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Abstract 

The coming century is surely the century of data. A combination of blind faith and serious purpose makes 

our society invest massively in the collection and processing of data of all kinds, on scales unimaginable 

until recently. In spite of the fact that graph embedding has been an intense instrument for displaying data 

natural structures, just utilizing all elements for data structures revelation may bring about noise 

amplification. This is especially serious for high dimensional data with little examples. To meet this test, a 

novel effective structure to perform highlight determination for graph embedding, in which a classification 

of graph implanting routines is given a role as a slightest squares relapse issue. In this structure, some 

preprocessing techniques for instance selection are used. Classification, Clustering are used for accuracy 

calculation.   
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1.  Introduction 

The world continues to generate quintillion bytes of 

data daily, leading to the pressing needs for new 

efforts in dealing with the grand challenges brought 

by Big Data. Today, there is a growing consensus 

among the computational intelligence communities 

that data volume presents an immediate challenge 

pertaining to the scalability issue. However, when 

addressing volume in Big Data analytics, researchers 

in the data analytics community have largely taken a 

one-sided study of volume, which is the Big Instance 

Size factor of the data. The flip side of volume which 

is the dimensionality To lighten this, one conceivable 

methodology is to change high To lighten this, one 

conceivable methodology is to change high 

dimensional data into a lower dimensional 

representation while safeguarding the inborn data 

structures. This is dimensionality reduction. 

Inherent data structures can have both nearby and 

worldwide properties, contigent upon the 

applications. Nearby properties frequently allude to 

the nearby neighborhood relationship for example 

in LPP, while illustrations of worldwide properties 

incorporate class detachment in LDA, the 

worldwide change in PCA, and the worldwide most 

brief way between any sets of data tests in the 

Isomap technique.  

systematically searching through a high-dimensional 

space, the apparent intractability of accurately 

approximating a general high-dimensional function, 

the apparent intractability of integrating a high-

dimensional function. 

Two of the most influential principles in the coming 

century will be principles originally discovered and 

cultivated by mathematicians: the blessings of 

dimensionality and the curse of dimensionality. The 

curse of dimensionality is a phrase used by several 

subfields in the mathematical sciences; I use it here to 

refer to the apparent intractability of systematically 

searching through a high-dimensional space, the 

apparent intractability of accurately approximating 

a general high-dimensional function, the apparent 

intractability of integrating a high-dimensional 

function. 

The blessings of dimensionality are less widely 

noted, but they include the concentration of 

measure phenomenon, which means that certain 

random fluctuations are very well controlled in high 

dimensions and the success of asymptotic methods, 
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used widely in mathematical statistics and statistical 

physics, which suggest that statements about very 

high-dimensional settings may be made where 

moderate dimensions would be too complicated. 

2.  Literature Survey 

Numerous issues in data preparing include some type 

of dimensionality lessening. Locality Preserving 

Projection (LPP) [3] is direct projective maps that 

emerge by unraveling a variational issue that ideally 

protects the area structure of the dataset. LPP ought 

to be seen as a distinct option for Principal 

Component Analysis (PCA) - an established straight 

method that activities the information along the 

bearings of maximal fluctuation. At the point when 

the high dimensional information lies on a low 

dimensional complex installed in the encompassing 

space, the Locality Finding so as to preserve 

Projections are acquired the ideal direct 

approximations to the Eigen functions of the Laplace 

Beltrami administrator on the complex. Thus LPP 

offers a large portion of the information 

representation properties of nonlinear strategies for 

example Locally Linear Embedding. Yet LPP is 

straight and then some critically is characterized all 

over the place in encompassing space as opposed to 

simply on the preparing information focuses. 

Volumes of high dimensional information [4] for 

example worldwide atmosphere designs, stellar 

spectra or human quality conveyances, frequently 

face the issue of dimensionality diminishment: 

pending important low dimensional structures 

covered up in their high dimensional perceptions. 

Here portray a way to deal with tackling 

dimensionality diminishment issues that uses 

effortlessly measured nearby metric data to take in 

the hidden worldwide geometry of an information 

set. Not at all like established systems, for example 

central part investigation (PCA) and 

multidimensional scaling (MDS)[5] ,the methodology 

is fit for finding the nonlinear degrees of flexibility 

that underlie complex common perceptions for 

example a face under distinctive review conditions. 

As opposed to past calculations for nonlinear 

dimensionality diminishment, own efficiently 

processes an all inclusive ideal arrangement, what’s 

more for an imperative class of information 

manifolds is ensured to unite asymptotically to the 

genuine strum. 

Locally Straight Implanting (LLE) [7] an 

unsupervised learning calculation that processes low 

dimensional, neighborhood protecting embedding of 

high dimensional inputs. Not at all like grouping 

techniques for neighborhood dimensionality 

lessening, LLE maps its inputs into a solitary 

worldwide direction arrangement of lower 

dimensionality and its advancements don’t include 

nearby minima. By abusing the neighborhood 

symmetries of straight reconstructions, LLE’s ready 

to take in the worldwide structure of nonlinear 

manifolds for example created by pictures of 

confronts or records of content. 

3.  Proposed System 

The immense growth of feature dimensionality in 

data analytics has exposed the inadequacies of 

many computational intelligence methodologies 

that exist to date. Hence there is an urgent need for 

the conception of new paradigms and 

methodologies that can cope with the emerging 

phenomenon of Big Dimensionality. 

Correspondingly, how to solicit the key features to 

concisely represent the data and the prediction 

model well, while facilitating fast prediction and 

reduced storage, are among the important tasks of 

Big Data analytics. 

We will consider what statisticians consider the 

usual data matrix, a rectangular array with N rows 

and p columns, the rows giving different 

observations or individuals and the columns giving 

different attributes or variables. There are broad 

range of applications where we can have N by p 

data matrices. 

For example: 

● Web –Term Document Data: 

In this model, one compiles term-document    

matrices, N by p arrays, where N, the number of 

documents, is in the millions, while p, the number 

of terms (words), is in the tens of thousands, and 

each entry in the array measures the frequency of 

occurrence of given terms in the given document, in 

a suitable normalization. 

● Sensor Array Data: 

An array of p sensors is attached to the 

scalp, with each sensor records N 

observations over a period of seconds, at a 

rate of X thousand samples, second. 

● Gene Expression Data: 

Data on the relative abundance of p genes in 

each of N different cell lines. 

● Imagery: 

We can view a database of images as 

an N-by-p data matrix. Each image gives 

rise to an observation; if the image is n by n, 
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then we have p = n2 variables. Different 

images are then our different individuals. 

 

 
 

Figure 1: System Architecture 

As shown in Figure1, take input dataset matrix of 

high dimensional data. The architecture diagram 

shown gives the clear view of the system.  

 

3.1 Dimensionality Reduction Techniques: 

3.1.1 Instance Selection: 

Instance selection is an important data pre-processing 

step that can be applied for reducing original dataset 

to manageable volume. In it, zero reduction, variance 

reduction and similarity reduction is performed. Zero 

reduction involves eliminating column from dataset 

having number of zero (%) more. In variance 

reduction, variance of columns calculated. Having 

variance of column more than 0.50 are eliminated. 

Similarity reduction involves elimination of columns 

having more similarity among them. 

3.1.2 Feature Selection: 

As data contains many features that are either 

redundant or irrelevant. So removing that features 

does not incur loss of information. 

3.1.3 Classification: 

In classification, one of the p variables is an indicator 

of class membership. Many approaches have been 

suggested for classification, ranging from identifying 

hyperplanes which partition the sample space into 

non-overlapping groups, to k-nearest neighbor 

classification. Train classifier to classify features. 

Select most active features. Calculate accuracy with 

and without PCA. Classification. 

3.2 Data Selection: 

Cluster Analysis could be considered a field all its 

own, part art form, part scientific undertaking. One 

seeks to arrange an unordered collection of objects 

in a fashion so that nearby objects are similar. 

There are many ways to do this, serving many 

distinct purposes, and so no unique best way. An 

obvious application area would be in latent 

semantic indexing, where we might seek an 

arrangement of documents so that nearby 

documents are similar and an arrangement of terms 

so that nearby terms are similar. 

3.2.1 K-Means: 

K-means clustering is a method of vector 

quantization, originally from signal processing, that 

is popular for cluster analysis in data mining. K-

means clustering aims to partition n observations 

into k clusters in which each observation belongs to 

the cluster with the nearest mean, serving as a 

prototype of the cluster. In particular, the parameter 

k is known to be hard to choose (as discussed 

above) when not given by external constraints. 

Another limitation of the algorithm is that it cannot 

be used with arbitrary distance functions or on non-

numerical data. 

3.2.2 FCM: 

Fuzzy c-means (FCM) is a method of clustering 

which allows one piece of data to belong to two or 

more clusters. As already told, data are bound to 

each cluster by means of a Membership Function, 

which represents the fuzzy behavior of this 

algorithm. To do that, we simply have to build an 

appropriate matrix named U whose factors are 

numbers between 0 and 1, and represent the degree 

of membership between data and centers of 

clusters. 

3.3 Merge two dataset: 

If any user want data from two datasets then it 

becomes difficult to process both the dataset for 

reduction. So applying instance selection on both 

datasets reduce size of datasets. Perform merge 

operation on both dataset to form only one dataset. 

Dimensionality of merge dataset is much lower than 

input datasets. 
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4. Algorithm 

4.1 Sparse Graph Embedding Algorithm for 

Feature Selection: 

The optimization problem has a combinatorial 

number of constraints. However, only a few of    

them are active. Exploiting this observation, we adopt 

the cutting plane algorithm to solve the QCQP 

problem. The cutting plane algorithm iteratively finds 

the most active constraint. 

  Input: data X ϵ      a positive semi-definite 

matrix S, the desired feature cardinality m. 

(1) Initialize π = Ø and compute T according to (3). 

Assign t := 1. 

(2) Iterate the following two steps until convergence. 

(a) Update V by solving the sub problem. 

(b) Find the most active constraint, which is indicated     

by   , by solving   = argmaxp f(V,p); based on V . 

Update π by π: = π ∪ {  } and t  by t := t+1; 

Output: π  = {        } , with each    indexing 

the selected features 

 

4.2 The Most Active Constraint Selection: 

The most active constraint can be identified by 

choosing the features with the m highest values in s. 

The most active constraint obtained is then added to 

the active constraint. 

Input: Data X ϵ     , dual variable V , the desired 

number of Features m, and the selection vector p. 

(1) Set all the entries of p to 0. 

(2) Compute si = ∑ 
           , ∀ = 1,……d. 

(3) Sort s in descending order. 

(4) Set m entries of p w.r.t. the top m values of s. 

Output: p which defines the most active constraint. 

 

4.3 Moreau Projection Algorithms: 

After updating the active constraint set P, we then 

solve the subproblem with reduced constraints as   

defined by P. Since the number of constraints in P is 

no longer large, this problem is readily solved by a 

sub-gradient method, such as simple MKL. 

However, solving this problem w.r.t. the dual 

variables V can be very expensive, in particular  

when n is very large. Assume there are k active 

constraints in P. Even though there are a large 

number of features in X, at most mk features are 

chosen by P. Based on this observation, the 

subproblem might be solved more efficiently w.r.t. 

the primal variables W. 

 

Moreau Projection: Sι()G 

Input G= [G1,G2,...,Gk] and s=1/ι. 

(1) Calculate ˆ ut = ||Gt||F for all t=1,...,k.  

(2) Sortˆ u to obtain u such that u(1) ≥ ... ≥ u(k).  

(3) Find ρ = max{t|ut −s 1 + tsPt i=1 ui > 0,t = 

1,...k}.  

(4) Calculate the threshold value S = s/1 + ρsPρ i=1 

ui.  

(5) Compute o = soft (ˆu, S). 

(6) Compute and output : Sι(G). 

 

4.4 Accelerated Proximal Gradient Algorithm: 

Given an ultrahigh dimensional sparse data matrix, 

removing the data mean (zero-centering) could 

make the matrix very dense. The data matrix can be 

used instead for regression to remove  the data 

offset. As for the proposed framework, zero-

centering can be performed in each subproblem. 

 

Initialization: Initialize the lipschitz constant Lt = 

Lt−1 and set Ω−1 = Ω0 by warm start, ι0 = Lt, n ∈ 

(0, 1), parameter `−1 = `0 = 1, and k=0. 

 

(1) Set V k = Ωk + (ek−1 −1)/ek(Ωk −Ωk−1).  

(2) Set ι = nιk. Repeat Set G=V k −1/ιOf(V k), 

compute Sι(G). if F(Sι(G)) ≤ Q(Sι(G),V k), set ιk = 

ι, stop ,break; else ι= min {n−1ι,Lt}. End Until 

convergence F(Sι(G)) ≤ (Sι(G),V k)  

(3) Set Ωk+1 = (Sιk(G)).  

(4) Let %k+1 = (1 +p (1 + 4(%k2))/2. Let k=k+1  

(5) Quite if the stopping condition is achieved. 

Otherwise go to, step 1.  

(6) Let Lt = n2ιk and return. 

 

4.5 Principal Component Analysis (PCA): 

Principal Component Analysis depends on big set 

of data to analyze that set in terms of relationship 

between the individual points in that data set. As 

dealing with high dimensional data, calculate 

covariance matrix. Eigenvectors and eigenvalues 

are finding for covariance matrix. So that is way of 

identifying patterns in a dataset. 

 

(1) Mean Center the data. 

(2) Compute the covariance matrix of the 

dimensions. 
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(3) Find the eigenvectors of covariance matrix. 

(4) Sort the eigenvectors in decreasing order of 

eigenvalues. 

(5) Project onto eigenvectors in order. 

 

4.6 K-Means Clustering: 

K-means algorithm is one of the simplest 

unsupervised learning algorithms that partition 

technic vectors into k clusters so that the within 

group sum of squares is minimized. K-means 

clustering technic is a method of vector quantization 

originally from signal processing that is popular for 

cluster analysis in data.mining. K-Means follows a 

simple way to classify a given dataset. 

 

Let  X = {x1,x2,x3,……..,xn} be the set of data points 

and V = {v1,v2,…….,vc} be the set of centers. 

(1) Randomly select ‘c’ cluster centers. 

(2) Calculate the distance between each data point 

and cluster centers. 

(3) Assign the data point to the cluster center whose 

distance from the cluster center is minimum of all the 

cluster centers. 

(4) Recalculate the new cluster center.  

(5) Recalculate the distance between each data point 

and new obtained cluster centers. 

(6) If no data point was reassigned then stop, 

otherwise repeat from step (3). 

4.7 FCM Clustering: 

In FCM, fuzzy membership is calculated. Each data 

point is assigned to fuzzy membership corresponding 

to each cluster on the basis of distance between the 

cluster center and data point. 

Let X = {x1, x2, x3 ..., xn} be the set of data points and 

V = {v1, v2, v3 ..., vc} be the set of centers.. 

(1) Randomly select ‘c’ cluster centers. 

(2) Calculate the fuzzy membership. 

 (3) Compute the fuzzy centers. 

                                                                          

 (4) Repeat step (2) and (3) until the minimum J value 

is achieved 

   

 

5. Mathematical Model 

A mathematical model is a description of a system 

using mathematical concepts and language. 

Mathematical model used to maximize a certain 

output. The system under consideration will require 

certain inputs. The system relating inputs to outputs 

depends on other variables defined in the below 

section with the help of Venn Diagram as shown in 

Figure.2. 

 

 
 

Figure 2: Functional Dependency Of 

System 

 

Set Theory: 

Let I is a set of input i.e. Dataset, R be the set of 

Reduction Techniques 

F is the set of functions used for the 

implementation. 

O is the output. 

S= (I, F, O) 

I: Input Dataset 

R: Set of Reduction Techniques F: Set of Functions 

O: Set of Output 

F=F1,F2,............F10. 

 

F1: Loading dataset. 

F2: Finding zero columns in dataset. 

F3: Finding variance of column in dataset. 

F4: Checking similarity among columns of dataset. 

F5: PCA Classification. 

F6: Merge dataset. 

F7: Applying K-Means Clustering. 

F8: Calculate Accuracy of dataset with or without 

reduction after K-Means. 

F9: Applying FCM Clustering. 
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F10: Calculate Accuracy of dataset with or without 

reduction after FCM. 

 

Let I be set of input dataset and O be the set of 

output.  

Let R be the set of different  reduction techniques 

which can be applied on input dataset to get 

corresponding output. 

O = {I, Z, V, S, R} 

Where I = {I1, I2, …,In, In≠0}, I is set of input string 

Where Z = {Z1, Z2, …,Zn, Zn≠0}, Z is set of zero 

column. 

Where V = {V1, V2,…..,Vn,Vn≠0}, V is set of 

variance of column. 

Where S = {S1, S2 ,…,Sn,Sn≠0},S is the set of 

similarity of column. 

Where R = {R1,R2,,…..,Rn,Rn≠0}, R is set of 

Reduction Techniques. 

Let Fz (I) → Z Where Fz is a function that takes the 

input dataset and provides the zero column of the 

dataset. 

Let Fv (P) → V Where Fv is a function that takes the 

input dataset having zero reduction and provides 

variance reduction of the dataset. 

Let Fs (P) → S Where Fs is a function that takes the 

variance reduction dataset and provides similarity 

reduction dataset. 

Let Fr (P) →R Where Fr is a function that takes the 

dataset and provides reduction form of result. 

X: Importing the dataset. 

F(X): As per the users requirement the dataset is 

uploaded in the system in proper format . 

F1: Database updation as per the user need. 

X: Applying reduction techniques. 

F(X): What can be the probable techniques for 

reduction dimensionality. 

F3: Techniques are find out and weights are assigned 

to the techniques. 

 

X: Input dataset. 

F(X): The input dataset is parsed on the basis of 

parameters like rows, attributes etc. 

F2: Reduce the input by finding zero columns. 

X: Dataset is given as input for zero reduction. 

F(X): Dataset is given as an input for  finding 

variance. 

F3: Reduce the input by finding variance of column. 

X: Searching and finding the similar columns in 

dataset is done. 

F(X): If entered dataset having similarity among 

columns of dataset then similarity column reduction 

is performed. 

F4: Obtaining results of classification. 

X: Classification on reduction dataset is performed. 

F(X): Classification is performed depending on 

reduction factor. 

F7: Applying Merge for input dataset. 

X: K-Means Clustering. 

F(X): After classification, K-Means algorithm is 

applied for getting the accurate results. 

X: FCM Clustering. 

F(X): After classification, FCM algorithm is 

applied for getting the accurate results. 

F9: Analysis is done by graph i.e accuracy 

estimation is calculated here. 

 

6. Result Analysis and Discussion 

In existing work, Feature selection and Graph 

embedding tasks have been done independently or 

mutually exclusively. This paper instead proposes a 

novel paradigm to unify these two schemes by 

performing Feature selection and Graph embedding 

simultaneously. Classification, Clustering, etc. 

preprocessing dimensionality reduction techniques 

are applied on high dimensional datasets so time 

complexity of System get reduced to much extent. 

Accuracy and Efficiency of required result get 

improve. 
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Both Graph shows result for wine dataset. Using K-

Means and FCM clustering. As we use reduction 

techniques so no.of features get reduced to much 

extent. So it helps to improve accuracy of 

classification using Naïve Baye’s and ID3 to get 

higher accurate and efficient output data in low 

dimensional form from high dimensional data. 

 

7. Conclusion 

In this system user is provided with extra facilities of 

dataset dimensionality reduction. User is allowed to 

search specific data from large amount of data. 

Mainly if the user is from non-technical background 

and has very few details of dataset then its easy to use 

this system. Another feature of this system is that 

reduction results are very accurate. Also the main 

concentration is not only on accuracy but also on 

efficiency .This is an important feature of this system 

even if the datasets increases the efficiency does not 

degrade. The main aim was to achieve efficiency 

along with the accuracy. The experimental result 

shows that even if the dataset increases the reduction 

time does not increase much. The reduction results 

are found in effective time only. This system is 

especially helpful for the banking, education, 

industrial, business purposes where there are more 

chances of high dimensional data. User can also 

merge two datasets after reducing dimensionality of 

two datasets. 
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