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Abstract 

In this paper, we propose to study such a model which deals with the aspects concerning the control of the arrival process with 

second optional repair and Bernoulli vacation schedule. The paper deals with M
x
/G/1 queueing system where after completion of 

a service the server either goes for a vacation of random length with probability )10(   or may continue to serve the next 

customer with probability )1(  , if any. Both service time and vacation time follow general distribution. Server is subject to 

random breakdowns according to Poisson process, followed by instantaneous repair. If the server could not be repaired with the 

first essential repair, subsequent optional repair is needed for the restoration of the server. Both essential and optional repair times 

follow exponential distribution. Unlike the usual batch arrivals queueing model, there is restriction over the admissibility of batch 

arrivals in which not all the arriving batches are allowed to join the queue at all times.  The restricted admissibility policy differs 

during a busy period and a vacation period. We obtain the time dependent probability generating functions in terms of their 

Laplace transforms and corresponding steady state results explicitly. In addition, some performance measures such as expected 

queue size and expected waiting time of a customer are also obtained. The numerical results for various performance measures are 

displayed via graphs. 
Keywords:  M

X
/G/1 queue, First essential repair, Second optional repair, Controlled admissibility policy, Bernoulli vacation 

schedule. Transient analysis. 

Introduction 

Control of queues is one of the most significant and interesting area of queueing theory. One of the queue control is, control on 

admission of arriving customers. In these problems, either the arrival rate can be modified or the customer can be refused 

admission. In some of queueing models, queue length is controlled by the rejection of some of incoming arriving customers, in 

some models, the customers themselves control the decision to enter in to the system. Such a control policy is called restricted 

admissibility policy and which has been studied by many authors. Ghosh and Weerasinghe (2010) addressed a rate control 

problem associated with a single server Markovian queueing system with customer abandonment in heavy traffic.  Transient 

solution of an M
X
/G/1 queue queueing model under restricted admissibility policy has been analyzed by Ayyappan and Shyamala 

(2013). 

In many real cases, the server may experience breakdowns, so that a more realistic queueing model is that which incorporates the 

assumption of unreliable server. When the server could not be repaired or restored by the first essential repair, subsequent repairs 

are needed to restore the server. The most realistic aspect in modeling of an unreliable server is multi optional repair which has 

been discussed by Jain et al. (2011). Ayyappan and Shyamala  (2013) have explicated an M
X
/G/1 queue with second optional 

repair.  

Presently, most of the studies are devoted to batch arrival vacation models under different vacation policies because of its 

interdisciplinary characteristic. Steady state behavior of an M
X
/G/1 queue with general retrial time and Bernoulli vacation 

schedule for an unreliable server with delayed repair has been studied by Choudhury and Ke (2012) .  Gao and Liu (2013) 
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obtained stationary performance measures for M/G/1 queue with vacation interruption under Bernoulli vacation schedule. 

  

In the present paper, we consider unreliable M
x
/G/1 queue under controlled admissibility policy with the concept of Bernoulli 

vacation schedule. Repair is provided in two phases.  If the server could not be repaired with the first essential repair, subsequent 

optional repair is provided to the single server for the refurbishment of the server. The paper is organized as follows. In section 2, 

we define the underlying assumptions and notations of the system under study. The analysis based on supplementary variables and 

generating function approach, is given in section 3. The average queue size and mean waiting time of a customer are calculated in 

section 4. Last section is devoted to concluding remarks. 

1. Model Description 

The following assumptions are made to describe the model mathematically: 

 Customers arrive at the system in batches of variable size in a compound Poisson process. Let  ,........3,2,1 itai be first 

order probability that a batch of ''i customers arrives at the system during a short interval of the time  ttt , , where 


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1

1,00

i

ii aa  and 0 is the mean arrival rate of the batches. 

 Each customer undergoes service provided by a single server on FCFS basis. The service time follows general probability 

distribution with distribution function (DF) )(xB , density function )(xb  Laplace Stieltjes transform (LST) )(* sB  and finite 

moments    1kBE k
.  

 Let dxx)( be the conditional probability of completion of the service during the interval  dxxx ,  given that elapsed time 

is x  , so that  
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 Further it is assumed that not all batches are allowed to join the system at all times. Let )10( 11  be the probability that 

an arriving batch will be allowed to join the system when server is not on vacation and )10( 22  be the probability 

that an arriving batch will be allowed to join the system during the vacation period.  

 As soon as the service of a customer is completed the server may go for a vacation of random length V with probability 

)10(  or may continue to serve the next customer, if any, with probability )1(  . Assuming that the vacation random 

variable )(sV follows a general probability distribution with Distribution function )(sv , LST )(* sV and finite moment 

   1kVE k
and is independent of service time random variable and the arrival process.   

 Let dxx)( be the conditional probability of completion of a vacation during the interval  dxxx ,  given that elapsed time 

is x  , so that  
)(1

)(
)(

xV

xv
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and therefore ,  
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s
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

  

 Server is subject to random breakdowns according to Poisson process with mean breakdown rate 0  . As soon as the 

server is broken down it is instantaneously sent for repair. If the server could not be repaired with the first essential repair, 

subsequent optional repair is needed for the rectification of the server, i.e., after the completion of first essential repair, the 

server may opt for second optional repair with probability   or may join the system with complementary probability 
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 1  to provide the service to the customers. Both essential and optional repair times follow exponential distribution with 

mean 
1

1


and 

2

1


respectively. 

Chapman Kolmogorov equations governing the model are constructed as follows:  

    




 








1

1

11 1);,(),(1),()(),(),(
n

i

ininnnn ntxPatxPtxPxtxP
x

txP
t



                      

(1)              

    ),(1),()(),(),( 01000 txPtxPxtxP
x

txP
t

 







                                                                   (2) 

    




 








1

1

22 1);,(),(1),()(),(),(
n

i

ininnnn ntxVatxVtxVxtxV
x

txV
t

                               (3) 

    ),(1),()(),(),( 02000 txVtxVxtxV
x

txV
t

 









             
(4) 

     




 
n

i

nininnn ndxtxPtRatRtRtR
dt

d

1 0

1
)1(

1
)1(

1
)1(

1
)1( 1;),()()(1)()( 

          

(5) 

    )(1)()(
)1(

01
)1(

01
)1(

0
tRtRtR

dt

d
                  (6) 

    


 
n

i

nininnn ntRtRatRtRtR
dt

d

1

)1(
1

)2(
1

)2(
1

)2(
2

)2( 1);()()(1)()(                                              (7) 

    )()(1)()(
)1(

01
)2(

01
)2(

02
)2(

0 tRtRtRtR
dt

d
 

                             
(8)

 

 













0

01

0

02
)2(

022
)1(

021211

)(),(

)(),()1()()(1)()1()()(

dxxtxV

dxxtxPtRtRtQtQtQ
dt

d





                   (9) 

The above equations are solved to be solved with the following boundary conditions at 0x  
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Next we define the following probability Generating Functions: 
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2. The Analysis 

Theorem 1: The marginal generating functions when the server is busy, on vacations, under repair with first essential repair and 

optional second repair, respectively, are 
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Proof: 

Taking Laplace transforms of equations (1)-(12) 
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Now multiply equation (13) and (14) by nz respectively and summing over all possible '' n and using probability generating 
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For boundary conditions, multiply equation (22) by z and (23) by 1nz respectively and summing over all possible '' n and using 

probability generating functions, we obtain  
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Performing the similar operation on (24) 
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Again integrating eq. (37) by parts w.r.t x :   

From (35)  
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Where, 
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is the Laplace- Stieltjes transform of the vacation  time )(xV . Now multiply (37) by )(x and integrating over x , we get 
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using eq. (34), eq. (27) becomes  
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Using eq. (41), eq. (28) becomes 
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Using eqs. (34),(40,)(41), (42) , eq. (29) becomes 
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Where  

 

 

                 (44) 

 

Theorem 2: The steady state probabilities when the server is busy while rendering service, on vacations, under repair with first 

essential repair and optional second repair, respectively, are given as follow 
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Proof:  By Using Tauberian property   )()(0 tfLtsfsLt ts   in eqs. (32) (38), (41), (42) and (43), we get steady state 

probabilities when the server is busy, on vacations, under repair with first essential repair and optional second repair, respectively. 

Theorem 3: The probability generating function of the number of the customers in the queue is given by 
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(49) 

Proof: Probability generating function of the number of the customers in the queue )(zW  irrespective to the state of system is 

given by adding eqs. (45), (46), (47) and (48) 
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Corollary 1:  If the system is in steady state, then 
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Proof:  The corresponding steady state results can be obtained by applying L’Hospital’s Rule in eqs. (45), (46), (47) and (48) by 

letting 
1z  

Corollary 2: The probability that there are no customers in the system when the server is idle but available in the system is given 

by  
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Proof:  In order to obtain  Q, we use normalizing condition 
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By using eqs (50)-(53) and normalizing condition, we get the required expression. 

 

3. Average Queue Length 

In this section we derive the expected number of customers in this M
X
G/1 queueing system with non reliable server. Let Lq be the 

expected number of customers at a random epoch, then 
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Mean waiting time of a customer can be obtained by Little’s formula  


q
q

L
W                                         (61)  

 

4. Concluding Remarks 

The research on queueing theory has been extensively developed due to a lot of significance in the problems relating with 

decision making process and it has made a tremendous impact in industry and logistic sector from its significant applications in 

many other areas like population studies, health sectors, manufacturing and production sections etc..In the present paper, we have 

considered M
x
/G/1 queue with batch arrival and modified Bernoulli schedule server vacations. The concepts of server breakdown 

and server repair in two phases were incorporated into the model to make the study more realistic. In many congestion situations 

just before a service starts, the server has the option to control the queue by controlling the admissions of arriving batches. Such a 

model may find applications in many day to day real life queueing situations. Further our model assumes that the server vacations 

are based on Bernoulli schedule which means that just after completing a service selected by the customer, the server may take 

vacation of random length or may continue staying in the system. The concepts of Bernoulli schedule vacation, batch arrival and 

unreliable server have been incorporated together in our queueing model which has potential applicability in manufacturing, 

computer and communication systems, etc.. 
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