

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 12, Dec.2013 Page No. 3374-3383

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 1

Moving Towards IT platforms to the cloud Computing & deep

understanding with IT platform architecture transformation
Er. Shalu soni, Er. Sahil Verma, Er. Vishal Gupta

M-Tech Student

M-Tech (C.S.E.)

M-Tech (C.S.E.)

Introduction

Companies can greatly reduce IT costs by

offloading data and computation to cloud

computing services. Still, many companies are

reluctant to do so, mostly due to outstanding

security concerns. A recent study [2] surveyed

more than 500 chief executives and IT managers

in 17 countries, and found that despite the

potential benefits, executives “trust existing

internal systems over cloud-based systems due to

fear about security threats and loss of control of

data and systems”. One of the most serious

concerns is the possibility of confidentiality

violations. Either maliciously or accidentally,

cloud provider’s employees can tamper with or

leak a company’s data. Such actions can severely

damage the reputation or finances of a company.

In order to prevent confidentiality violations,

cloud services’ customers might resort to

encryption. While encryption is effective in

securing data before it is stored at the provider, it

cannot be applied in services where data is to be

computed, since the unencrypted data must reside

in the memory of the host running the

computation. In Infrastructure as a Service (IaaS)

cloud services such as Amazon’s EC2, the

provider hosts virtual machines (VMs) on behalf

of its customers, who can do arbitrary

computations. In these systems, anyone with

privileged access to the host can read or

manipulate a customer’s data. Consequently,

customers cannot protect their VMs on their own.

Cloud service providers are making a substantial

effort to secure their systems, in order to minimize

the threat of insider attacks, and reinforce the

confidence of customers. For example, they

protect and restrict access to the hardware

facilities, adopt stringent accountability and

auditing procedures, and minimize the number of

staff who have access to critical components of

the infrastructure [8]. Nevertheless, insiders that

administer the software systems at the provider

backend ultimately still possess the technical

means to access customers’ VMs. Thus, there is a

clear need for a technical solution that guarantees

the confidentiality and integrity of computation, in

a way that is verifiable by the customers of the

service.

Outside-in and inside-out architecture styles

Architecture styles define families of software

systems in terms of patterns for characterizing

how architecture components interact. They define

what types of architecture components can exist in

architectures of those styles, and constraints on

how they may be combined. They define how

components may be combined together for

deployment. They define how units of work are

managed, e.g., whether they are transactional (n-

phase commit). And they define how functionality

that components provision may be composited

into higher order functionality and how such can

be exposed for use by human beings or other

systems. The Outside-In architectural style is

inherently top-down and emphasizes

decomposition to the functional level but not

lower, is service-oriented rather than application-

oriented; factors out policy as a first-class

architecture component that can be used to govern

transparent performance of service-related tasks;

and emphasizes the ability to adapt performance

http://www.ijecs.in/

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3375

to user/business needs without having to consider

the intricacies of architecture workings1. The

counter style, what we call Inside-Out, is

inherently bottom-up and takes much more of an

infrastructural point of view as a starting point,

building up to a business functional layer.

Application platforms constructed using client

server, object-oriented, and 2/3/n-tier architecture

1 An styles are those to which we apply the

generalization Inside-Out because they form the

basis of enterprise application architectures today,

and because architectures of these types have

limitations that require transformation to scale in a

massive way vis-à-vis Outside-In platforms.

Implementation of an Outside-In architecture

results in better architecture

layering and factoring, and interfaces that become

more business than data oriented. Policy becomes

more explicit, and is exposed in a way that makes

it easier to change it as necessary. Service

orientation guides the implementation, making it

more feasible to integrate and interoperate using

commodity infrastructure rather than using

complex and inflexible application integration

middleware. As a rule, it is simpler to integrate

businesses at functional levels than at lower

technology layers where implementations might

vary widely. Hence we emphasize decomposition

to the functional level, which often is dictated by

standards within a market, regulatory constraints

on that market, or even accounting (AP/AR/GL)

practices. For a much more detailed discussion of

Outside-In versus Inside-Out

architecture styles, please see the working paper

we call “Web Services

2.0”vii.

Clouds and service grids

Since a widely accepted industry definition of

cloud computing — beyond a relationship to the

Internet and Internet technologies — does not

exist at present, we see the term used to mean

hosting of hardware in an external data center

(sometimes called infrastructure as a service),

utility computing (which packages computing

resources so they can be used as a utility in an

always on, metered, and elastically scalable way),

platform services (sometimes called middleware

as a service), and application hosting (sometimes

called software or applications as a service). The

potential of cloud computing is not limited to

hosting applications in someone else’s data center,

though cloud offerings can be used in this way to

elastically manage computing resources and

circumvent the need to buy

new infrastructure, train new people, or pay for

resources that might only be used periodically.

Special file system, persistence, data

indexing/search, payment processing, and other

cloud services can provide benefits to those who

deploy platforms in clouds, but their use often

requires modifications to platform functionality so

that it interoperates with these services. Before the

term cloud, the term service grid was sometimes

used to define a managed distributed computing

platform that can be used for business as well as

scientific applications. Said slightly differently, a

service grid is a manageable ecosystem of specific

services deployed by service businesses or utility

companies. Service grids have been likened to a

power or utility grid … always on, highly reliable,

a platform for making managed services

available to some user constituency. When the

term came into use in the IT domain, the word

service was implied to mean Web service, and

service grid was viewed as an infrastructure

platform on which an ecology of services could be

composed, deployed, and managed. The phrase

service grid implies structure. While grid

elements, servers together with functionality they

host within a service grid, may be heterogeneous

vis-à-vis their construction and implementation,

their presence within a service grid implies

manageability as part of the grid as a whole. This

implies that a capability exists to manage grid

elements using policy that is external to

implementations of services in a service grid

(at the minimum in conjunction with policy that

might be embedded in

legacy service implementations). And services in

a grid become candidates

for reuse through service composition; services

outside of a grid also are

candidates for composition, but the service grid

only can manage services

within its scope of control. Of course, service

grids defined as we have

above are autonomic, can be recursively

structured, and can collaborate in

their management of composite services

provisioned across different grids.

Clouds and service grids both have containers. In

clouds, container is used

to mean a virtualized image containing technology

and application stacks.

The container might hold other kinds of containers

(e.g., a J2EE/Java EE

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3376

application container), but the cloud container is

impermeable, which

means that the cloud does not directly manage

container contents, and

the cloud contents do not participate in cloud or

container management.

In a service grid, container is the means by which

the grid provides

underlying infrastructural services, including

security, persistence, business

transaction or interaction life cycle management,

and policy management.

In a service grid, it is possible for contents in a

container to participate

in grid management as a function of infrastructure

management policies

harmonized with business policies like service

level agreements. It also is

possible that policy external to container contents

can shape2 how the

container’s functionality executes. So a service

grid container’s wall is

permeable vis-à-vis policy, which is a critical

distinction between clouds

and service grids3.

2 The sense of the word shape is consistent with

how policy is applied in the telecom world where,

for example, bandwidth might be made available

to users during particular times in the day as a

function of total number of users present.

3 Cloud management typically is exposed by the

cloud vendor through a dashboard. Vendors like

Amazon also make functionality underlying the

dashboard available as Web services such that

cloud users’ functionality could programmatically

adjust resources based on some internal policy. A

service grid is constructed to actively manage

itself as a utility of pooled resources and

functionality for all grid users. Hence, a service

grid will require

interaction with functionality throughout the grid

and determine with the use of policy extension

points whether resource supply should be

adjusted.

Cloud computing

A cloud, as defined by the cloud taxonomy noted

earlier, is not necessarily

a service grid. There is nothing in cloud

definitions that require all services

hosted in them to be manageable in a consistent

and predetermined

way4. There is no policy engine required in a

cloud that is responsible to

harmonize policy across infrastructure and

business layers within or across

its boundaries, though increased attention is being

given software vendors

to policy-driven infrastructure management.

Clouds are not formed with

registries or other infrastructure necessary to

support service composition

and governance.

However, a service grid can be formed by

implementing a cloud

architecture, adding constraints on cloud structure,

and adding constraints

on business and infrastructure architecture layers

so that the result can be

managed as both a technology and a business

platform.

Architecture transformation

How to construct an Outside-In architecture that

meets next century

computing requirements is a topic that requires

debate. Should we

leverage our past investments in infrastructure,

bespoke software

development, and third party software products? If

so, how can we

self-fund this and how long will it take? Or do we

go back to the IT

funding well with rationale that defends our need

now to develop a new

service platform and jettison that multimillion-

dollar investment we just

barely finished paying off?

The answer is it depends. We’ve seen both

approaches taken. And we’ve

seen that development of a new platform is no

longer as drastic as it

sounds.

Transforming an existing architecture

It is enticing to think that one could implement an

Outside-In architecture

simply by wrapping an existing Inside-Out

application platform with Web

service technologies to service-enable it.

Not quite.

It is possible to do that and then evolve the Inside-

Out architecture to an

Outside-In one as budget and other resources

allow using a strategy very

similar to Shinsei’s business interface strategy

discussed in the introduction

of this paper. But the fact that an Inside-Out

architecture typically is not

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3377

service-oriented — even though it might be

possible to access application

functionality using Web services — suggests that

just using the wrapper

strategy will not yield the benefits of a full

Outside-In architecture

implementation, and compensation for Inside-Out

architecture limits may

even be more costly than taking an alternative

approach.

To illustrate the process of converting an Inside-

Out architecture to an

Outside-In one, we consider how a typical Web

application platform could

be converted to an Outside-In architecture in

which some Web application

accesses all critical business functionality through

a Web services layer, and

Web services are hosted in a cloud, a service grid,

or internally.

From a layered perspective, a Web application

usually can be described by

a graphic of a three-tiered architecture like the one

below.

At the top of the graphic we see a user interface

layer, which usually is

implemented using some Web server (like

Microsoft’s IIS or Apache’s

HTTP Web server) and scripting languages or

servlet-like technologies

that they support. The second layer, the business

logic layer, is where all

business logic programmed in Java, C#, Visual

Basic, and php/python/perl/

tcl (or pick your favorite programming language

that can be used to code

libraries of business functionality) is put. The data

layer is where code that

manipulates basic data structures goes, and this

usually is constructed

using object and/or relational database

technologies. All of these layers are

deployed on a server configured with an operating

system and network

infrastructure enabling an application user to

access Web application

functionality from a browser or rich internet client

application.

The blue and red lines illustrate that business and

data logic sometimes

are commingled with code in other layers of the

architecture, making it

difficult to modify and manage the application

over time (code that is

spread out and copied all over the architecture is

hard to maintain). Ideally,

the red and blue lines would not exist at all in this

diagram, so it is here

where we start in the process of converting this

Inside-Out architecture to

an Outside-In one.

4 This should not suggest that clouds and

elements in them are not managed, because they

are. Service grids, however, impose an autonomic,

active,

and policy-based management strategy on all of

the elements within their scope of control so that

heterogeneous application and technology

infrastructure can be managed through a common

interface that can be applied to fine-grained grid

elements as desired or necessary.

Addressing architecture layering and

partitioning

The first step of transitioning from one

architecture style to another is to

correct mistakes relating to layering wherever

possible. This requires code

to be cleaned and commented, refactored, and

consolidated so that it

is packaged for reuse and orderly deployment, and

so that cross-layer

violations (e.g., database specifics and business

logic are removed from the

UI layer, or business logic is removed from the

data layer) are eliminated.

Assuming layering violations are addressed, it

makes sense then to

introduce a service application programming

interface (API) between the

User Interface Layer and the Business Logic

Layer as shown in the slightly

modified layer diagram below:

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3378

The service layer illustrated here is positioned

between the User Interface

and lower architecture layers as the only means of

accessing lower level

functionality. This means that the concerns of one

architecture layer do not

become or complicate the concerns at other levels.

But while we may have cleaned up layering

architecture violations, we

may not have cleaned up partitioning violations.

Partitioning refers

to the “componentizing” or “modularizing” of

business functionality

such that a component in one business functional

domain (e.g., order

management) accesses functionality in another

such domain (e.g.,

inventory management) through a single interface

(ideally using the

appropriate service API). Ensuring that common

interfaces are used to

access business functionality in other modules

eliminates the use of private

knowledge (e.g., private APIs) to access business

functionality in another

domain space. Partitioning also may be referred to

as factoring. When

transitioning to a new architecture style, the first

stage of partitioning

often is implemented at the Business Logic Layer,

resulting in a modified

architecture depicted as follows:

The next phase of transformation focuses attention

on partitioning

functionality in the database so that, for example,

side effects of inserting

data into the database in an area supporting one

business domain does

not also publish into or otherwise impact the

database supporting other

business domains.

Why go to such trouble?

Because it is possible to transition the architecture

in Figure 1 to become

like one of the depictions below. Figure 4

illustrates a well-organized

platform that might be centrally hosted.

Figure 5 illustrates a well organized platform that

could be hosted in a

service grid or even many service grids.

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3379

Figures 4 and 5 make it simple to see that services

and their supporting

business logic and data functionality could be

replaced easily with an

alternative service implementation without

negatively impacting other

areas of the architecture, provided that

functionality in one service domain

is accessed by another service domain only

through the service interface.

And such capability is required in order to

simplify management of an

application portfolio implemented on such an

architecture as well as

distribute and federate service implementations.

Externalizing policy

The next step toward implementing an Outside-In

architecture is to

external both business and infrastructure policies

from any of the

functionality provisioning services illustrated in

the figures above.

Our use of the word policy connotes constraints

placed upon the

business functionality of a system, harmonized

with constraints on the

infrastructure (hardware and software) that

provisions that functionality.

These constraints could include accounting rules

that businesses follow,

role-based access control on business

functionality, corporate policy about

the maximum allowable hotel room rate that a

nonexecutive employee

could purchase when using an online reservation

service, rules about

peak business traffic that determine when a new

virtualized image of an

application system should be deployed, and the

various infrastructural

policies that might give customer A preference

over customer B should

critical resource contention require such.

Policy extension points provide the means by

which policy constraints are

exposed to business and corresponding

infrastructural5 functionality and

incorporated into their execution. They are not

configuration points that

are usually known in advance of when an

application execution starts and

that stay constant until the application restarts.

Rather, policy extension

points are dynamic and late bound to business and

infrastructural

functionality, and they provide the potential to

dynamically shape

execution of it within the deployment

environment’s runtime.

Externalizing policy highlights a significant

distinction between Inside-Out

and Outside-In architecture styles. Inside-out

architectures usually involve

legacy applications in which policy is embedded

and thus externalizing it

is — at best — very difficult. Where application

policies differ in typical

corporate environments, it becomes the

responsibility of integration

middleware to implement policy adjudication

logic that may work well to

harmonize policies over small numbers of

integrated systems, but this will

not generalize to manage policy in larger numbers

of applications as would

be the case in larger value chains. To illustrate the

problem of scaling

systems where policy is distributed throughout it,

consider the system

illustrated in Figure 6.

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3380

Figure 6 illustrates a system where business policy

exists in multiple

locations of the architecture as indicated by areas

outlined in red. Scaling

this architecture would be disastrous because

policy would be distributed

as copies (or, worst case, as different code bases)

over a very complex

deployment environment. But a well-factored

environment like the

ones illustrated in Figures 4 and 5 have business

logic located in a single

logical architecture layer and, from it, policy can

be externalized with the

development of adapters or similar architecture

components that play the

role of policy extension points described above.

Once this is accomplished,

the architecture we started with now begins to

resemble the architecture

illustrated in Figure 7 below, in which policy has

been externalized, possibly

federated, and put under the control of policy

management services. Once

policy from business functionality is externalized,

it can be harmonized

with infrastructure policy as feasible/desired.

Replacing application functionality with

(composite) services

The final step in transforming an Inside-Out

platform to an Outside-In

platform is to replace business application code

that coordinates

invocation of multiple services with composite

service if this is possible.

In Figure 7 we use the term composite service to

mean business services

formed by combining other business services (or

methods thereof)

together to form coarse (larger) business functions

that are peer

with application functionality. For example, we

might see services to

manage order fulfillment, invoice submission and

payment processing,

orchestrations with which billing staff use to

prepare for invoicing, logistics

planning, and so forth. As a kind of mental

mapping between Figures 1

and 7, the composite service functionality in

Figure 7 maps to business

logic that has leaked into Web pages of the Web

application in Figure 1

(shown with red and blue lines) that are used to

manage order fulfillment,

invoice submission, etc.

Orchestration is often equated to workflows used

to coordinate some

ordering of service method invocations. Workflow

and other business

process management technologies are now well-

known within today’s

corporations. Workflow engines for Web services

have been commoditized

through open source initiatives and by commercial

software vendors.

These engines make it possible to implement

composite Web services

as either state machine or sequential workflows.

Use of state machine

flows makes it possible to avoid prescriptively

dictating how systems

interoperate. They also provide the opportunity to

incorporate human

intelligence tasks to help resolve exception

conditions that often emerge

from composite services or straight through

processing flows6.

Starting from scratch — maybe easier to do,

but sometimes hard

to sell

Many CIOs and IT executives hope that the costs

and risks of transforming

a legacy platform architecture to an Outside-In

one can be amortized over

time, and who can blame them. Most have

probably spent a considerable

sum developing the current architecture, so the

last thing any IT executive

wants to ask for is new budget sufficient to fund

still more infrastructurelevel

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3381

activities or require their companies to choose

between new

functionality or resolved infrastructure issues.

But we have experienced many changes in the

technology world during

the last 20 years that strongly suggest there is

value in at least considering

whether implementing Outside-In architectures

from scratch would be

worthwhile. An interesting catch here is that this

argument could have

been made and was made at each new stage of

development over the

last 20 years. Why is the story now so different?

Because today’s context

versus just a few years ago is qualitatively

different. Significant broadband

capacity, economic storage (both self- and cloud-

hosted), cheap memory

and modern caching services, commodity 64-bit

operating systems,

XML accelerators and sophisticated application

protocol management

capabilities, commoditized

integration/interoperability technologies,

virtualization and utility computing, cloud and

service grid computing, and

other relatively recent innovations challenge the

traditional wisdom that

it is better to evolve and extend an existing

platform than it is to create

a new one that could circumvent problems from

retrofitting an existing

architecture in ways quite counter to its original

design.

Coupled with these advances are elaborations of

industry domains in

the form of industry or business solution maps.

These maps are used

by consulting companies and software vendors to

provide business

process oriented views of industry, define roles

played and responsibilities

performed within business processes, begin (at

least) to build out

functional decompositions of the industry domain,

and map processes to

technology solutions where feasible. Using these

maps as starting points

streamlines process and data mapping efforts that

used to take months

to even several years to perform (in larger

companies), and results in a

detailed functional view that is necessary to build

a well-formed Outside-In

architecture.

Building from scratch is really not the same as

starting with nothing but

a blank sheet of paper. While it is unusual to find

a company able to

take a purely greenfield approach (unless it is a

startup), there are ways

for established businesses to get comfortable with

taking a greenfield

approach to developing an Outside-In architecture,

and subsequently

developing a strategy to implement it even if using

components of existing

platforms.

Concluding remarks

Transforming an Inside-Out architecture to an

Outside-In architecture

can be a lengthy process — it is a function of

existing system complexity,

size, and age. One company who shared with us

its experiences when

making such a transition was Rearden Commerce

(Rearden). Prior to three

and a half years ago, Rearden’s architecture was

composed like many of

the Web applications we see today: three-tiered,

open source Web and

application server technologies, and a relational

database. Rearden’s Web

application exposed a framework to which

merchant clients could interface

to Rearden “services” or functions. Rearden’s

management team had the

foresight to recognize the company’s need to

create a platform (not just an

application), and the corresponding need to make

architecture changes to

support more rapid development and simpler

deployment of new services.

By this time, Rearden already had clients, so it

understood that change had

to be made transparently to its user base whenever

possible or in a way

that the user base viewed as a positive upgrade of

capability to which they

could migrate as doing so became expedient to

their business.

Rearden strengthened its leadership team with

technologists who had

participated in Web service infrastructure

companies and could guide

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3382

in Rearden’s architecture modernization. This new

leadership team

undertook a transformation of the company’s

three-tiered architecture to

a service-oriented one over a two-year period

using a process like the one

described above. At the end of the two-and-a-half-

year period, Rearden

had transformed its traditional Web application

architecture to a service

oriented one with externalized policy

management.

When performing an architecture transformation,

is it necessary that all

architecture components are entirely transformed

— as was the case with

Rearden? If there was queue-based middleware in

the old architecture,

should it be replaced? Should all old applications

be replaced with custom

applications having appropriate policy extension

points?

6 Ultimately, it may prove necessary to

incorporate a constraint engine into the way that

services are composited to harmonize policies and

dynamically

govern execution of the composite..

Cloud computing

The answer to these questions is it depends.

Certainly it is possible to

replace enterprise application integration

technologies with commodity

or open source technologies, simplify them, or

maybe — in some cases

— even eliminate them. It is unlikely that

middleware supporting reliable

messaging and long-lived business transactions

between business partners

needs to be totally replaced in or removed from an

Outside-In architecture.

But its use can be couched in ways that eliminate

tight coupling between

partners, and commingling of business policy with

integration functionality

that makes partner integration difficult to change

as policies change or as

a partner networks expand.

Taking an Outside-In point of view requires that

we separate concerns

from the start. Application platforms should be

viewed as distributed

from their beginning rather than be made so after

the fact by attaching

some distribution layer to them. We must

understand how we have

permitted business security and access control

models to be built into

our architectures and how, now that technology

innovations enable us

to challenge these limits, we must remove them

from our computing

platforms to realize business agility goals that will

be demanded of an

architecture in the twenty-first-century.

Technologies we’ve used in

the past can be useful to us in the future. Success

in implementing an

Outside-In architecture is less a function of

technology than it is of a

business and technology architecture vision that

forces business and

technology architects to view business capabilities

from a global, outside in

and top down perspective.

REFERRENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph,

R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, M.

Zaharia. Above the Clouds: “A Berkeley View of

Cloud

computing”. Technical Report No. UCB/EECS-

2009-28,

University of California at Berkley, USA, Feb. 10,

2009.

[2] L. Vaquero, L. Merino, and J. Caceres. "A

break in the

clouds: towards a cloud definition". SIGCOMM

Comp.

Communications Review, vol. 39, pp. 50—55

(2009).

[3] L. Youseff, M. Butrico, and D. Da Silva.

"Toward a Unified

Ontology of Cloud Computing," Grid Computing

Environments Workshop (GCE '08), pp. 1—10

(2008).

Er. Shalu soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3374-3383 Page 3383

[4] P. Mell and T. Grance. “The NIST Definition

of Cloud

Computing”. National Institute of Standards and

Technology

(2009).

[5] Shufen Zhang, Shuai Zhang, Xuebin Chen,

Shangzhuo Wu.

“Analysis and Research of Cloud Computing

System”.

Instance 2010 Second International Conference on

Future

Networks, pp. 88 – 92.

[6] Xu Lei, Xin Zhe, Ma Shaowu, Tang Xiongyan.

“Cloud

Computing and Services Platform Construction of

Telecom

Operator”. Broadband Network & Multimedia

Technology,

2009. IC-BNMT '09. 2nd IEEE International

Conference on

Digital Object Identifier, pp. 864 – 867.

[7] Thomas Dietinger. “Aspects of e-Learning

Environments”.

Dissertation for the Award of the Academic

Degree Doctor

of Technical Sciences at Graz University of

Technology.

Retrieved January 12, 2008, from:

http://www.iicm.tugraz.

ac.at/thesis/tdieting_diss.doc

[8] Ministry of Education Government of People’s

Republic

 http://www.moedu.gov.uk/.

