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ABSTRACT: The main of this paper is to prove the existence of fixed point on A-generalized contraction of
self mapping functions on D*-metric space.
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. INTRODUCTION:

Huang and Zhang [11] generalized the notion of metric spaces, replacing the real numbers by an
ordered Banach space and defined cone metric spaces. They have proved Banach contraction mapping
theorem and some other fixed point theorems of contractive type mappings in cone metric spaces.
Subsequently, Rezapour and Hamlbarani [17], llic and Rakocevic [9], contributed some fixed point
theorems for contractive type mappings in cone metric spaces.

Gahler [7, 8] introduced the notions of 2-metric space and Dhage [5, 6] defned D-metric spaces as a
generalization of metric spaces. In 2003, Zead Mustafa and Brailey Sims[13] introduced a new structure of
generalized metric spaces, which are called G-metric spaces. Recently Aage and Salunke[2] generalized G -
metric space by replacing R by real Banach space in G -metric spaces. In 2007 Shaban Sedghi et al [18]
modify the D-metric space and defined D §-metric spaces. Now in this paper | Generalized D-metric spaces

by introducing generalized D -metric space by replacing R by a real Banach space in D-metric spaces.

I1. PRELIMINARY NOTES:
Recall that a selfmap f of a D*-metric space (X, D*) is called a contraction, if there isa q
with 0<q<1 such that

(2.1) D*(fx, fy, fy) <q.D*(x,y,y) forall x,y e X

In a different way R. Kannan [9] has defined a contraction for metric spaces which we
shall call a K-contraction. Analogously we define the K-contractions for D*-metric spaces as

follows:
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2.2  Definition: A selfmap f of a D*-metric space (X, D*) is called a K-contraction, if there is a

q with 0<q <% such that

(2.3) D*(fx, fy, fz) < q.max{D*(x, fx, &) + D*(y, fy, fy)} for all x,y e X

The notions of contraction and K-contraction are independent. In this thesis we define a

special type of contractions called A -generalized contractions for D*-metric spaces as follows:

2.4 Definition: A selfmap f of a D*-metric space (X, D*) is called a A -generalized contraction, if for

every X,y e X , there exist non-negative numbers ¢,r,s and t (all depending on x and y) such that

S
(2.5) P {g+r+s+2t}=1<1and
X, yeX

D*(fx, fy, fz) <q.D*(X,y,y) +r.D*(x, X, ix) + s.D*(y, fy, fy)

(2.6)
t{D*(x, fy, fy) + D*(y, fx, &)}
forall x,ye X
As already noted in the Remark 1.14.3, every contraction and every K-contraction is a A -
generalized contraction. However the following examples show that there are some A -generalized
contraction f on a D*-metric spaces (X, D* ) which are not contractions and /or K-contractions.
The following is an example of a A -generalized contraction which is not a contraction.
I11. Main Result:

Theorem: suppose f is a selfmap of a D*-metric space (X, D*) and X be f-orbitally complete. If fisa 1 -

generalized contraction, then it has a unique fixed point u € X . In fact,

lim
(31 u= f"x forany xe X
n— o

and

n

(3.2) D*(f”x,u,u)sli;tD*(x, fx, fx) forall xe X and n>1.
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Proof: x e X be arbitrary and define the sequence {x, } by
X, =X, X = Xy, X, = X, = %%, ..., x, = fx,, = "X, .... Note that the orbit of x under f,

O,(x:0)=1{x,:n=0,1,2,3,... }

Consider
D*(Xn’xn+1’ n+l) D*(fxn -1 fX fX )

Sq( n-1? )D*( n-1? n’ n)+r( n— 1’Xn)D*(Xn—1’ fxn—l' fxn—l)

+5(X,0, %, ) D*(x,, fx,, ;)

+t(X, 4, ){D*( o B0, ) +D*(x,, B, X 71)}

Sq( n-17 )D*( n-17 n’Xn)+r( n-17 )D*( n-17 X)

n’n

+S( n-1! )D*( n? n+l'Xn+1)
+t(X 11 ){D*( n-1? n+1’ n+1)+D*(Xn'Xn’Xn)}

Writing q, , = (X, 1, X, ) Foy = F(X, 5, %), S,y =S(X,1,%, ) and t, , =t(x, ,,X, ), we get

nl’n’

D* (Xn’xn+l1 n+1)<qn lD*( nl’Xn’Xn) rn—lD*( X X)

n-1'"n1n

+Sn—1D*(Xn’Xn+l’Xn+l)+tn—1{ D*(X X X )

n-17 *n+1? “n+l

n!“n?!n

+D*(x,,X,,X,) }

< (qn—l + rn—l)D*(Xn—l’Xn’Xn) D*( X )

n? n+1’ n+l

+tn—l{ D*(Xn—l’ Xn+1’ Xn+l) }

< (@ + 1 )D* (X X0 X0 )+ 810D * (X0 X0 %)

n ! n+1’ n+1

nlD*( n-1? n’Xn) nlD*( X )

n? n+1’ n+1

S (qn—l + rn—l +tn—1 )D*(Xn—l1 Xn ! Xn )+ (Sn—l +t )D *(X X )

n? n+1’ n+1
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which implies that

(l_sn* )D*( n’ n+l'Xn+1)S(qn l 1+tn—l)D*(Xn—l’Xn'Xn)

And hence

D*(x,, X xn+1)£(q”1+r”l+t”)D*( 1 X %)

n! ntl? (1_Sn_1_tn_1) n’ n
ASab) pay )
(1_ Sn—l_tn—l) " o
That is,
Sup
D*(Xn’ n+1’ n+l)<2“ D*( nl' n' n) Where ﬂ“_ {q+r+s+2t}
X,y e X

Thus by iteration, we get
D*(Xn,Xml, n+1)</In D*(XO,Xl,X) A" D*(Xo. X, fXO) ------- (A)

Therefore

D*(Xn7xn+p n+p) D*( n n+1 Xn+1)+D*(Xn+1’Xn+2’Xn+2)

+D* (X0 g0 Xa )+ -« o+ D* (X010 X000 X0

n+2? *n+37 *n+3 n+p-1? *n+p? n+p

<" D*(Xg, %, X, )+ A" D*(Xq, X, X, )

+ A" D* (X, Xy, X ) F .o AP DF(X, %, X, )
S+ E AP D* (%0, X, %)
in
=1_1D*(X0,X1,X1) """"""""" (B)
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n

Hence D*(x Xpip o X )31_/1

n? n+p? Mn+p

D*(X,,%,X%)—0 as n—oo, since 0<A<1. Thus {x, } is a

sequence in O, (x :o0) and since X is f-orbitally complete, there exists u € X such that

lim lim lim
u= X, = f'X, = f"x
n— oo n— oo n— oo

To show that u is a fixed point of f, first we prove

lim
i D*(fu, fx,, fx,)=0. Since f is 1 -generalized contraction, we have
—

D*( fu, fx,, fx,) <a(u,x,)D*(u, x,, X, )+r(u,x,)D*(u, fu, fu)

P n

+5(U, X, ) D*(x,, B, fx, )+t (u, x, ) {D*(u, fx,, fx,)

+D*(x,, fu, fu)}

That is,

D*( fu, fx,, fx,) < q(u,x,) D*(u,%,, %, )+r(u,x,)D*(u, fu, fu)

77 n

+5 (U, X ) D* (X0 X1 X )+ (U X ) {D (U, X1 %, )

+D*(x,, fu, fu)}

< q(u’ Xn )D*(U, Xn ' Xn)+ r(u’ Xn )D*(U, Xn+1’ Xn+1)

+1(u, %, )D* (X, fu, fu)+s(u, X, )D* (X, Xo1) Xpit)

n+l? n? n+l? n+l

+t(u’Xn)D*(u’Xn+11Xn+1)+t(u’Xn)D*(X X X )

n!*n+l? M4l

+t(u,x, )D*(x,.,, fu, fu)

n+1?
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< q(u,xn)D*(u,xn,xn)+{r(u,xn)+t(u,xn)} D*(U, X1, X111 )

+{r(u,x,)+t(u,x, )} D*(X,,, fu, fu)

n+1?

{30+ (U ) D* (00 X1 %)

1 n

<AD*(U, X, X, )+ AD*(U, X1, X1

+AD* (X0, fu, fU)+ AD* (X)) X101 X1 )
That is,

(1-2)D*( fu, fx,, fxn)g/l{D*(u X, Xy )+ D* (U, X0 X1

17 n

+D*(X,, X XM)}

n? “n+l?
Therefore

A

(1-2)

D*( fu, fx,, fx,) <

1 n

{D*(U Xqi X )+D*(u’xn+l’xn+1)

+D* (X X1 Xt )}

n?! n+l

lim
Which implies that D*(fu, fx,, fx,)=0, and hence
n— oo

lim lim . N .
fu = X, = X,,, =U, showing u is a fixed point of f.
n—oo n— o

To prove that f has unique fixed point, suppose that fx, = x,and fy, =Yy, for some X,,Yy, € X.

Then by the definition of A -generalized contraction, it follows that
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D*(XO’yO’yO): D*(fxo’ fYO: fYO)
< gD * Xy Vo1 Yo )+ D *(X,, g, X, )+SD*(yy, fyo, fy,)

+tH{D*(X,, fy,, fyy )+ aD *(y,, Xy, X, )}

=D *(Xy, Yo Yo ) + ID* (X9, X9, X5 )+ SD* (Yo, Yo, Yo )

FH{D* (X, Yo Yo )+ AD*(You X1 %, )}

=(q+2t)D*(Xo’yo’yo)

< AD*(Xy, Y01 Yo )

(3.4)

(3.5)

This implies that D*(x,,Y,,Y,)=0, since 1 <1, and hence x, = y,. Thus f has unique fixed
point.
lim
Since x is arbitrary in the above discussion, it follows that u = f"x forany xe X and hence
n— o

ln

(2.2.2) is proved. Finally, since D*(xn,x,Hp,x,Hp):1 7 D*(x, fx, fx) (by (B)), on letting p — oo,

we get

n

D*(x,,u,u)= A

D *(x, fx, fx), proving (2.2.3). This completes the proof of theorem.

Corollary: Suppose f is a selfmap of a D*-metric space (X, D*) and X is f-orbitally complete. If f

is a contraction of (X, D*), then it has a unique fixed point u € X . In fact,

lim
u= f"x forany xe X
n— oo

and
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n

(3.6) D*(f"x,u,u)< 1/1/1 D*(x, fx, fx) forall xe X and n>1.
Proof: In view of the fact that, every contraction is A -generalized contraction, Corollary follows

from Theorem 2.2.1
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