
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 11 November 2017, Page No. 23224-23228

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i11.24

Mohammed Faiz Aboalmaaly, IJECS Volume 6 Issue 11 November 2017 Page No. 23224-23228 Page 23224

Data-Level Parallel Approaches for the H.264/AVC: A Review from the

Encoder and the Decoder Perspectives

Mohammed Faiz Aboalmaaly

Computer Techniques Engineering, Alsafwa University College,

Alma’amlachi, Karbala, Iraq

Abstract:

In order to enable easier transmission and storage of videos, video-coding techniques are used as data compression process that is

intended to reduce the size of raw video without sacrificing its visual quality. The H.264 is relatively one of the recent video

compression standards, which has proved to outperform former standards in terms of compression efficiency. However, it’s

associated with mush higher computational complexity. Several software-based as well as hardware-based approaches have been

suggested to tackle this problem by using several flavours of data-level parallel approaches for the encoder and decoder sides. In

this paper, these approaches are presented and compared in form of a comparative review. The suitability of one particular

approach is determined based to the architecture used.

Keywords: video coding, distributed shared memory architectures, encoding latency, parallel scalability, GPU.

1. Introduction

Video compression is a process intending at reducing the size

of raw video without sacrificing the visual quality of video in

order to enable easier transmission and storage of videos [1].

Video compression is a process that requires the existence of

two complementary systems; the encoder and the decoder.

Prediction, transformation and quantization, and entropy

coding are the common techniques in video compression

algorithms. The encoder system carries on the processes

above, while the decoder system involves the same processes

in reverse order [2]. With regard to the emergence of the

HEVC standard, the H.264 is still relatively considered as one

of the recent video compression standards, which has proved

to outperform former standards in terms of compression

efficiency. However, What makes the H.264 more resource-

intensive when compared to previous video compression

solutions is the added new features that are intended to further

increase the compression efficiency while keeping the visual

quality saturated [3]. In a comparison with former standards,

the introduction of the new features has noticeably improved

the compression efficiency. Consequently, the computational

complexity of the H.264 video coding standard has increased

by a factor of ten for the encoder and about 2 to 4 times better

for the decoder side [4]. To mitigate the drawbacks of its

higher complexity, parallelism is adopted to lessen the

encoding or decoding time of the H.264 codec.

In a view of the H.264 codec, it has been proved that the

data-level parallelization has outperformed the task-level

parallelization [5] due to the several kinds of dependencies

among the coding components of the H.264 codec. This paper

presents reviews some of the attempts aimed at lessening the

complexity of the H.264 vide coding standard based on data-

level parallelism utilizing different parallel architectures. The

rest of this paper is arranged as follows: Section 2 gives the

necessary background covering some basic terminology;

section 3 covers the different parallel granularities of the

H.264 and finally the conclusions are given in the last section.

2. Background
Both the encoder and the decoder must handle the processes of

prediction, transformation and quantization, and entropy

coding. Predication is a technique in which information of a

given pixels in a video frame can be predicted from neighbors

pixels in the same frame (intra-prediction) or from a

corresponding position of previously compressed frames

(inter-prediction). This technique depends of the correlation of

the neighbors’ pixels, which is normally high in videos.

Transformation is the process that transforms the spatial

domain to an equivalent frequency domain. The purpose of

transformation in video coding is to make video signals are

amenable to be compressed. The quantization process is

achieved by divides the transform coefficients resulted from

the transformation process by an integer value (quantization

parameter) to achieve the targeted bitrate. Finally, entropy

coding is purposely utilized to explore the statistical

redundancy of videos in order to further reduce their size [1].

Approaches targeting lessening the computational

complexity of the H.264 are numerous. These approaches

differ in terms of the orientation used. In this aspect, hardware-

oriented along with software-oriented approaches have been

examined in pervious works. Example to the former is

achieved by utilizing a special hardware as an accelerator. The

application specific integrated circuit (ASIC) and the field

programmable gate array (FPGA) are accelerators’ examples

to this hardware-oriented category. Hardware-oriented

methods have shown to achieve good performance efficiency.

However, there main problem is the difficulty in

reconfiguration and reprogramming [6]. Further, this approach

takes longer time to market when compared to the software-

oriented approaches. In the software-oriented approach,

lessening the complexity of H.264 is attained by the aid of

complexity reduction as well as parallel computing. In the

http://www.ijecs.in/

Mohammed Faiz Aboalmaaly, IJECS Volume 6 Issue 11 November 2017 Page No. 23224-23228 Page 23225

complexity reduction approach, reducing the complexity is

done by removing some of the features of the video

compression algorithm of the H.264 that are subjectively

deemed as redundant. Meanwhile, parallel video compression

is achieved when the compression components are

decomposed with regard to the task, data or a combination of

them among several available computing resources. However,

because of its scope of standard, where the bit stream and the

decoding processes are tightly defined, opportunities of

applying complexity reduction or parallel computing on the

decoding side would be limited in comparison with the

encoding side of the H.264 standard.

3. Parallel Granularities of the H.264 Standard

Before exploring the data-levels parallel attempts of the H.264

standard, it is essential to know how these levels are defined.

In fact, in terms of parallelism, decomposing data into smaller

parts is possible if no or weak dependency among these parts

could be identified. Thus, group of pictures (GOP), frames,

slices, macroblock (MB), and blocks are the five possible

granularities, which are normally exploited, in the H.264 video

coding standard. Figure 1 shows their relative size with regard

to one video sequence.

Figure 1: Granularities of the H.264 Standard

GOPs are used for synchronization purposes because there

are no temporal dependencies among them. Each GOP is

composed of a set of frames. These frames are possibly having

temporal dependencies based on their types due to the motion

prediction among frames. Each frame is further divided up into

one or more slices. The slice is a standalone unit for encoding

and decoding and there are no spatial dependencies between

slices. Moreover, each slice is further composed of a set of

MBs. MBs are the basic units of prediction. H.264 allows

variable sizes of each MB. Additionally, MBs are composed of

few blocks wherein each block is composed of picture

samples, and these pictures samples can be processed in

parallel.

3.1 GOP-level

Few studies have investigated the adoption of this level of

parallelism for the H.264 encoder. For instance, a hierarchical

parallelisation approach for H.264 encoder is introduced in [7].

In the hierarchy, shown in Figure 2.14, a GOP-level

parallelism and a slice-level parallelism are combined together

to overcome the latency problem of using a GOP-level only.

Using MPI and multithreaded parallelism, the implementation

parallelises H.264 encoder on a cluster machine.

Synchronisation was the main problem that produces a loss in

the encoding speedup, which is believed to be due to the

double layers of parallelism that introduces several points of

barriers [8].

Figure 2: Hierarchical H.264 Parallel Encoder

Further, a GOP-level parallelization for the H.264 decoder is

proposed in [9]. Different sizes of GOP are examined (4, 20,

and 40) on a shared memory clustering machine equipped with

40 cores. Regardless the size of a GOP, linear speedup is

achieved with up to 11 cores. However, when new processing

elements are added, a saturated speedup was noticed for the 20

and 40 GOP sizes, while a sub-linear speedup is achieved for

the parallel decoder with 4 frames per GOP. These outcomes

show that the size of GOP has a direct impact on the parallel

speedup. In fact, the memory bottleneck is remaining with

coarse-grained parallelism even using a state of the art

computing processors.

However, because GOP-level is the coarsest level for the

H.264 codec, the invention at this level of parallelism is

limited and that explain the scarce number of studies related to

this level. The standard has already specified that each GOP is

a coding independent unit of both spatial as well as temporal

dependencies. The parameters that would be amenable to

modify are the number of frames in each GOP [10] and the

frames’ type sequence. In addition, the way each GOP

processed in parallel would vary and such variation can be

motivated by the hardware architecture used.

3.2 Frame-level

Frame-level parallelism is achieved by the simultaneous

coding of independent frames in one GOP. Few numbers of

frames can be coded in parallel. This limitation is imposed by

the existence of B frames (prediction can be from previous and

next encoded frames). Hence, frame-level parallelism would

be more promising at the H.264 baseline profile, since baseline

profile does not support B frames. Furthermore, this level dose

not incurs any increase in the bit rate or degradation in the

video quality.

The frame-parallel encoding scheme based on encoding

picture frames that share no data dependency is proposed in

[11]. Up to three concurrent encoding frames only can be

reached due to the dependency among frames. However, a

reduction of 66% is achieved of the system bandwidth and no

time measurements were shown.

Mohammed Faiz Aboalmaaly, IJECS Volume 6 Issue 11 November 2017 Page No. 23224-23228 Page 23226

3.3 Slice-level

Independently, numerous studies have relied on this level of

parallelism. As previously mentioned, this level maps well on

the shared memory architectures. For instance, an adaptive

slice control scheme is proposed by [12] to parallelize the

H.264 encoder. The encoder decides the number of slices

before encoding each time at per-frame bases. Using a four-

core machine, a speedup of 3.03x in the encoding speed is

achieved over the serial implementation. The proposed

solution relies on the fact that the encoding complexity over

some parts of the frame (motion) is significantly different from

other parts (low motion). While when each frame shows

normality in the complexity of encoding among slices, the

solution will not show any speedup gain, and the proposed

solution will not be more than an extra overhead in deciding

the number of slices that will lead to an extra encoding time.

At the same level of this parallel unit (slice), the study

conducted by [13] proposes an implementation for the parallel

algorithms of H.264 encoder based on Intel CPU with hyper-

threading architecture. The idea is to split a frame into several

slices, which are processed by multiple threads, resulting

speedups ranging from 3.1x to 3.7x on a system of 4 Intel

Xeon processors with Hyper-Threading disabled.

Additionally, a strip-wise parallel approach is proposed in

[14]. The idea is based on statically decomposing the entire

video frame into strips. Each strip may contain one or more

slices. Each strip is encoded by one processer. These strips are

overlapped to guarantee that no break in data dependency will

occur at the strip boundaries. However, data are still required

to be transferred (synchronization) from one processer to

another. In particular, the neighbor data is 16 pixels above the

top of the strip and 16 pixels below the bottom of the strip.

Test results are compared with the JM reference software [15].

The hardware platform was equipped with two processers each

with four cores. The speedup achieved was up to six times

more in comparison with the serial implementation of the

video encoder. A decrease in the parallel efficiency was

noticed due to the increase in the data exchange.

Similar to the work proposed in [12], an adaptive slice size

control is proposed in [16]. The idea behind this scheduling

technique is using an MB mode selection a pre-processing step

in order to determine the size of slice. This step is suggested to

provide a uniformity of the per core encoding workload.

Simulation results based on the JM software reference shows

up to 57.30% reduction in the encoding time over the fixed-

size slice-level approach.

Decoding using slice-level parallelism has been presented in

[17]. The idea of the work was based on applying decoding

time prediction at the encoder stage. This requires the decoder

to inform the encoder about the time required for each slice to

decode within the frame so the encoder can accordingly adjust

the size of each slice to approximate the decoding time of

slices. Speedup has been achieved compared to the parallel

uniform slice approach. However, essentially, this approach

requires that the encoder and the decoder are presented which

apart from the online coding is not possible.

In terms of parallel H.264, slice-level is a trade-off method and

it is also the most universal parallelization method employed to

parallelize H.264 codec [12].

3.4 MB and block-level

Place At a finer level, in [18], an MB region partitioning is

proposed to explore the parallelisation at the MB-level. A one-

dimensional (vertical) partitioning is suggested to the frame

and maps each partition to different processors, as shown in

Figure 3. Then, a wavefront technique, shown in Figure 4, is

used for each partition for encoding. However, in order to

avoid data dependency, processors start to encode data after a

short time one by one, and during the time a processor could

encode a row of MBs in a MB region and transfer required

reconstructed data to the next adjoining processor, which will

propagate a synchronisation overhead. This synchronisation

will become more annoying if the workload of each MB region

is significantly unequal. Simulation results of four processors

show a speedup up to 3.33 compared to the sequential

reference encoder JM 10.2 using a CIF (352 × 288) video

sequence.

Figure 3: MB Region Partitioning of a Frame

Figure 4: MB-Level Parallelism using Wavefront Method

The work in [19] proposed a parallel algorithm with a

wavefront-based technique on the analysis of data

dependencies in the H.264 baseline encoder. Data were

mapped onto different processors at the granularity of frames

or MB rows, and the final speedups were up to 3.17 on a

software simulator with four processors. This method of data

partitioning with the wavefront technique avoids damage on

the compression ratio by splitting frames into slices or vertical

partitions. However, the way how the motion estimation is

treated across the vertical partitions with previously encoded

frames is not presented. In fact, this treatment is essential if the

damage on the compression ratio was not allowed. Thus,

missing information has been identified.

Moreover, in several studies such as [20-22], the graphical

processing units (GPUs) have been utilised to parallelise part

of the encoding stages. In particular, motion estimation is

usually ported to be run by using GPUs at the MB-level.

However, in spite of the speedup achieved by these studies, for

instance, in [20], a 20% speedup has been achieved over the

serial implementation the H.264 encoder. The drawback of

Mohammed Faiz Aboalmaaly, IJECS Volume 6 Issue 11 November 2017 Page No. 23224-23228 Page 23227

memory transfer between the CPU and the GPU is still

challenging.

A data parallelism at the MB-level for the H.264 decoder

processes is proposed in [23]. By using the Cell BE as the

target hardware, dependencies between Intra-coded MBs are

addressed by partitioning each video frame into rows of MBs

and assigning one full row of MBs to each secondary

processing unit. This partition is implemented once the entropy

decoding stage for each frame is serially decoded using the

primary processing unit. However, several synchronisation

barriers are added to cope with the standard decoder as well as

the memory model of the Cell BE. Results indicate a better

decoding time. However, the speedup achieved is not

promising for a processer with nine processing nodes such as

the Cell BE.

In [24], a dynamic load balancing approach is proposed for

the decoding processes of the H.264. Based on the separation

of the decoding modules into entropy decoding, inverse

quantization and transformation, prediction, and deblocking

filter, the load balancing is achieved when each of the

processers is exciting one or more of the modules. This

separation is considered with regard to the MB dependency

within each frame. Parallel implementation is made using the

POSIX multithreading model on a dual core machine. Results

indicate a speedup up to 1.74 in comparison to the serial

implementation.

Finally, in several works, the block-level H.264

parallelization was mentioned as a possible data-level

parallelization approach, however, we fail to identify specific

studies that have dedicatedly adopt this level of parallelism.

4. Comparison of the H.264 Data-Level

Parallelisms
Based on the revision made in this paper, few remarks have

been identified. Firstly, GOPs are a coding-independent unit.

Therefore, the GOP level is easy to implement; however, it has

long latency [25] and large memory requirements [5]. Thus,

paralleling the GOP level is inappropriate for shared memory

architecture because of limited on-chip memory [25].

Secondly, frame-level coding does not increase bit rate;

however, complex interdependencies, which are caused by

very flexible usage of reference pictures, limit its parallel

scalability [13, 16, 26]. Moreover, this level of coding is

associated with large memory requirements. Thirdly, slice-

level coding has been associated with minimal synchronization

cost, normal memory requirements, and good performance

scalability [5]. The only drawbacks associated with this level

are the increasing bit rate and degradation of visual quality

when the number of slices increases [13]. Fourthly, MB-level

and block-level coding incur no bit rate degradation;

nevertheless, both are associated with high synchronization

costs because of the small-sized parallel unit, dependency

among them [17], and poor scalability [5], which render them

incompatible with the current trend of multicore.

Given this remarks, parallel granularity in video coding

could potentially reflect the performance of a parallel system

in terms of scalability, synchronization cost, and memory

requirements.

5. Conclusion and Future Directions
As the H.264 is associated with high computational

complexity, several works has attempted to reduce its

complexity. In this paper, a review to the data-level

parallelisms for the H.264/AVC codec is presented. In

particular, five levels of parallelism were identified. However,

few levels inspired from the original five levels were included

as additional previous works. As a conclusion, the type of

parallel architecture is strongly determining the level of

parallelism where the distributed memory is more suitable for

the coarse-parallelism and the shared memory is more suitable

for fine-parallelism. Further, following to most of the parallel

algorithms, the parallel efficiency was limited when the

synchronizations are used frequently. Thus, in order to

improve the parallel performance, it is highly recommend

avoiding the utilization of synchronizations. As a future

direction, exploring more variant parallel attempts for video

compression would provide a more comprehensive review

work.

References
1. Woods, J.W., Chapter 12 - Digital Video Compression, in

Multidimensional Signal, Image, and Video Processing

and Coding (Second Edition), J.W. Woods, Editor 2012,

Academic Press: Boston. p. 467-528.

2. Waggoner, B., Chapter 14 - H.264, in Compression for

Great Video and Audio (Second Edition), B. Waggoner,

Editor 2010, Focal Press: Boston. p. 223-255.

3. Dhanani, S. and M. Parker, 15 - From MPEG to H.264

Video Compression, in Digital Video Processing for

Engineers, S. Dhanani and M. Parker, Editors. 2013,

Newnes: Oxford. p. 125-140.

4. Kwon, S.-k., A. Tamhankar, and K.R. Rao, Overview of

H.264/MPEG-4 part 10. Journal of Visual

Communication and Image Representation, 2006. 17(2):

p. 186-216.

5. Jo, S., S.H. Jo, and Y.H. Song, Exploring parallelization

techniques based on OpenMP in H.264/AVC encoder

for embedded multi-core processor. Journal of Systems

Architecture, 2012. 58(9): p. 339-353.

6. Choi, K. and E.S. Jang, Leveraging Parallel Computing in

Modern Video Coding Standards. IEEE MultiMedia,

2012. 19(3): p. 7-11.

7. Rodriguez, A., A. Gonzalez, and M.P. Malumbres.

Hierarchical Parallelization of an H.264/AVC Video

Encoder. in PAR ELEC 2006. International Symposium

on Parallel Computing in Electrical Engineering. 2006.

8. Li, J., et al., Analysis of factors affecting execution

performance of openMP programs. Tsinghua Science

and Technology, 2005. 10(3): p. 304-308.

9. Gurhanli, A., C.C.P. Chen, and H. Shih-Hao. GOP-level

parallelization of the H.264 decoder without a start-code

scanner. in 2nd International Conference on Signal

Processing Systems (ICSPS). 2010.

10. Hsu-Feng, H. and W. Chen-Tsang, Balanced Parallel

Scheduling for Video Encoding with Adaptive GOP

Structure. IEEE Transactions on Parallel and Distributed

Systems, 2013. 24(12): p. 2355-2364.

11. Yi-Hau, C., et al. Frame-parallel design strategy for high

definition B-frame H.264/AVC encoder. in IEEE

International Symposium on Circuits and Systems.

2008.

12. Lili, Z., et al. A dynamic slice control scheme for slice-

parallel video encoding. in 19th IEEE International

Conference on Image Processing (ICIP). 2012.

Mohammed Faiz Aboalmaaly, IJECS Volume 6 Issue 11 November 2017 Page No. 23224-23228 Page 23228

13. Yen-Kuang, C., et al. Towards efficient multi-level

threading of H.264 encoder on Intel hyper-threading

architectures. in Proceedings of the 18th International

Parallel and Distributed Processing Symposium. 2004.

14. Gu, J. and Y. Sun, Optimizing a Parallel Video Encoder

with Message Passing and a Shared Memory

Architecture. Tsinghua Science & Technology, 2011.

16(4): p. 393-398.

15. JVT. H.264/MPEG-4 AVC JM Reference Software.

2009; Available from:

http://iphome.hhi.de/suehring/tml/.

16. Jung, B. and B. Jeon, Adaptive slice-level parallelism for

H.264/AVC encoding using pre macroblock mode

selection. Journal of Visual Communication and Image

Representation, 2008. 19(8): p. 558-572.

17. Roitzsch, M., Slice-balancing H.264 video encoding for

improved scalability of multicore decoding, in

Proceedings of the 7th ACM & IEEE international

conference on Embedded software2007, ACM:

Salzburg, Austria. p. 269-278.

18. Sun, S., D. Wang, and S. Chen, A Highly Efficient

Parallel Algorithm for H.264 Encoder Based on Macro-

Block Region Partition, in High Performance

Computing and Communications, R. Perrott, et al.,

Editors. 2007, Springer Berlin Heidelberg. p. 577-585.

19. Zhuo, Z. and L. Ping. A Highly Efficient Parallel

Algorithm for H.264 Video Encoder. in IEEE

International Conference on Acoustics, Speech and

Signal Processing. ICASSP 2006 Proceedings. 2006.

20. El-Shehaly, M.H., et al., Use of CUDA streams for block-

based MPEG motion estimation on the GPU, in ACM

SIGGRAPH 2012 Posters2012, ACM: Los Angeles,

California. p. 1-1.

21. Takano, F. and T. Moriyoshi. GPU H.264 motion

estimation with contiguous diagonal parallelization and

fusion of macroblock processing. in Consumer

Electronics (ICCE), 2013 IEEE International

Conference on. 2013.

22. Youngsub, K., Y. Youngmin, and H. Soonhoi. An

efficient parallel motion estimation algorithm and X264

parallelization in CUDA. in 2011 Conference on Design

and Architectures for Signal and Image Processing

(DASIP). 2011.

23. Baker, M.A., et al., A scalable parallel H.264 decoder on

the cell broadband engine architecture, in Proceedings

of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis2009,

ACM: Grenoble, France. p. 353-362.

24. Ding-Yun, C., et al. A novel parallel H.264 decoder using

dynamic load balance on dual core embedded system. in

2012 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). 2012.

25. Fernandez, J.C. and M.P. Malumbres, A Parallel

Implementation of H.26L Video Encoder (Research

Note), in Proceedings of the 8th International Euro-Par

Conference on Parallel Processing2002, Springer-

Verlag. p. 830-833.

26. Zrida, H.K., et al., High Level Optimized Parallel

Specification of a H.264/AVC Video Encoder.

International Journal of Computing & Information

Sciences, 2011. 9(1): p. 34-46.

Author Profile

Mohammed Aboalmaaly received the B.Sc. degree in Software

Engineering from Almansour University College in 2005, M.Sc. and

PhD. in Computer Science from Universiti Sains Malaysia in 2009

and 2015 respectively. He is currently working as head of Computer

Techniques engineering Department at Alsafwa University College.

His research interest is mainly focusing on multimedia computing,

parallel processing, with special interest on the Internet of things

(IoT).

