
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20176-20182

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20176

Identification and Removal of Interfernce in Aspectj Programs
G. Barani

1
, V. Suganya

2
, S. Rajesh

3

1,2,3
Assistant Professor, Department of Computer Science and Engineering,

Sri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, India.

Abstract

The motivation behind introducing Aspect Oriented Programming (AOP) has been to increase the modularity of software by

allowing a clear separation of core and cross-cutting concerns in software. AspectJ is a common AO programming technique

used by programmers with excellent support from the Eclipse community. In AspectJ, complex interactions between the base code

and aspects can make the code very difficult to understand and maintain. Added to this, there is also a possibility for the

occurrence of interference between cross-cutting functionalities offered through advices and woven at the join points in AspectJ

software. These interferences cannot be identified by the developer without a proper analysis on its existence. In order to address

the problems arising out of interferences in AspectJ programs, this paper summarizes the work done to provide capabilities for

the definition and identification of the rules of violation. A tool has been developed to define and identify interferences and also to

provide possible solutions for the removal of interferences in a given AspectJ code.

Keywords: Aspect Oriented Programming (AOP),

Interference Analysis, Control Flow Interference, Data

Flow Interferecne.

1. INTRODUCTION

Aspect Oriented Programming (AOP) is a

programming paradigm focusing on improving the modularity

of software by encapsulating the cross-cutting concerns into

independent units of functionalities named as Aspects. AOP

[6] is able to increase the modularity by enabling the clear

separation of core and cross-cutting concerns. A cross-cutting

concern is a tangled or scattered functional code that can

possibly affect other functionalities programmed in software.

Persistence, logging, transaction and caching are some of the

non-functional cross-cutting concerns easily visible right from

the design and implementation of software. The

implementation of cross-cutting concerns which are usually

found as tangled and scattered code segments, may lead to

reduction in modularity. AOP includes programming

constructs and tools that support the modularization of cross-

cutting concerns. AspectJ is an extension of Java

programming language that provides new constructs such as

aspect, pointcut, advice and introduction that enables the

software developer in defining cross-cutting code segments as

independent units.
Even though AOP is a very useful and powerful

technique, it introduces new type of risks involving

interferences between cross-cutting functionalities. In AspectJ,

program flow is modified by defining advices for

encapsulating cross-cutting code. It is also possible to

encapsulate more than one advice inside an aspect. In such

cases, interference between functionalities defined in advices

can possibly occur. Hence the designer has to define the order

in which the advices of an aspect need to be executed.

Undesirable interferences may occur when several aspects are

woven at the same join point of the base code. For example,

one aspect can prevent the execution of another aspect, or can

even update a shared variable that the other aspect is reading

to view its current state. Since multiple aspects independently

encapsulate different cross-cutting concerns, their executions

in the base code are usually uncoordinated. The interferences

caused due to this design in AspectJ programs cannot be

manually identified and removed. Hence, an automated

testing tool is needed to analyze the existence of interference

in a given AspectJ code.

This paper introduces two types of interference that

can possibly occur in an AspectJ program and provides a

mechanism to identify and remove the interferences. The types

of interferences identified are Data flow interference and

Control flow interference. Interference that occurs due to

actions affecting the passing of control to the next advice or to

the base code is called as control flow interference.

Interference that occurs due to read/write access by two or

more modules on the shared data is called as data flow

interference. Interference will not necessarily stop the

execution of the program. But, it can possibly change the

intended behavior of aspects during the program execution.

Interference analysis and removal will help in removing

interference based errors that may occur in a given AspectJ

code.

Manual identification and removal of data and control

flow interferences usually requires adept skill and effort.

Hence, an automated tool to identify the existence of

interference and suggest alternative removal methods have

been developed and applied on a given AspectJ code. A Java

based tool named Aspect Oriented Software Interference

Analysis (AOSIA) tool has been developed that identifies the

existence of interference in the given AspectJ code. The tool is

hard coded with rules to identify the data and control flow

interferences and generates a violation report consisting of

types of interferences found in the given AspectJ code. This

report also contains removal methods for the identified

interferences.

 Section II expands the work done on the

identification of interferences in AspectJ code. Section III

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20177

explains the existing tools available for the analysis of a given

Java code. Section IV brings out the motivation behind the

need for interference analysis. Section VI describes the types

of interference within the scope of interference analysis done

in this work. Section VII explains the architecture of AOSIA

tool that was developed to identify and remove data and

control flow interferences. The application of the AOSIA tool

to sample AspectJ programs is explained in Section VIII.

Section IX concludes and provides pointers for future work to

be done on interference analysis.

2. RELATED WORK

In AspectJ programming, it is possible to define more

than one advice inside an aspect. In such a case, interference

may occur between the functionalities defined in the advices.

Hence, the designers have to necessarily define the order of

advice execution. In a work done by Storzer [12], in order to

change the runtime behavior of a program, more than one

advice was defined in an aspect. The first advice encrypts

password obtained from the user and the second advice sends

the encrypted password to the server. The order of execution

of the two advices defines the final outcome of the program.

Hence, this may lead to interference between the functions

defined in the advices. Further analysis of advices is a major

challenge in order to develop an analytical framework for AOP

software.

Zhang [14] studied the complicated interactions

between the aspects and base code in AspectJ programs. The

author also proposed a concise classification of impacts based

on state and computation changes and caused by advice and

inter-type declarations.

Interferences between the aspects were identified

using formalization and proof methods by Katz [7]. Modular

interference detection methods have been used to identify the

possible interferences, i.e., the library of aspects is checked

independently of any base system. Consider a situation in

which a user would like to weave multiple aspects from the

library into the base system. In this case, the only check that

should be performed is that the base system satisfies the

assumptions of all the aspects. Only after this satisfaction the

aspects will be woven to the base system. By using this proof

of satisfaction the user has to manually check the interferences

and no automated verification procedure have been included

by the author.

 Lauret [9] avoids undesirable interference by

mandatory control of order of execution of conflicting advices.

In this work, executable assertions were used to model the

code by attaching non-interference requirements to the

composition of advices. Avoiding of interference has been

done manually. And if more number of advices is present in

the software, then the time consumed to identify and remove

interferences will be increased. The manual checking can be

automated using a tool that can check and analyze the

existence of interference in a given AspectJ program.

3. AVAILABLE TOOLS FOR SOURCE CODE

ANALYSIS

In the literature, a few tools are available for analysis

of the static part of a given code. A source code analyzer tool

provides mechanism for the automated testing of source code

with due purpose of identifying interferences in the given

software. The source code is the most permanent form of a

program, even though the program may later be modified,

improved or upgraded.

Find bugs [9] is an open source program created by

Bill Pugh and David Hovemeyer which looks for bugs in a

given Java code. It uses static analysis to identify hundreds of

potentially different types of errors in Java programs.

Additional rule sets can be plugged in Find bugs to increase

the checks performed only for Java. This tool cannot be

extended to identify interferences in AspectJ code.

A tool named AJATO [5] provides support to

compute AO metrics for software implemented in Java and

AspectJ programming languages. The metrics available in

AJATO are Concern Diffusion over Components, Number of

Attributes per Concern, Number of Operations per Concern,

Vocabulary Size, Number of Attributes, and Number of

Operations. In addition to the assessment of metrics the tool

also implements some heuristic rules in order to automate

modularity analysis. Currently, AJATO does not provide

features that can be used to extend and write interference rules

for AspectJ programs.

PMD [3] is a static rule set based Java source code

analyzer that verifies for the existence of interferences using

pre-defined set of rules. It finds common programming flaws

like unused variables, empty catch blocks, unnecessary object

creation, and so forth. PMD errors are not true errors, but

rather inefficient code, i.e. the application could still function

properly even if they were not corrected. But, the same PMD

tool has not been extended to define interference rules for

AspectJ programs.

Based on the explanation given above about the

available tools, it is evident that a tool to identify the existence

of interference in AspectJ programs is currently not available.

This necessitates the need for a customizable tool to define and

identify interference rules for AspectJ programs.

4. MOTIVATION

During the development of an AspectJ application

there is a possibility that more than one advice need to be

woven at the same join point. Whenever two advices are

woven at the same join point, there are possibilities that

behavior defined in one advice can interfere with the behavior

defined in the other advice. In order to identify this possibility,

the developer has to manually check for the existence of

interference. For a large AspectJ application we cannot

manually find the existence of interferences and if so it

becomes a cumbersome task. Based on the explanation given

in the previous section, the existing tools also do not provide

constructs and facilities to define interference rules for AspectJ

programs. Hence, there is a need for an environment to define

and analyze the existence of interferences in AspectJ

programs.

5. PROPOSED WORK

The objective of this research work has been to develop

an environment to define, identify and remove interferences in

given AspectJ programs. To summarize the following are the

list of contributions of this paper.

 Definition of data and control flow interference rules

for AspectJ programs.

 Identification of the existence of interferences in the

given AspectJ programs.

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20178

 Suggestion of alternate methods to remove the

identified interference.

6. INTERFERENCE ANALYSIS IN AOP

In programming, modules are designed to implement

functionalities of the application. This leads to possibilities

that the functionalities of two modules can interfere with each

other during its execution. Due to this effect, the program

might not generate the expected result leading to flaw in its

design. An analysis on the design and the implementation of

software is needed to identify the causes of interference. In

AspectJ program interferences between aspects is possible due

to shared join points, order based advices and shared variable

between advices. Hence, there is a need to analysis the

existence and consequence of interferences between related

aspects and advices.

During the sequence of execution of AspectJ

program, two types of interference, control flow and data flow

interference are possible in the given AspectJ program.

6.1 Control Flow Interference

Interference that occurs due to actions affecting the

passing of control to the next advice or to the base code is

called as control flow interference. Consider the case study of

an on-line shopping system whose main functionalities are

security, persistence, transaction and logging. All these four

have been defined as before() advices in aspects and woven at

a common join point (call to purchase() method) shown in Fig.

1.

The functionalities defined in the four before()

advices are security, transaction, persistence and logging. A

brief statement on the purpose of functionalities of the advices

is given below:

 Security: Checking the validity of the user login and

credit card information.

 Transaction: To debit the cost of the purchased

products.

 Persistence: Updating the database once the goods

have been sold.

 Logging: Maintaining the details of the users and

products purchased by them.

In this scenario, the order of weaving the four advices

in the shared join point is important because, the order decides

the final outcome. Based on the list given above, if the order

of execution is (1) (2) (3) and (4) then interference between

the advices will not occur. If the order of execution is changed

to (1) (3) (2) and (4) then control flow interference can occur

which leads to wrong output. Hence, control flow interference

occurs when more than one inter dependent and ordered

functionality is applied at a single join point.

 Interference analysis needs to identify the possible

occurrence of this type of interference in the given AspectJ

code.

Fig -1: Scenario for Control Flow Interference

6.2 Data flow interference

Interference that occurs due to read/write access by

two or more modules on the shared data is called as data flow

interference. Consider the case study of complaint registry

system whose main functionalities are defined as: (1)

complaintChecker() (2) statusChecker() and (3)

complaintProgress(). Initial value for the property

#OfComplaint is set to zero. A diagrammatic representation of

the operations on the #OfComplaint property of complaints

functionality shared by the two operations is shown in Fig. 2.

Consider a scenario, with the following sequence of

operations executed in order.

 A complaint is registered by a customer, and the

property #OfComplaint is incremented by 1.

 Another complaint is registered by the next customer,

and the value of #OfComplaint is now 2 (incremented

by 1).

 The complaintChecker() removes the first complaint

from the list of complaints, processes it to resolve the

complaint and the property #OfComplaint is

decremented by 1 (#OfComplaint is 1).

 One more complaint is registered by another

customer, and the value of #OfComplaint is now 2.

 Now statusChecker() queries the number of

unresolved complaints, i.e., value of #OfComplaint

is 2.

 If complaintChecker() could not resolve the

complaint that is being processed, then

#OfComplaint is incremented by 1 and now the value

of #OfComplaint is 3.

In step 5 the statusChecker() has reported that the

number of unresolved complaints is 2 without considering the

complaint being processed by complaintChecker(). Similarly,

in step 6 the number of complaints is incremented by 1, since

the complaintChecker() could not resolve the complaint that it

is processing to resolve. But, the statusChecker() has already

reported that the number of unresolved complaints is 2 without

counting the complaint that is being processed. Such a

scenario is called data flow interference because; the correct

value of a property is not available for a module. When a

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20179

property is shared by two functionalities, there are possibilities

for using incorrect values for it. Such a kind of interference

between the two functionalities is called as data flow

interference. Interference analysis can help in identifying such

scenarios in order to remove such interferences from the code.

Fig -2: Scenario for Data Flow Interference

1. PROCESS FLOW OF AOSIA TOOL

 Based on the explanation given in the previous

sections, there is a need to detect occurrence of interference

between the constructs in a given AspectJ program. The

detections can be done manually or using an automated tool.

An automated AOSIA tool to detect the interferences has been

developed using Java programming language. The overall

flow of processes designed for the tool is shown in Fig. 3. The

first process of AOSIA takes an AspectJ program as input and

frames the corresponding Abstract Syntax Tree (AST). Next,

the generated AST will be queried to identify the occurrence

of data and control flow interferences. Finally, a report is

generated with the list of identified interferences that are

present in the given AspectJ code and possible removal

methods for the interferences.

Fig -3: Process Flow of AOSIA Tool

As explained the tool takes AspectJ program as input

and need to analyze it in order to detect the existence of

interferences. This process requires the analysis of the code in

the given AspectJ program. Some source code analyzers are

available in order to analyze different types of errors in a given

code. The commonly available source code analyzer tools are

Findbugs [9], Check style [2], PMD [2] and AJATO [4]. These

source code analyzer tools takes code written in different

programming languages but there is no extension available for

identifying interferences in AspectJ software. Even though

AJATO tool provides facilities to write heuristic rules for

AspectJ programs, it cannot be extended to define interference

rules and to find the existence of interference in a given

AspectJ program.

Based on this need a tool named Aspect Oriented

Software Interference Analysis (AOSIA) tool has been

developed to identify the occurrence of interferences in the

given AspectJ programs. In the identification and removal of

interferences, there are three sub processes namely, (1)

Creation of Abstract Syntax Tree (AST), (2) Applying Rules

of Interference, (3) Generation of Interference Report.

7.1 Creation of Abstract Syntax Tree (AST)

The first process of AOSIA tool will allow selecting

files containing AspectJ code as input using a dialog box. An

Abstract Syntax Tree (AST) for the selected AspectJ program

will be generated. AST is a tree representation of the source

code which contains nodes representing the constructs of the

aspects. The constructs represent statements, conditions,

signatures of join points, pointcuts, advices, variables and

operators. The expressed syntax is in the AST is “abstract” and

does not represent every detail found in the given AspectJ

program. The primary intension for the creation of AST is to

use extensively during semantic analysis of the program.

During semantic analysis the compiler checks for correct

usage of the elements of the program. The concern aspect code

for the scenario explained to introduce control flow

interference in the previous section is shown in Fig. 4.

Fig -4: Code Snippet for Control Flow Interference

The AOSIA tool generates AST tree for a given

AspectJ program consisting of nodes representing its

constructs. The Abstract Syntax Tree generated by the AOSIA

tool for the concern aspect is shown in Fig. 5.

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20180

Fig -5: Abstract Syntax Tree (AST) for concern aspect

7.2 Applying Rules of Interference

 Typically weaving of advice at a common join point

may possibly lead to the occurrence of control flow

interference between advices of aspects. In the given AspectJ

code, if more than one advice is woven at a single join point

without the definition of order of precedence for advices, then

such a scenario will be identified as interference by the

AOSIA tool.

The tool will also identify the same type of

interference that can possibly occur between aspects in the

given AspectJ code. AspectJ programming language permits

the definition of the order in which aspects should execute

using dominates construct when more number of aspects are

present in AspectJ software.

The concern aspect given in Fig. 4 is a classical

example that can be used to illustrate the occurrence of control

flow interference. The aspect contains more than one before()

advice for the pointcut p1(). All the before() advices are

woven at the same join point. Based on this, it is clearly

evident that the order of execution of the advices plays a

significant role on the outcome of the program. The order of

execution of the four before() advices has not been specified in

the given code. Hence, there is a possibility for the occurrence

of control flow interference between the advices. Since the

AOSIA tool has been designed to identify the existence of

such a kind of scenario, the tool identifies this scenario as

control flow interference.

Based on the scenario provided for the explanation of

data flow interference an AspectJ code segment has been

developed as shown in Fig. 6.

Fig -6: Code Snippet for Data Flow Interference

Since, statusChecker() and complainChecker()

methods access the same property which is #OfComplaint, the

outcome of the execution of both the methods depends upon

the value of #OfComplaint. As explained previously, data flow

interference is possible between the methods. The AOSI|A

tool will identify such situations existing in the given AspectJ

program. Once the tool identifies the existence of such

instances, it will be added to the interference report.

7.3 Generation of Interference Report

 The tool generates a report that includes the name of

interference, number of interferences and the corresponding

removal methods. The types of interference in the given

AspectJ program are identified and possible solutions to

remove the identified interferences are also added to the

report. Two types of removal methods for the identified

interferences will be included in the report, dominated

language constructs and order of precedence. For example,

AspectJ permits definition of order in which aspects should

execute using “dominated language constructs”. If two aspects

namely, encryption and compression are defined in an

application, then by using the keyword dominates it is possible

to define the order of execution of the two aspects. If more

number of aspects is defined for a single join point and the

order of weaving of advices at the common join point is not

clear, then the order can be specified by using the

“precedence” keyword in the aspect. Similar to the previous

example, if two aspects containing encrypt() and compress()

functionalities as their respective advices and have the same

join point, then the precedence keyword can be used to define

the order of execution of the two advices.

2. RESULTS AND DISCUSSION

The AOSIA tool has been designed to identify the

existence of interferences in the given AspectJ program. The

tool has been executed by taking the two sample programs as

input one at a time. Reports are generated for each sample

program. The report clearly indicates the type of interferences

identified in the two sample AspectJ programs. The report

also includes possible removal methods for each of the

identified interferences. The interference report generated for

the first and second sample programs are shown in Fig. 7 and

Fig. 8.

The name of interferences, number of interferences

and the corresponding removal methods for the first sample

program which is generated by the AOSIA tool is shown in

Fig. 7. Similarly, Fig. 8 shows the same characteristics for the

second sample program. In the first sample program control

flow interference between the four before() advices have been

identified and the corresponding removal method are

generated in the report. For the second sample program

occurrence of data flow interference is identified and the

needed remedial measure is included in the report.

Now, the interference has to be manually removed by

modifying the AspectJ programs using the removal methods

specified in the report. Further, similar AspectJ programs can

be given as input to the AOSIA tool to check for the existence

of the two types of interference.

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20181

Fig -7: Generated Interference Report and Removal methods for

Control Flow Interference

Fig -8: Generated Interference Report and Removal methods for

Data Flow Interference

3. CONCLUSION AND FUTURE WORK

Interference analysis in AspectJ programs leads to the

identification of code segments that interfere with each other.

In this paper, definition and identification of control flow and

data flow interference have been clearly explained with

suitable examples. Existing tools to identify interferences in

other programming languages have been explained and

reasons behind the inability to extend them to AspectJ are

clearly analyzed. Further, a methodology to identify the

existence of these two interferences in a given AspectJ

program has been developed. A Java based AOSIA tool has

been developed for testing the existence of interferences in a

given AspectJ program. The tool has been successfully used to

identify the interferences found in the given AspectJ programs.

The two types of interferences identified by this methodology

are control flow and data flow interference found in the sample

AspectJ programs. A report generated by the AOSIA tool

includes name of the interferences, number of interferences

removal methods for the interferences.

AOSIA tool was used to identify the interferences that

can possibly occur in the given AspectJ program. Since, source

code cannot be queried directly to identify the existence of

interference; the concept of AST has been introduced to enable

modification of source code for the easy identification of

interference. In this paper, we have also attempted framing of

AST for the given AspectJ program and the identification of

two major types of interferences which may be present in the

AspectJ program. As an extension it is also possible to extend

this methodology to identify other types of interferences that

might be introduced in a given AspectJ program. The AOSIA

tool can also be extended by adding a module to automatically

remove the identified interferences. Further, other types of

AOP languages can also be analyzed for the identification of

occurrence of similar types of interferences.

REFERENCES

1. Babu C. and Krishnan H.R., “Fault Model and Test-

Case Generation for the Composition of Aspects,” In

proceedings of ACM SIGSOFT Software

Engineering Notes, pp. 1-6, 2009.

2. http://checkstyle.sourceforge.net/

3. http://www.pmd.sourceforge.net/

4. Disenfeld C. and Katz S, “A Closer Look at Aspect

Interference and Cooperation,” In Proceedings of the

11th Annual International Conference on Aspect-

oriented Software Development, pp. 107-118, 2012.

5. Figueiredo E., Garcia A., and Lucena C., “AJATO:

An AspectJ Assessment Tool,” In proceedings of

European Conference on Object Oriented

Programming (ECOOP Demo), France, 2006.

6. Gradecki J.D. and Lesiecki N, “Mastering AspectJ:

Aspect- Oriented Programming in Java,” John Wiley

& Sons, 2003.

7. Katz E. and Katz S, “Incremental Analysis of

Interference Among Aspects,” In Proceedings of the

7th Workshop on Foundations of Aspect-oriented

Languages, pp. 29-38, 2008.

8. Kiczales G., Lamping J., Mendhekar A., Maeda C.,

Lopes C.V., Loingtier J.M., and Irwin J., “Aspect-

Oriented Programming,” In Proceedings of the

European Conference on Object-Oriented

Programming (ECOOP), Finland, pp. 1-16, 1997.

9. Lauret J., Waeselynck H., and Fabre J.C., “Detection

of Interferences in Aspect-Oriented Programs using

Executable Assertions.,” In Proceedings of 23rd IEEE

International Symposium Software Reliability

Engineering Workshop (ISSREW), pp. 165-170,

2012.

10. http://www.findbugs.sourceforge.net/manual/eclipse.

html

11. St¨orzer M., “Analysis of AspectJ Programs,” In

proceedings of 3rd German Workshop on Aspect-

Oriented Software Development, 2003.

12. St¨orzer M. and Jens K, “Interference Analysis for

AspectJ,” In Proceedings of the Foundations of

Aspect-Oriented Languages, pp. 33- 44, 2003.

13. http://www. checkstyle.sourceforge.net/.

14. Zhang D., “Aspect Impact Analysis,” Ph.D. Thesis,

McGill University, 2008.

BIOGRAPHIES

Ms. G. Barani is currently working as a

assistant professor in the Department of Computer Science and

DOI: 10.18535/ijecs/v6i2.02

G. Barani
1
 IJECS Volume 6 Issue 2 Feb., 2017 Page No.20176-20182 Page 20182

Engineering at Sri Ramakrishna Institute of Technology,

Coimbatore. She is interested in the field of Aspect oriented

programming, Ontology and Software testing.

 Ms. V. Suganya is currently working as a

assistant professor in the Department of Computer Science and

Engineering at Sri Ramakrishna Institute of Technology,

Coimbatore. She is interested in the field of Networks, Aspects

programming and Data Structures.

 Mr. S. Rajesh is currently working as a

assistant professor in the Department of Computer Science and

Engineering at Sri Ramakrishna Institute of Technology,

Coimbatore. He is having more than 5 years of experience in

teaching field. He is pursuing his Ph.D in the field of Mobile

Adhoc Networks (MANET).

