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Abstract: Subspace clustering tries to find groups of similar objects from the given dataset such that the objects are projected on only a 

subset of the feature space. It finds meaningful clusters in all possible subspaces. However, when it comes to the quality of the resultant 

subspace clusters most of the subspace clusters are redundant. These redundant subspace clusters don’t provide new information. Hence 

there is a need for eliminating such redundant subspace clusters and output only those subspace clusters which are non redundant and each 

of them contributing some unique information to the data miner. The set of non redundant subspace clusters is helpful for easy analysis. In 

order to accomplish this, the concept of closedness has been applied to the subspace clusters. An algorithm known as Finding Closed 

Subspace Clusters (FCSC) is presented which efficiently outputs the closed subspace clusters from a given set of subspace clusters produced 

from any subspace clustering algorithm. Based on the experimental study conducted, the number of clusters generated by FCSC has been 

greatly reduced when compared to the existing SUBCLU algorithm and the average purity of the clusters is marginally improved without loss 

of coverage. 
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1. Introduction 

Clustering is the process of finding similar object sets from the 

given dataset. Most of the traditional clustering algorithms try 

to find clusters in the whole feature space. These algorithms 

work well if the number of dimensions is fewer. However, as 

the number of dimensions increases the similarity measures 

such as distance between objects become meaningless. Usually 

the objects are sparsely distributed when the number of 

dimensions increases. This difficulty is referred to as the „curse 

of dimensionality‟. Hence the concept of subspace clustering 

has been evolved to resolve the dimensionality issue. Subspace 

clustering tries to find meaningful clusters in subsets of the 

whole feature space.  

Despite the fact that the subspace clustering resolves the 

issues of the traditional clustering for high dimensional data, 

there is a drawback associated with it. Subspace clustering 

generates numerous results and most of them are redundant. 

This paper proposes a new concept called closed clusters. The 

closed clusters eliminate the problem of redundancy by 

producing only the non redundant subspace clusters from the 

set of results generated by any subspace clustering algorithm. 

From the results generated by any subspace clustering 

algorithm FCSC efficiently produces the non redundant closed 

subspace clusters. 

2. Related Work 

Subspace clustering finds clusters from a subset of attributes. 

There exist many algorithms which rely upon the density of 

objects to form clusters. The density-connected subspace 

clustering finds clusters based on the notion of density 

connectedness [1]. An object o is said to be core object if it 

contains at least minpts number of objects in its surrounding 

area of influence where minpts is specified by the user. An 

object o1 is said to be directly density reachable from o2 if o1 is 

a neighbour of o2 and o2 is a core object. An object o1 is said to 

be density reachable from o2 if there exist a set of objects x1 to 

xn such that x1 is o2 and xn is o1 and xi+1 is directly density 

reachable from xi. Two objects o1 and o2 are said to be density 

connected if there exist a third object o3 such that both o1 and 

o2 are density reachable from o3. The density connected 

subspace clustering algorithm connects all density connected 

points and thus forms clusters [1]. However most of the 

subspace clusters resulted from this algorithm are redundant. 

There are some other algorithms which eliminate the 

redundant clusters both locally and globally [2]. These 

approaches suffer from the high computational cost of 

generating subspace clusters. Instead of generating all the 

subspace clusters, from the set of lower dimensional 

projections the clusters in higher dimensions are approximated 

[3]. Initially the set of one dimensional subspace clusters are 

formed by using any traditional clustering algorithm. Then the 

set of two dimensional subspace clusters are computed by 

taking the intersection of elements in the clusters of two 

different one dimensional spaces. These lower dimensional 

clusters are organized into k groups. Finally k representatives 

are selected one from each group. There is a drawback with this 

approach. There may be some loss in the coverage of objects. 

For finding maximal clusters in high dimensional data 
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SUBSCALE algorithm gives the density reachable sets by 

maintaining the signature of all elements in each dimension [4]. 

Similar to the subspace clustering, in pattern mining also 

there are quite a few approaches for reducing the number of 

itemsets. One of such approaches discovers frequent itemsets 

based on closed frequent itesmset framework [5]. With the 

discovered frequent closed frequent itemsets, association rules 

are generated. Hence generating association rules from a 

database reduces to generating closed frequent itemsets. Given 

a dataset with n transactions and d items, the set of items that 

repeat a minimum number of times in the dataset are called 

frequent. If the number of items in an itemset is k, the itemset 

is called k-itemset. The support of an itemset is defined as the 

percentage of transactions in which the itemset is present in the 

dataset. From a given dataset first all the frequent itemsets are 

determined along with their supports. For the obtained frequent 

itmesets the corresponding association rules are generated. By 

mining the association rules from the closed frequent itemsets, 

the number of rules generated reduces greatly.  

Another work related to reducing the set of frequent itemsets 

is approximating a set of frequent sets [6]. From the given set 

of frequent itemsets, a set of k itemsets are selected such that 

this set best approximates the given set of frequent itemsets. 

Out of these k sets the approximated set of frequent itemsets is 

coverd as one of the k sets. The other sets are also covered 

which do not contribute the output. This is called the bound 

constraint. From a collection of frequent itemsets, a set of k 

frequent itemsets that approximate the entire collection can 

give a valuable knowledge to the data miner without loss of 

much information. The frequency threshold values of frequent 

itemsets are arbitrary. Hence an approximate collection of 

itemsets can better describe the given set of frequent itemsets.  

The problem of finding k sets is similar to the Max k-Cover 

problem. It is as follows. From a given number of sets, the k 

sets must be selected such that they cover maximum elements 

from the collection. It follows a greedy approach. It first marks 

all the elements as unprocessed. It proceeds iteratively. It adds 

a set after iteration and removes the same from unprocessed list. 

After k iterations the k sets will be obtained. 

The other method for reducing the number of frequent 

itemsets is compressing the frequent itemsets [7]. In this 

method the set of frequent itemsets are clustered based on a 

closeness measure. Then a representative pattern is selected 

from each cluster. The distance between two closed frequent 

patterns is calculated as the ratio of intersection of two itemsets 

to the union of the sets subtracted from 1. When can one say a 

frequent pattern can represent another frequent pattern? A 

frequent pattern fp1 is said to be represented by another 

frequent pattern fp2 if all the items in fp1 are covered in fp2. If a 

cluster consists of n frequent items a representative frequent 

itemset is selected such that the items of all other frequent 

itemsets in the cluster are covered in the representative frequent 

itemset. Once the frequent itemsets are clustered, a 

representative frequent pattern is selected from each cluster. To 

find the representative frequent pattern from a given set of 

frequent itemsets there are two methods; one is RPglobal 

method and another one is RPlocal method [7].  

The first method follows a greedy approach in selecting the 

items for the representative pattern. From the given set of 

frequent patterns the frequent patterns that satisfy the minimum 

support are placed in a set E. For each pattern in the original set, 

if it covers another pattern the latter is inserted into the former. 

The process of adding the representatives to the output and 

removing them from the set E continues. Finally it returns the k 

frequent patterns that represent the entire collection of patterns. 

The second method for finding representative patterns is based 

on a closed pruning criterion. 

There is another way of summarizing the itemsets by 

presenting only the itemsets for which the support counts 

cannot be derived directly [8]. Apart from finding closed 

frequent patterns, there is another method for mining closed 

sequential patterns which uses occurrence checking as the 

pruning criterion [9]. Further, an algorithm finds maximal 

sequential patterns by defining the equivalent neighbours 

approximately with the help of edit distance [10]. 

These methods suffer from the loss of coverage of objects. 

Hence the concept of closedness has been adapted to subspace 

clustering so that it finds the non redundant closed clusters 

without loss of coverage. 

3. Problem Statement 

Given a dataset with n transactions Tr1, Tr2... Trn where each 

transaction Tri consists of items It1... Itk. Here k ⊆ I (the total 

number of items in the dataset). A set of items that occur 

concurrently in the transactions are called itemsets. The support 

of an itemset is defined as the number of transactions in which 

the itemset occurs within the whole dataset. An itemset is 

called frequent if the support of that itemset is greater than or 

equal to minimum support. 

Definition 1. (Frequent Pattern): A frequent pattern is 

defined as a pattern such as an itemset or a subsequence that 

appear frequently in the transactions of a dataset. 

Definition 2. (Closed Frequent Pattern): A frequent pattern 

FP is said to be closed if there does not exist another frequent 

pattern FP' within the same dataset such that FP'⊃FP and sup 

(FP') = sup (FP). 

There is a close association between pattern mining and 

subspace clustering [11], [12]. 

Given a dataset with object set O = {o1, o2... on} and 

dimension set D = {a1, a2... ad}, subspace clustering aims at 

finding set of similar objects which are projected only on a 

subset of attributes. 

Definition 3. (Subspace Cluster): A subspace cluster <M, N> 

is defined as a set of objects M with a set of attributes N such 

that M ⊆ O and N ⊆ D and any two objects oi, oj ∈  M ∀ i, j are 

similar with respect to the similarity measure used for clustering. 

Subspace clustering yields numerous results out of which 

only few clusters give unique information and most of the other 

subspace clusters share almost equivalent information as the 

unique ones shares. It is termed as the notion of redundancy 

[13]. 

Definition 4. (Redundant Subspace Cluster): A subspace 

cluster <M, N> is said to be redundant if there exist another 

subspace cluster <M', N'> such that M = M' and N' ⊃ N. 

There is an important aspect in Definition 4 that is to be 

looked at. When both M and M' are equal, the set of objects 

from a lower dimension (N) are considered as redundant 

because a cluster from the high dimensional subspace provides 

more information. 

The concept of closedness of frequent patterns has been 

applied to the subspace clustering and hence a closed subspace 

cluster can be defined as follows: 
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Definition 5. (Closed Subspace Clusters): A subspace 

cluster <M, N> is said to be closed if there does not exist a 

subspace cluster <M', N'> such that M = M' and N' ⊃ N. 

Hence the problem of finding closed frequent patterns can be 

transformed into the problem of mining closed subspace clusters. 

From the given set of subspace clusters S = {<M, N>}, the 

problem is to find the set of closed subspace clusters where each 

of resultant cluster satisfies the condition in Definition 5. 

4. Mining Closed Clusters 

4.1. Finding Closed Subspace Clusters (FCSC) Algorithm 

Figure 1 depicts the algorithm for efficiently finding closed 

subspace clusters. Step 1 marks all the subspace clusters as 

unvisited. Step 2 marks all subspace clusters as closed. It then 

repeatedly checks for each subspace cluster whether it is closed 

or not. The algorithm searches for a match in any of the higher 

dimensional spaces. 

Algorithm: Finding Closed Subspace Clusters (FCSC)  

Input: Set of subspace clusters S = {<M, N>} 

Output: Set of closed subspace clusters S' = {<M', N'>} 

Method: 

(1)  mark the vStatus of all subspace clusters to false; 

(2)  mark the closedStatus of all subspace clusters to true; 

(3)  do 

(4)  for each subspace cluster <M, N> ∈ S 

(5)    if (<M, N>. vStatus is false) 

(6)      change the vStatus of <M, N> to true;  

(7)      for each subspace clusters {<M', N'> ∈ S 

(8)        if (N' ⊃ N and M = M' ) 

(9)          place all subspace clusters <Mi, N> into a set T 

                and <Mj', N'> into   a set U; 

(10)         flag = checkIfClosed ( T, U ); 

(11)         if ( flag = true ) 

(12)           for each <M, N> in T 

(13)             <M, N>. closedStatus = false; 

(14)             break; 

(15)           end for 

(16)         end if 

(17)       end if 

(18)     end for 

 (19)     for each <M, N> in T 

(20)       if (<M, N>. closedStatus = false) 

(21)         <Mi, N>. vStatus = true; 

(22)       end if 

(23)     end for 

(24)   end if 

(25) end for 

(26) until the vStatus of all subspace clusters becomes   

        true; 

(27) for each <M, N> in S 

(28)   if (<M, N>. closedStatus=true) 

(29)     place <M, N> in S' 

(30)   end if 

(31) end for 

(32) output S' 

 

Figure 1: Algorithm FCSC 

Procedure checkIfClosed ( T, U ) 

 

(1)  initialise clusterCount=0; 

(2)  if (T.count = U.count) 

(3)    for each <M', N'> in T 

(4)      for each <M', N'> in U 

(5)        if (M = M') 

(6)          increment clusterCount; 

(7)        end if 

(8)      end for 

(9)    end for 

(10)  if (clusterCount = T.count) 

(11)    return true; 

(12)  else 

(13)    return false; 

Figure 2: Procedure CheckIfClosed 

If a match occurs, in step 10 the algorithm calls another 

procedure checkIfClosed. This procedure checks whether all the 

clusters in both subspaces are same. In order to accomplish this, 

it first checks whether the number of clusters in both subspaces 

are same. If it is same, it then proceeds further by checking if all 

the clusters are same in both projections. If this routine returns 

true, it means that for the subspace cluster which is under 

process there exist a higher dimensional space with the same set 

of clusters. By the definition of closed subspace cluster there 

should not exist any higher dimensional space such that the set 

of clusters are same. Hence the set of subspace clusters which 

belong to the subspace which is in process are all marked as not 

closed. And all the remaining subspace clusters in the higher 

spaces need not be checked and hence the break statement is 

called. This process repeats until all the subspace clusters have 

been processed. Steps 3 through 26 explain this. After all the 

clusters are processed, the closed clusters are outputted which is 

shown in steps 27 through 32. By the time the algorithm 

terminates all the non closed clusters would have been identified. 

The clusters for which the closed status is not altered will be the 

closed clusters and hence would contribute to the output. 

Finally the FCSC algorithm efficiently outputs the set of non 

redundant and closed clusters. 

4.2. Architectural Flow Diagram 

 

Figure 3: Architectural diagram of FCSC 

Figure 3 gives a broad view of the architecture of the FCSC 

algorithm. It takes the set of subspace clusters as input and 
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checks for each subspace cluster whether it is closed or not. If it 

is closed, places it in the output stack otherwise proceeds with 

the next item in the list. Finally it outputs the set of closed 

clusters. 

5. Result Analysis 

The experiments are conducted on HP G42 Notebook PC with 

Windows 7 Home Basic, 3 GB RAM and Intel(R) Core(TM) i3 

CPU M370 @ 2.40GHz. The algorithms are tested on various 

benchmark datasets taken from UCI Repository [14]. The 

measures, number of clusters and purity have been used to 

compare FCSC algorithm with the existing SUBCLU algorithm. 

Purity of clusters is computed by taking the percentage of total 

number of elements that are classified correctly [15]. 

Table 1:  Number of clusters generated by SUBCLU & FCSC 

Comparison of no. of clusters between SUBCLU & 

FCSC 

DATASET NAME SUBCLU FCSC 

Bank Note 15 6 

Vertebralc2w 71 44 

User Knowledge Modelling 120 115 

Seeds 199 143 

Wholesale Customers 309 271 

yeast 967 772 

Wine Quality 1363 1258 

Image Segmentation 1538 1361 

Steel Plates 1827 1639 

Table 1 shows the number of clusters generated by both 

SUBCLU and FCSC algorithms. It is quite obvious that the 

number of clusters have been greatly reduced. Figure 4 depicts 

the graphical representation of comparison between number of 

clusters generated by SUBCLU and FCSC. 

 

Figure 4: Number of cluster by SUBCLU & FCSC 

 

Figure 5: Purity of SUBCLU & FCSC 

Figure 5 illustrates the comparison of purity of clusters 

generated by both the algorithms. From the Figure 5 it is clear 

that there is a marginal improvement in the quality of clusters. 

The FCSC algorithm works on the set of subspace clusters 

generated by any subspace clustering algorithm and hence it can 

be said that it is a post mining algorithm. It only removes all the 

redundant subspace clusters. As it does not alter the original 

clusters, 100% coverage of objects is guaranteed. 

6. Conclusion 

As the very use of subspace clustering has been restricted 

because of the reason that it produces tremendous number of 

results out of which most of them are redundant. By eliminating 

the redundant subspace clusters, the algorithm FCSC presents 

only the closed clusters which are less in number and hence 

easier for interpretation. Based on thorough experiments the 

FCSC algorithm is proved to be reducing the number of clusters 

on an average by 12% without loss of coverage of objects. The 

average purity of clusters is also marginally improved. 
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