
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 10 Oct. 2016, Page No. 18399-18403

S. Anuradha
1 IJECS Volume 05 Issue 10 Oct., 2016 Page No.18399-18403 Page 18399

An Efficient Method for Finding Closed Subspace Clusters for High

Dimensional Data
S. Anuradha

1
, K.B. Madhuri

2
, B. Jaya Lakshmi

3

1Gayatri Vidya Parishad College of Engineering,

Visakhapatnam, Andhra Pradhesh, India

anuradha.sanapala@gmail.com

2Gayatri Vidya Parishad College of Engineering,

Visakhapatnam, Andhra Pradhesh, India

kbmcst1@yahoo.com

3Gayatri Vidya Parishad College of Engineering,

Visakhapatnam, Andhra Pradhesh, India

mdjayadas@gmail.com

Abstract: Subspace clustering tries to find groups of similar objects from the given dataset such that the objects are projected on only a

subset of the feature space. It finds meaningful clusters in all possible subspaces. However, when it comes to the quality of the resultant

subspace clusters most of the subspace clusters are redundant. These redundant subspace clusters don’t provide new information. Hence

there is a need for eliminating such redundant subspace clusters and output only those subspace clusters which are non redundant and each

of them contributing some unique information to the data miner. The set of non redundant subspace clusters is helpful for easy analysis. In

order to accomplish this, the concept of closedness has been applied to the subspace clusters. An algorithm known as Finding Closed

Subspace Clusters (FCSC) is presented which efficiently outputs the closed subspace clusters from a given set of subspace clusters produced

from any subspace clustering algorithm. Based on the experimental study conducted, the number of clusters generated by FCSC has been

greatly reduced when compared to the existing SUBCLU algorithm and the average purity of the clusters is marginally improved without loss

of coverage.

Keywords: Curse of dimensionality, Subspace Clustering, Redundant Clusters, Closed Clusters.

1. Introduction

Clustering is the process of finding similar object sets from the

given dataset. Most of the traditional clustering algorithms try

to find clusters in the whole feature space. These algorithms

work well if the number of dimensions is fewer. However, as

the number of dimensions increases the similarity measures

such as distance between objects become meaningless. Usually

the objects are sparsely distributed when the number of

dimensions increases. This difficulty is referred to as the „curse

of dimensionality‟. Hence the concept of subspace clustering

has been evolved to resolve the dimensionality issue. Subspace

clustering tries to find meaningful clusters in subsets of the

whole feature space.

Despite the fact that the subspace clustering resolves the

issues of the traditional clustering for high dimensional data,

there is a drawback associated with it. Subspace clustering

generates numerous results and most of them are redundant.

This paper proposes a new concept called closed clusters. The

closed clusters eliminate the problem of redundancy by

producing only the non redundant subspace clusters from the

set of results generated by any subspace clustering algorithm.

From the results generated by any subspace clustering

algorithm FCSC efficiently produces the non redundant closed

subspace clusters.

2. Related Work

Subspace clustering finds clusters from a subset of attributes.

There exist many algorithms which rely upon the density of

objects to form clusters. The density-connected subspace

clustering finds clusters based on the notion of density

connectedness [1]. An object o is said to be core object if it

contains at least minpts number of objects in its surrounding

area of influence where minpts is specified by the user. An

object o1 is said to be directly density reachable from o2 if o1 is

a neighbour of o2 and o2 is a core object. An object o1 is said to

be density reachable from o2 if there exist a set of objects x1 to

xn such that x1 is o2 and xn is o1 and xi+1 is directly density

reachable from xi. Two objects o1 and o2 are said to be density

connected if there exist a third object o3 such that both o1 and

o2 are density reachable from o3. The density connected

subspace clustering algorithm connects all density connected

points and thus forms clusters [1]. However most of the

subspace clusters resulted from this algorithm are redundant.

There are some other algorithms which eliminate the

redundant clusters both locally and globally [2]. These

approaches suffer from the high computational cost of

generating subspace clusters. Instead of generating all the

subspace clusters, from the set of lower dimensional

projections the clusters in higher dimensions are approximated

[3]. Initially the set of one dimensional subspace clusters are

formed by using any traditional clustering algorithm. Then the

set of two dimensional subspace clusters are computed by

taking the intersection of elements in the clusters of two

different one dimensional spaces. These lower dimensional

clusters are organized into k groups. Finally k representatives

are selected one from each group. There is a drawback with this

approach. There may be some loss in the coverage of objects.

For finding maximal clusters in high dimensional data

DOI: 10.18535/ijecs/v5i10.31

S. Anuradha
1 IJECS Volume 05 Issue 10 Oct., 2016 Page No.18399-18403 Page 18400

SUBSCALE algorithm gives the density reachable sets by

maintaining the signature of all elements in each dimension [4].

Similar to the subspace clustering, in pattern mining also

there are quite a few approaches for reducing the number of

itemsets. One of such approaches discovers frequent itemsets

based on closed frequent itesmset framework [5]. With the

discovered frequent closed frequent itemsets, association rules

are generated. Hence generating association rules from a

database reduces to generating closed frequent itemsets. Given

a dataset with n transactions and d items, the set of items that

repeat a minimum number of times in the dataset are called

frequent. If the number of items in an itemset is k, the itemset

is called k-itemset. The support of an itemset is defined as the

percentage of transactions in which the itemset is present in the

dataset. From a given dataset first all the frequent itemsets are

determined along with their supports. For the obtained frequent

itmesets the corresponding association rules are generated. By

mining the association rules from the closed frequent itemsets,

the number of rules generated reduces greatly.

Another work related to reducing the set of frequent itemsets

is approximating a set of frequent sets [6]. From the given set

of frequent itemsets, a set of k itemsets are selected such that

this set best approximates the given set of frequent itemsets.

Out of these k sets the approximated set of frequent itemsets is

coverd as one of the k sets. The other sets are also covered

which do not contribute the output. This is called the bound

constraint. From a collection of frequent itemsets, a set of k

frequent itemsets that approximate the entire collection can

give a valuable knowledge to the data miner without loss of

much information. The frequency threshold values of frequent

itemsets are arbitrary. Hence an approximate collection of

itemsets can better describe the given set of frequent itemsets.

The problem of finding k sets is similar to the Max k-Cover

problem. It is as follows. From a given number of sets, the k

sets must be selected such that they cover maximum elements

from the collection. It follows a greedy approach. It first marks

all the elements as unprocessed. It proceeds iteratively. It adds

a set after iteration and removes the same from unprocessed list.

After k iterations the k sets will be obtained.

The other method for reducing the number of frequent

itemsets is compressing the frequent itemsets [7]. In this

method the set of frequent itemsets are clustered based on a

closeness measure. Then a representative pattern is selected

from each cluster. The distance between two closed frequent

patterns is calculated as the ratio of intersection of two itemsets

to the union of the sets subtracted from 1. When can one say a

frequent pattern can represent another frequent pattern? A

frequent pattern fp1 is said to be represented by another

frequent pattern fp2 if all the items in fp1 are covered in fp2. If a

cluster consists of n frequent items a representative frequent

itemset is selected such that the items of all other frequent

itemsets in the cluster are covered in the representative frequent

itemset. Once the frequent itemsets are clustered, a

representative frequent pattern is selected from each cluster. To

find the representative frequent pattern from a given set of

frequent itemsets there are two methods; one is RPglobal

method and another one is RPlocal method [7].

The first method follows a greedy approach in selecting the

items for the representative pattern. From the given set of

frequent patterns the frequent patterns that satisfy the minimum

support are placed in a set E. For each pattern in the original set,

if it covers another pattern the latter is inserted into the former.

The process of adding the representatives to the output and

removing them from the set E continues. Finally it returns the k

frequent patterns that represent the entire collection of patterns.

The second method for finding representative patterns is based

on a closed pruning criterion.

There is another way of summarizing the itemsets by

presenting only the itemsets for which the support counts

cannot be derived directly [8]. Apart from finding closed

frequent patterns, there is another method for mining closed

sequential patterns which uses occurrence checking as the

pruning criterion [9]. Further, an algorithm finds maximal

sequential patterns by defining the equivalent neighbours

approximately with the help of edit distance [10].

These methods suffer from the loss of coverage of objects.

Hence the concept of closedness has been adapted to subspace

clustering so that it finds the non redundant closed clusters

without loss of coverage.

3. Problem Statement

Given a dataset with n transactions Tr1, Tr2... Trn where each

transaction Tri consists of items It1... Itk. Here k ⊆ I (the total

number of items in the dataset). A set of items that occur

concurrently in the transactions are called itemsets. The support

of an itemset is defined as the number of transactions in which

the itemset occurs within the whole dataset. An itemset is

called frequent if the support of that itemset is greater than or

equal to minimum support.

Definition 1. (Frequent Pattern): A frequent pattern is

defined as a pattern such as an itemset or a subsequence that

appear frequently in the transactions of a dataset.

Definition 2. (Closed Frequent Pattern): A frequent pattern

FP is said to be closed if there does not exist another frequent

pattern FP' within the same dataset such that FP'⊃FP and sup

(FP') = sup (FP).

There is a close association between pattern mining and

subspace clustering [11], [12].

Given a dataset with object set O = {o1, o2... on} and

dimension set D = {a1, a2... ad}, subspace clustering aims at

finding set of similar objects which are projected only on a

subset of attributes.

Definition 3. (Subspace Cluster): A subspace cluster <M, N>

is defined as a set of objects M with a set of attributes N such

that M ⊆ O and N ⊆ D and any two objects oi, oj ∈ M ∀ i, j are

similar with respect to the similarity measure used for clustering.

Subspace clustering yields numerous results out of which

only few clusters give unique information and most of the other

subspace clusters share almost equivalent information as the

unique ones shares. It is termed as the notion of redundancy

[13].

Definition 4. (Redundant Subspace Cluster): A subspace

cluster <M, N> is said to be redundant if there exist another

subspace cluster <M', N'> such that M = M' and N' ⊃ N.

There is an important aspect in Definition 4 that is to be

looked at. When both M and M' are equal, the set of objects

from a lower dimension (N) are considered as redundant

because a cluster from the high dimensional subspace provides

more information.

The concept of closedness of frequent patterns has been

applied to the subspace clustering and hence a closed subspace

cluster can be defined as follows:

DOI: 10.18535/ijecs/v5i10.31

S. Anuradha
1 IJECS Volume 05 Issue 10 Oct., 2016 Page No.18399-18403 Page 18401

Definition 5. (Closed Subspace Clusters): A subspace

cluster <M, N> is said to be closed if there does not exist a

subspace cluster <M', N'> such that M = M' and N' ⊃ N.

Hence the problem of finding closed frequent patterns can be

transformed into the problem of mining closed subspace clusters.

From the given set of subspace clusters S = {<M, N>}, the

problem is to find the set of closed subspace clusters where each

of resultant cluster satisfies the condition in Definition 5.

4. Mining Closed Clusters

4.1. Finding Closed Subspace Clusters (FCSC) Algorithm

Figure 1 depicts the algorithm for efficiently finding closed

subspace clusters. Step 1 marks all the subspace clusters as

unvisited. Step 2 marks all subspace clusters as closed. It then

repeatedly checks for each subspace cluster whether it is closed

or not. The algorithm searches for a match in any of the higher

dimensional spaces.

Algorithm: Finding Closed Subspace Clusters (FCSC)

Input: Set of subspace clusters S = {<M, N>}

Output: Set of closed subspace clusters S' = {<M', N'>}

Method:

(1) mark the vStatus of all subspace clusters to false;

(2) mark the closedStatus of all subspace clusters to true;

(3) do

(4) for each subspace cluster <M, N> ∈ S

(5) if (<M, N>. vStatus is false)

(6) change the vStatus of <M, N> to true;

(7) for each subspace clusters {<M', N'> ∈ S

(8) if (N' ⊃ N and M = M')

(9) place all subspace clusters <Mi, N> into a set T

 and <Mj', N'> into a set U;

(10) flag = checkIfClosed (T, U);

(11) if (flag = true)

(12) for each <M, N> in T

(13) <M, N>. closedStatus = false;

(14) break;

(15) end for

(16) end if

(17) end if

(18) end for

 (19) for each <M, N> in T

(20) if (<M, N>. closedStatus = false)

(21) <Mi, N>. vStatus = true;

(22) end if

(23) end for

(24) end if

(25) end for

(26) until the vStatus of all subspace clusters becomes

 true;

(27) for each <M, N> in S

(28) if (<M, N>. closedStatus=true)

(29) place <M, N> in S'

(30) end if

(31) end for

(32) output S'

Figure 1: Algorithm FCSC

Procedure checkIfClosed (T, U)

(1) initialise clusterCount=0;

(2) if (T.count = U.count)

(3) for each <M', N'> in T

(4) for each <M', N'> in U

(5) if (M = M')

(6) increment clusterCount;

(7) end if

(8) end for

(9) end for

(10) if (clusterCount = T.count)

(11) return true;

(12) else

(13) return false;

Figure 2: Procedure CheckIfClosed

If a match occurs, in step 10 the algorithm calls another

procedure checkIfClosed. This procedure checks whether all the

clusters in both subspaces are same. In order to accomplish this,

it first checks whether the number of clusters in both subspaces

are same. If it is same, it then proceeds further by checking if all

the clusters are same in both projections. If this routine returns

true, it means that for the subspace cluster which is under

process there exist a higher dimensional space with the same set

of clusters. By the definition of closed subspace cluster there

should not exist any higher dimensional space such that the set

of clusters are same. Hence the set of subspace clusters which

belong to the subspace which is in process are all marked as not

closed. And all the remaining subspace clusters in the higher

spaces need not be checked and hence the break statement is

called. This process repeats until all the subspace clusters have

been processed. Steps 3 through 26 explain this. After all the

clusters are processed, the closed clusters are outputted which is

shown in steps 27 through 32. By the time the algorithm

terminates all the non closed clusters would have been identified.

The clusters for which the closed status is not altered will be the

closed clusters and hence would contribute to the output.

Finally the FCSC algorithm efficiently outputs the set of non

redundant and closed clusters.

4.2. Architectural Flow Diagram

Figure 3: Architectural diagram of FCSC

Figure 3 gives a broad view of the architecture of the FCSC

algorithm. It takes the set of subspace clusters as input and

DOI: 10.18535/ijecs/v5i10.31

S. Anuradha
1 IJECS Volume 05 Issue 10 Oct., 2016 Page No.18399-18403 Page 18402

checks for each subspace cluster whether it is closed or not. If it

is closed, places it in the output stack otherwise proceeds with

the next item in the list. Finally it outputs the set of closed

clusters.

5. Result Analysis

The experiments are conducted on HP G42 Notebook PC with

Windows 7 Home Basic, 3 GB RAM and Intel(R) Core(TM) i3

CPU M370 @ 2.40GHz. The algorithms are tested on various

benchmark datasets taken from UCI Repository [14]. The

measures, number of clusters and purity have been used to

compare FCSC algorithm with the existing SUBCLU algorithm.

Purity of clusters is computed by taking the percentage of total

number of elements that are classified correctly [15].

Table 1: Number of clusters generated by SUBCLU & FCSC

Comparison of no. of clusters between SUBCLU &

FCSC

DATASET NAME SUBCLU FCSC

Bank Note 15 6

Vertebralc2w 71 44

User Knowledge Modelling 120 115

Seeds 199 143

Wholesale Customers 309 271

yeast 967 772

Wine Quality 1363 1258

Image Segmentation 1538 1361

Steel Plates 1827 1639

Table 1 shows the number of clusters generated by both

SUBCLU and FCSC algorithms. It is quite obvious that the

number of clusters have been greatly reduced. Figure 4 depicts

the graphical representation of comparison between number of

clusters generated by SUBCLU and FCSC.

Figure 4: Number of cluster by SUBCLU & FCSC

Figure 5: Purity of SUBCLU & FCSC

Figure 5 illustrates the comparison of purity of clusters

generated by both the algorithms. From the Figure 5 it is clear

that there is a marginal improvement in the quality of clusters.

The FCSC algorithm works on the set of subspace clusters

generated by any subspace clustering algorithm and hence it can

be said that it is a post mining algorithm. It only removes all the

redundant subspace clusters. As it does not alter the original

clusters, 100% coverage of objects is guaranteed.

6. Conclusion

As the very use of subspace clustering has been restricted

because of the reason that it produces tremendous number of

results out of which most of them are redundant. By eliminating

the redundant subspace clusters, the algorithm FCSC presents

only the closed clusters which are less in number and hence

easier for interpretation. Based on thorough experiments the

FCSC algorithm is proved to be reducing the number of clusters

on an average by 12% without loss of coverage of objects. The

average purity of clusters is also marginally improved.

References

[1] K. Kailing, H.P. Kriegel and P. Kroger, “Density-

connected subspace clustering for high dimensional data,”

In Proceedings of the 4th SIAM International Conference

on Data Mining, Orlando, FL, pp. 46-257, 2004.

[2] I. Assent, E. Muller, S. Gunnemann, R. Krieger and T.

Seidl, “Less is more: Non-redundant subspace clustering,”

In MultiClust: 1st International Workshop on

Discovering, Summarizing and Using Multiple

Clusterings Held in Conjunction with KDD

2010,Washington, DC, 2010.

[3] G. Chen, X. Ma, D. Yang and S. Tang, “Efficient

approaches for summarizing subspace clusters into k

representatives,” In Soft Computing, 15, pp. 845-853,

2011.

[4] Jingbo Shang, Jian Peng, and Jiawei Han, “MACFP:

Maximal Approximate Consecutive Frequent Pattern

Mining under Edit Distance,” In Proceedings of 2016

0
200
400
600
800

1000
1200
1400
1600
1800
2000

N
u
m

b
er

 o
f

C
lu

st
er

s

Datasets

Number of Clusters generated by SUBCLU

& FCSC

SUBCLU FCSC

0.18
0.23
0.28
0.33
0.38
0.43
0.48
0.53
0.58
0.63
0.68

P
u
ri

ty

Datasets

Comparison of purity between SUBCLU &

FCSC

SUBCLU FCSC

DOI: 10.18535/ijecs/v5i10.31

S. Anuradha
1 IJECS Volume 05 Issue 10 Oct., 2016 Page No.18399-18403 Page 18403

SIAM International Conference on Data Mining (SDM),

2016.

[5] Pasquier N, Bastide Y, Taouil R and Lakhal L,

“Discovering frequent closed itemsets for association

rules,” In Lecture notes in computer science: database

theory, ICDT, pp. 398–416, 1999.

[6] Afrati F, Gionis A and Mannila H, “Approximating a

collection of frequent set,” In Proceedings of the 10th

ACM SIGKDD international conference on knowledge

discovery and data mining (KDD‟04), pp. 12–19, 2004.

[7] Xin D, Han J, Yan X and Cheng H, “Mining compressed

frequent pattern sets,” In Proceedings of the 31st

international conference on very large data bases

(VLDB‟05), pp. 709–720, 2005.

[8] T. Calders and B. Goethals, “Non-derivable itemset

mining,” In Data Mining Knowledge Discovery, 14 (1),

pp. 171_206, 2007.

[9] V. Purushothama Raju and G.P. Saradhi Varma, “Mining

closed sequential patterns in large sequence databases,”

International Journal of Database Management Systems

(IJDMS), 7 (1), February 2015.

[10] Amardeep K and Amitava D, “A novel algorithm for fast

and scalable subspace clustering of high-dimensional

data,” Journal of Big Data, August 2015.

[11] J. Vreeken and A. Zimek, “When Pattern met Subspace

Cluster a Relationship Story”, 2011.

[12] A. Zimek, I. Assent and J. Vreeken, “Frequent Pattern

Mining Algorithms for Data Clustering” In Frequent

Pattern Mining. C. C. Aggarwal and J. Han, Eds.,

Switzerland: Springer International Publishing, pp. 403-

423, 2014.

[13] E. Muller, I. Assent, S. Gunnemann, R. Krieger and T.

Seidl, “Relevant Subspace Clustering: mining the most

interesting non-redundant concepts in high dimensional

data,” In ICDM, pp. 377-386, 2009.

[14] M. Lichman,. “UCI Machine Learning Repository.”

[Online]. Available: http://archive.ics.uci.edu/ml. Irvine,

CA: University of California, School of Information and

Computer Science, 2003. [Accessed: August 2016].

[15] Evaluation of clustering [Online]. Available:

http://nlp.stanford.edu/IRbook/html/htmledition/evaluatio

n-of-clustering-1.html, Cambridge University Press, 2009.

[Accessed: September, 2016].

Authors’ Profiles

S. Anuradha received B.Tech. degree in Computer Science and

Engineering from Gayatri Vidya Parishad College of Engineering,

Visakhapatnam, India in 2010. From 2010-2014 she worked as a

project engineer with Wipro Technologies, Chennai, India. Currently

she is pursuing M.Tech. in Software Engineering in Gayatri Vidya

Parishad College of Engineering (Autonomous), Visakhapatnam,

India.

K.B. Madhuri received M.Tech. degree in Computer Science and

Technology from Andhra University in 1999. She obtained Ph.D from

JNTU, Hyderabad in 2009. Presently she is working as Professor in

department of Information Technology at Gayatri Vidya Parishad

College of Engineering (A), Visakhapatnam, Andhra Pradesh, India.

Her research interests include Data Mining, Pattern Recognition, Data

warehousing and RDBMS. She published research papers in National

and International Journals. She is a member of IEEE and associate

member of Institute of Engineers (India).

B. Jaya Lakshmi received M.Tech. degree in Computer Science and

Technology (AI&R) from Andhra University in 2009. She is pursuing

Ph.D in JNTUK, Kakinada. Presently she is working as Assistant

Professor in department of Information Technology at Gayatri Vidya

Parishad College of Engineering (A), Visakhapatnam, Andhra

Pradesh, India. Her research interests include Data Mining and Pattern

Recognition. She published research papers in International Journals.

She obtained UGC minor research project in 2014.

