
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 11 November 2017, Page No. 23072-23076

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i11.12

Liu Lijuan, IJECS Volume 6 Issue 11 November 2017 Page No. 23072-23076 Page 23072

Research and implementation of Docker performance service in distributed

platform

Liu Lijuan

College of Information Engineering Nanjing Normal University Taizhou College

 Dongfeng South Road No. 518, Hailing District, Taizhou, Jiangsu, China

Abstract:

Aiming at Docker currently only support queries for performance monitoring and logging services for a single container, the

performance monitoring and log service scheme in distributed platform are designed and we also conduct test and analysis on it,

so that the Docker container cluster can be monitored as a whole. The application of the Docker cloud platform is more stable and

optimized, and the integrated management of complex logs is realized. The final result has certain guiding significance to the

integration and perfection of Docker platform service.

Key words: Docker, cloud computing, performance monitoring, log service

1．Introduction

With the development of network technology[1], cloud

computing uses a large number of computers to form a pool of

resources to facilitate user access to on-demand computing

services. As a new cloud platform, Docker has broken the

cloud computing model based on the virtual machine since

2013, and has been supported by many large enterprises,

becoming the most popular project[2] in the field of cloud

computing. But at present, Docker is mainly for single

container, and there is no reliable and stable performance

monitoring scheme. It is impossible to monitor the cluster as a

whole, so it is necessary to find a solution to cluster container

monitoring through research. In the aspect of log service,

Docker does not provide special log service scheme in the

face of huge log generated by cloud platform. So it is

necessary to use advanced package design components to

realize complex log extraction、storage、retrieval, provide the

data base for application debugging 、 performance

optimization.

2．Docker related technologies

With the development of cloud computing, container

technology is favored by enterprises for better performance.

Docker is a container engine based on LXC[3], which uses

container technology for software development and

deployment, and gives it to users in mirror mode. Users can

get the required software when it is running. It has the

advantages of portability 、cross platform、easy to use etc..

Docker includes several core elements of mirror[4]、

container and warehouse. Mirroring is the foundation of

building a container, providing the basic environment for

application running. container supports application instances

running in it, warehouses are collections of mirrors. Docker

follows the service architecture[5] of C/S, as shown in figure

1:

Figure 1：Docker architecture diagram

The Docker client sends a request to the Docker server,

and the Docker Daemon responds to the request[6]. To create

API Server

execdrive

r

networkdriver

graphdriver

graph

libcontainer
Union

Linux Kernel

graphD

B

Docker daemon

http://www.ijecs.in/

Liu Lijuan, IJECS Volume 6 Issue 11 November 2017 Page No. 23072-23076 Page 23073

a container, you need to download the mirror and save it in

graph, use the networkdriver to configure the network

environment of the container. In order to ensure the security,

namespace and cGroups are used to realize the isolation and

restriction of resources.

Etcd is a distributed、 strongly consistent key value

storage repository. It is simple、safe、fast and reliable. It is the

foundation of distributed container construction. In the

construction of distributed container applications, it is

necessary to use Etcd to connect distributed nodes and

applications within the container, and to monitor the cluster as

a whole.

3．Module design

3.1 Design of Docker performance monitoring service

In the performance monitoring services, mainly for the

container level, while taking into account the cluster and the

host level. For users to use real-time control platform

resources, data analysis and summary, provide intuitive charts

to display CPU、memory、network、hard disk and other[7]

indicators. In addition, alerts are provided on the basis of

performance monitoring to improve the stability of

applications.

Docker container performance monitoring is divided into

three layers: collection、processing/storage and application,

sets the proxy、server、database and interface several modules,

the overall structure as shown in figure 2.

Figure 2：overall architecture of performance monitoring

services

In the entire architecture, hosts in each node of the

cluster run multiple containers. The monitor agent is

equivalent to the collector, collects the container performance

data and transmits the relevant information. The server is

responsible for receiving data、 processing and saving data,

listening to the interface information, responding to the

request and sending data to the Web interface, alarming when

monitoring node and container exception. The database is

mainly responsible for storing and processing some

information and providing query services. Etcd is responsible

for storing the information of nodes and containers in the

cluster for the server to monitor. The monitoring service

interface is responsible for transmitting requests and data.

3.2 Docker application log service design

The log service provides collection、transmission、storage

function. The log is classified and stored, and the efficient and

reasonable log storage module is used to make the application

storage more orderly and better retrieval. The whole service is

divided into three layers: collection、 transmission and storage,

its architecture is shown in figure 3.

Figure 3： overall architecture of application log service

The collector Fluentd collects and sorts the source data,

indicates the relevant information, and prepares for the

subsequent collection and indexing. The transmission module

collects the source data transmitted by each node from the

collection module to the storage module. With the increase of

application instances, a message queue is designed to alleviate

the transmission pressure, so as to ensure the reliable and

efficient transmission of log data. The storage module is saved

by index, which makes the log service easy to use and

provides information retrieval function.

4．Experimental test

4.1 Cluster building

Based on the cloud platform, this experiment uses

Kubernetes[8] to build a container cluster, provides 15 nodes

of virtual resources, deploys Docker platform for each node

host and starts the corresponding container. The main

configuration of performance monitoring and log service

Etcd

colon

y

processing

module

Alarm

processing

Monitor server

Memory

module

Monitoring

service

interface

web interface

data

base

Monitori

ng agent

A

Monitori

ng agent

B

Node 1 Node 2 Node 3

Log collection

Log processing

Log

Log storage

Log collection Log collection

Log processing Log processing

Log Log

Liu Lijuan, IJECS Volume 6 Issue 11 November 2017 Page No. 23072-23076 Page 23074

testing is shown in table 1.

Table 1：main configuration for performance monitoring and

logging service tests

Performance monitoring Log service

Several containers Some Fluented containers

One monitoring server Log transfer component

Two databases Some MongoDB containers

One Etcd

One Web server

4.2 Docker container performance monitoring service

testing

4.2.1 Cluster performance monitoring

For performance monitoring services, the cluster

environment test is first built, and the specific conditions are

shown in table 2.

Table 2：overall state of the cluster

Project State

Cloud State available

Host number 15

Memory 12854．36MB

Storage 94.58GB

CPU kernel number 6

Network uplink 5kbps

Network downlink 7kbps

As shown in Table 2, the state of the cluster、the number

of nodes、the use of resources、the amount of data on the

network and so on can be monitored. In addition, the details of

each node can be further examined, as shown in table 3.

Table 3：node status of clusters

Node CPU

utilizat

ion rate

Memory

usage

Network

uplink

Network

downlink

…

1 52% 41% 68kbps 123 kbps …

2 34% 30% 56 kbps 109 kbps …

3 67% 89% 50 kbps 78 kbps …

… … … … … …

15 57% 42% 123 kbps 189 kbps …

By table 3, it is concluded that the state of any node in

the cluster can be selectively tested, including its CPU、

memory、network and other content.

4.2.2 Container performance monitoring

In a distributed platform, you can also test the status of

each container, including its CPU、memory、network and other

information. The specific content is shown in table 4.

Table 4：CPU performance monitoring of containers

Node Container Before

experiment

After experiment

A 1 70% 50%

A 2 Not started 50%

 Table 4 shows that the original A only runs the container

1, its share of CPU for an average of 70%, then the node

manually run a new container 2, the original 1 CPU utilization

rate[9] is less than 50%, consistent with the expected results,

the performance of container monitoring can be a verification

good.

4.2.3 Alarm function test

When the application appears abnormal, it will send

alerts to the user, the system automatically gets the abnormal

state, through the page and mail to the user to send

information, specific as shown in figure 4.

Figure 4 ：alarm function

After connecting the abnormal nodes and closing the

background program on the node, the system gets the

exception immediately, sends the alert mail to the user in the

cluster, and sends out the page to describe the warning

information.

4.3 Docker container application log service testing

4.3.1 Log collection performance test

On a certain node, different parameters are set to test the

performance of log collection, and the results are shown in

table 5.

Table 5：logs collection of concurrent test results

Total data Concurrent

requests

Packet

size

Success

number

Fail

number

5120 512 1KB 5120 0

5120 512 1KB 5120 0

10240 1024 2KB 10240 0

10240 1024 2KB 10240 0

20480 2048 4KB 20480 0

20480 2048 4KB 20480 0

Table 5 shows that the number of data requests increases

from 512 to 2048, the packet size increases from 1KB to 4KB,

and the successful service rate is 100%, which shows that the

Abnormal node

Page

(warning information)

Mail (user)

Liu Lijuan, IJECS Volume 6 Issue 11 November 2017 Page No. 23072-23076 Page 23075

collection module has good concurrency.

4.3.2 Transmission module test

The transport module mainly uses message queues to

improve throughput. 3 nodes are set to deploy producers、

queues and consumers. The throughput[10] test of message

producers and consumers is shown in Table 6 and table 7

respectively.

Table 6：throughput test of producer node

Message data Experiment 1 Experiment 2 Experiment

3

512 5.12 6.13 5.24

1024 10.15 11.62 9.89

2048 19.56 20.72 21.44

Table 7：throughput test of consumer node

Message

data

Experiment 1 Experiment 2 Experiment 3

512 5.42 6.03 5.94

1024 9.15 10.62 11.80

2048 19.43 20.35 21.67

From table 6、 table 7 shows that, under the same

conditions, repeat the test 3 times, with the increase of

message data, a corresponding increase in throughput,

message transmission speed is stable, good performance, in

line with the log transmission service function.

4.3.3 Performance test of data storage cluster

MongoDB cluster is divided into 3 parts, each part has

the main piece、copy、arbitration. When the log service is

running, the state of the log database shows that the total data

of the log is divided into 3 segments, and the data obtained by

each fragment is similar in size to meet the load balancing

requirements of the database. Specifically shown in table 8.

Table 8：log total data allocation table

Project Data quantity

Log total data 5489892

Patch 1 1613214

Patch 2 1845210

Patch 3 2031468

Finally, the performance of database index query is tested.

According to the same field to retrieve, using two groups of

experiments without index and index to test different data, get

the results shown in table 9.

Table 9：performance test of database index

Data

quantity

Retrieval log

number

No index time Index time

100 654 1351 65

100 1342 1569 136

200 1178 2436 132

200 2463 2813 258

400 3462 5127 420

400 6714 6238 789

The results show that if the database is retrieved by the

same field, when no index, it takes more time to traverse the

entire record because each search needs to traverse the whole

database. Therefore, the results return time does not change

with the number of logs, and the performance is poor. But the

time when the index is returned is basically proportional to the

result log number, and the performance is better.

5．Conclusion

This paper takes the popular Docker technology as the

starting point, in order to meet the needs of the development

of container cloud, the performance and service of Docker in

the distributed platform are studied. It solves the shortcomings

of the current Docker container only for single node

application, and expects further research on the Docker

platform in the future, to improve the development 、

deployment、operation and maintenance efficiency of the

Docker platform.

Reference

1. Miao Liyao, Chen Lijun, “A cluster expansion

method based on Docker container,” Computer

Applications and Software, pp. 34-39, 2017.

2. Zhang Hanbo, Ni Ming, Lu Shenglin, “Research on

performance optimization of Docker virtualization

technology based on RBD,” Information Technology,

pp. 125-129, 2016.

3. Dong Bo, Wang Xue, Sophie, et al, “Research on

virtualization technology based on Docker,” Journal

of Liaoning University, Natural Science Edition, pp.

327-330,2016.

4. Zhao Lele, Huang Gang, Ma Yue, “Research on

Hadoop platform architecture based on Docker,”

Computer Technology and Development, pp. 99-103,

2016.

5. Lu Shenglin, Ni Ming, Zhang Hanbo, “Optimization

of scheduling policies based on Docker Swarm

cluster,” Information Technology, pp.147-152,2016.

6. Liu Minxian, Design and implementation of service

Liu Lijuan, IJECS Volume 6 Issue 11 November 2017 Page No. 23072-23076 Page 23076

invocation topology analysis and performance

monitoring system based on Docker, Zhejiang:

Zhejiang University, 2016.

7. Mdhaffar A, Halima R B, Jmaiel M, et al,

“CEP4CMA: Multi—layer Cloud Performance

Monitoring and Analysis via Complex Event

Processing//Networked Systems,” Springer

International Publishing, pp.138-152,2014.

8. Zhang Yi, Design and implementation of

virtualization application platform based on Docker,

Guangdong: South China University of Technology,

2016.

9. Liang Junjie, Research and implementation of cloud

resource scheduling based on application container,

Sichuan: University of Electronic Science and

Technology of China, 2015.

10. Miao Liyao, Research on hybrid cluster expansion

method of container based on Docker, Shanxi: Xi'an

University of Posts and Telecommunications, 2016.

Author Profile

Liu Lijuan received a master's degree from Nanjing

University of Aeronautics and Astronautics, where she was an

assistant in Nanjing Normal University Taizhou College (2008)

and lecturer (2010). Her research interests include cloud

computing、 big data theory and practical application.

