DY. We 

progressively grow each new found frequent (i+1)-itemset by 

generating and mining its conditional pattern base. 
 

Privacy Analysis: 

We now give the privacy guarantee of above approach. In 

essence, the frequent itemsets are generated based on the noisy 

results of support computations. In particular, let Qi denote the 

support computations of i-itemsets. For a support computation 

q∈Qi, the amount of noise added in q depends on the 

sensitivity of Qi and the privacy budget allocated for Qi. Since 

adding (removing) one transaction, in the worst case, can affect 

the result of each support computation in Qi by one, the 

sensitivity of Qi is the number of support computations in Qi. 

However, unlike Apriori which computes the support of i-

itemsets simultaneously, FP -growth is a depth-first search 

algorithm and computes the support of i-itemsets based on 

different conditional pattern bases. It is hard for FP-growth to 

obtain the exact number of support computations in Qi during 

the mining process. To achieve differential privacy, we 

consider the number of all possible i-itemsets, Cin, as the 

sensitivity of 
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Qi. Moreover, we uniformly assign Qi a privacy budget 

ε/Lf(1≤i≤Lf). Thus, adding geometric noise G (εCin×Lf) in Qi 

satisfies (ε/Lf) e-differential privacy. Since the maximal length 

of frequent itemsets is Lf, the mining process can be considered 

as a sequence of computations Q=⟨Q1, ...,QLf⟩. Based on the 

sequential composition property , we can see this approach 

overall satisfies ε-differential privacy 
 

Limitations of the Straightforward Approach: 

The approach discussed above, however, is impractical. The 

major problem faced by this approach is the sensitivity of 

support computations is prohibitively high. It indicates that a 

large amount of noise is added to the support of itemsets. For 

instance, suppose the privacy budget is 1 and the maximal 

length of frequent itemsets is 10. We regularly assign the 

support computations of  i-itemsets, 

Qi, a privacy budget 1/10(1≤i≤10). Assume there are 10 4 items 

in the alphabet. It means the sensitivity of Q1 is 10 4. 

Therefore, we need to add geometric noisy G (1÷ 10
4
×10) to 

the support of each item, which will obviously produce invalid 

results. 

 

Challenges of PFP –growth: 

To improve the usefulness and privacy exchange, suggest to 

limit the length of transactions. They develop a differentially 

private Apriori-based frequent  itemset mining algorithm by 

truncating transactions. For the mining of frequent i-itemsets, 

they re- scan the database and re-truncate transactions based on 

the discovered frequent (i-1)-itemsets to protect more 

frequency information. However, FP-growth scans the database 

only twice. We have no opportunity to re-truncate transactions. 

Thus, such approach is not suitable for FP-growth. Moreover, 

due to the downward closure property, it is needless to compute 

the support of an itemset if any of its subsets is known to be 

infrequent. Thus, for the support computations of i-itemsets Qi , 

taking the number of all possible i-itemsets as the sensitivity of 

Qi is clearly not best. To reduce the sensitivity of Qi, a potential 

approach is to enforce the frequent (i-1)-itemsets to be 

generated simultaneously, such that we can obtain the exact 

number of support computations in Qi. However, in common 

method of design-growth, common itemsets of the same length 

are always generated based on different conditional common 

method of design-trees. If we enforce the itemsets of the same 

length to be generated simultaneously, the number of FP-trees 

stored in memory will grow at an exponential rate. Therefore, 

this approach is infeasible. 

 

5 KEY METHODS: 

In this section, we propose three key methods to address the 

challenges in designing a differentially private FIM algorithm 

based on the FP-growth algorithm. In particular, to limit the 

length of transactions without introducing much information 

loss, we propose our smart splitting method. Moreover, to 

offset the information loss caused by trans- action splitting, a 

run-time estimation method is used to estimate the actual 

support of itemsets in the mining process. Furthermore, to 

lower the amount of added noise, we develop a dynamic 

reduction method which dynamically reduces the sensitivity of 

support computations by decreasing the upper bound on the 

number of support computations. In the rest of this section, we 

discuss the details of the methods. 

 

5.1Smart Splitting 

To improve the utility-privacy tradeoff, we argue that long 

transactions should be split rather than truncated. That is, we 

transform the database by dividing long transactions into 

multiple subsets (i.e., sub-transactions), each of which meets 

the maximal length constraint. For example, assume itemsets 

{a, b, c}and{d, e, f}are frequent and the maximal length 

constraint is 4. Given a transaction t={a, b, c, d, e, f}, if we 

simply truncate t to be{a, b, c, d},the support of  itemset {d, e, 

f} and its subsets will all 

decrease. Consequently, some itemsets which are frequent in 

the original database may become infrequent. Instead, if we 

divide t into t1={a, b, c}andt2={d, e, f}, the support of 

itemsets{a, b, c},{d, e,f} and their subsets will not be affected. 

However, Theorem4shows, if a transaction can be divided into 

at most k subsets, applying any ε-differentially private 

algorithm to the transformed database only ensures(k·ε)-

differential privacy for the original database. 

 

Theorem4: Let A be an ε-differentially private algorithm for 

the transformed database and f be a function that can divide 

one transaction into at most k subsets. Then, for any 

neighboring databases D and D’, and any subset of outputs S 

⊆Range (A), we has: 

          Pr(A(f(D)) =S)≤ek·εPr(A(f(D′)) =S). 

Proof: Consider two neighboring databases D and D′.Let t 

denote the transaction in D′ but not in D(i.e., D′=D+t). Suppose 

the transformed database of D is ~D and t is divided 

intoksubsetst1, ...,tk. Since A is an ε 

-differentially private algorithm for the transformed database 

~D, based the definition of differential privacy, for any subset 

of outputs S ⊆Range(A), we have:                        

              Pr (A (~D) =S)≤eεPr(A(~⟨D, t1⟩) =S). 

Similarly, we can prove that: 

               Pr (A (~D) =S)≤ek·εPr(A(⟨~D, t1, ..., tk⟩) =S). 

Since ~D is the transformed database of D and t is divided into 

t1, ..., t,⟨D, t1, ..., tk⟩ can be considered as the transformed 

database of D′. The theorem then follows. To this end, we 

introduce the weighted splitting operation. When we divide a 

long transaction, we assign a weight to each generated subset. 

The weight of a subset indicates the change to the support of an 

itemset when adding (removing) this subset into (from) the 

database. It can be considered as a multiplier. For example, 

given a subset 

ts={a,b,c,d} with weight 0.5, adding ts into the database will 

increase the support of its contained itemsets, e.g.,{a,b,c}, by 

0.5. In the following, we formally define the weighted splitting 

operation. 

 

 
Figure 1 Header table and FP-tree for the given database 
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Definition 3:(Weighted Splitting Operation). Consider a 

transaction t whose length exceeds the maximal length 

constraint Lm. A function f divides t into multiple subsets t1, 

...,tk, where ti is assigned a weight wi and the length of ti is 

under the length constraint Lm. Then, function f is said to be a 

weighted splitting operation iff :(k∪i=1ti⊆t) and (k∑i=1wi≤1). 

In fact, transaction truncating can be seen as an extreme case of 

our weighted splitting operation. Suppose a transaction t is 

divided into subsets t1, ...,tk. If we assign weight1 to one subset 

ti and assign weights 0 to the other subsets, it is equivalent to 

truncate t and only keep the items in ti. 
 

6 PFP-GROWTH ALGORITHM 

6.1 Algorithm Description of  PFP-Growth Algorithm: The 

PFP-growth algorithm consists of two phases. In particular, in 

preprocessing phase extract some statistical information from 

the original database and leverage the smart splitting method to 

transform the database. Notice that, for a given database, the 

preprocessing phase is performed only once. For a given 

threshold, privately find frequent itemsets in the mining phase. 

Run-time estimation and dynamic reduction methods are used 

in this phase to improve the quality of the results. Divide the 

total privacy budget ε into five portions: ε 1 is used to compute 

the maximal length constraint, ε2 is used to estimate the 

maximal length of frequent itemsets, ε3 is used to reveal the 

correlation of items within transactions, ε4 is used to compute 

μ-vectors of itemsets, and ε5is used for the support 

computations.  
 

6.1.1Preprocessing Phase 

Input: 

Original database D; Percentage η; Privacy budgetε1,ε2 ,ε3; 

Output: 

Transformed database D′; 

1: α= using ε1 it gets noisy number of transactions with 

different lengths; 

2: Lm= based on α and η gets maximal length constraint Lm; 

3: β= get noisy maximal support of itemsets of different lengths 

usingε2; 

4: x= using the μ-vectors of itemsets computes a r×n matrix; 

5:D1= enforce length constraint Lm on D by random 

truncating; 

6:Set2= using ε3 compute the noisy support of all 2-itemsets in 

D1; 

7: Create an undirected weighted graph G based onSet2; 

8: CR-tree T=Louvain (G, Lm); 

9:D′←∅; 

10: for each transaction t in D do 

11:if|t|> Lm then 

12: Sub Transactions ST=Split One Transaction (t, T, Lm); 

13: Add each subset in ST with weight 1/|ST| into D′; 

14: else 

15: Add transaction t into D′; 

16: end if 

17: end for 

18: return D;  

In the preprocessing phase, we also compute β={β1, ...,βn}, 

where βi is the maximal support of i-itemsets .This array β will 

be used to estimate the maximal length of frequent itemsets Lf 

in the mining phase. In practice, however, it is computationally 

infeasible to exactly compute every element in β. Instead, we 

select a relatively small threshold and run the FP-growth 

algorithm. Suppose the maximal length of discovered frequent 

itemsets is r. For i from 1 tor, we keep the maximal support of 

i-itemsets βi. We assume the user-specific threshold is not 

smaller than this threshold. Since β is a property of the 

database, we add geometric noise G(ε2/⌈log n⌉)to each βi 

.During computing β , we also generate a r×n matrix Z , where 

row{zi·}is the μ-vector of the i-itemset with the highest 

support. Preprocessing phase is used in run-time estimation 

method  to quantify the information loss caused by transaction 

splitting. 

 

7. CONCLUSION 

Investigating the problem of designing a differentially private 

FIM algorithm is proposed which consists of a preprocessing 

phase and a mining phase. Preprocessing phase is used to 

improve the utility-privacy tradeoff, devise a smart splitting 

method to transform the database. Run-time estimation method 

is used in mining phase  to offset the information loss incurred 

by transaction splitting. Moreover, by leveraging the downward 

closure property, dynamic reduction method is used to 

dynamically reduce the amount of noise added to guarantee 

privacy during the mining process. Formal privacy analysis and 

the results of extensive experiments on real datasets show that 

our PFP-growth algorithm is time-efficient and can achieve 

both good utility and good privacy. 
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