

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 12, Dec.2013 Page No. 3360-3373

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3360

Clarifying the clouds - Discussing cloud Computing and assistance grid

architectures

Er. Roma Soni, Er. Sahil Verma, Er. Kavita

M-Tech Student

M-Tech (C.S.E.)

M-Tech (C.S.E.)

Introduction

Cloud Computing is in vogue. But what is it? Is it

just the same thing as outsourcing the hosting of

Web applications? Why might it be useful and to

whom? How does it change the future of

enterprise architectures? How might clouds form

the backbone of twenty-first-century ecosystems,

virtual organizations and, for a particular example,

healthcare systems that are truly open, scalable,

heterogeneous and capable of supporting the

players/ providers both big and small? In the past,

IT architectures took aim at the enterprise as their

endpoint. Perhaps now we must radically raise the

bar by implementing architectures capable of

supporting entire ecosystems and, in so doing,

enable these architectures to scale both downward

to an enterprise architecture as well as upward and

outward. We see cloud computing offerings today

that are suitable to host enterprise architectures.

But while these offerings provide clear benefit to

corporations by providing capabilities

complementary to what they have, the fact that

they can help to elastically scale enterprise

architectures should not be understood to also

mean that simply scaling in this way will meet

twenty-first-century computing requirements. The

architecture requirements of large platforms like

social networks are radically different from the

requirements of a healthcare platform in which

geographically and corporately distributed care

providers, medical devices, patients, insurance

providers, clinics, coders, and billing staff

contribute information to patient charts according

to care programs, quality of service and HIPAA

constraints. And the requirements for both of these

are very different than those that provision

straight-through processing services common in

the financial services industry. Clouds will have to

accommodate differences in architecture

requirements like those implied here, as well as

those relating to characteristics we subsequently

discuss. In this paper, we want to revisit

autonomic computing, which defines a

set of architectural characteristics to manage

systems where complexity is increasing but must

be managed without increasing costs or the size of

the management team, where a system must be

quickly adaptable to new technologies integrated

to it, and where a system must be extensible from

within a corporation out to the broader ecosystem

and vice versa. The primary goal of autonomic

computing is that “systems manage themselves

according to an administrator’s goals. New

components integrate effortlessly ...”i. Autonomic

computing per se may have been viewed

negatively in the past years — possibly due to its

biological metaphor or the AI or magic-happens-

here feel of most autonomic initiatives. But

innovations in cloud computing in the areas of

virtualization and finergrained, container-based

management interfaces, as well as those in

hardware and software, are demonstrating that the

goals of autonomic computing can be realized to a

practical degree, and that they could be useful in

developing cloud architectures capable of

sustaining and supporting ecosystem-scaled use.

Taking an autonomic approach permits us to

identify core components of an autonomic

http://www.ijecs.in/

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3361

computing architecture that Cloud Computing

instantiations have thus far placed little emphasis

on. We identify technical characteristics below

that must not be overlooked in future

architectures, and we elaborate them more fully

later in this paper:

��An architecture style (or styles) that should be

used when implementing

cloud-based services

��External user and access control management

that enables roles and related responsibilities that

serve as interface definitions that control access to

and orchestrate across business functionality

��An Interaction Container that encapsulates the

infrastructure services and policy management

necessary to provision interactions

��An externalized policy management engine

that ensures that interactions conform to

regulatory, business partner, and infrastructure

policy constraints

��Utility Computing capabilities necessary to

manage and scale cloudoriented

platforms

An autonomic frame of mind

Since a widely accepted industry definition of

Cloud Computing — beyond a relationship to the

Internet and Internet technologies — does not

exist at present, we see the term used to mean

hosting of hardware in an external data center

(sometimes called infrastructure as a service),

utility computing

(which packages computing resources so they can

be used as a utility in an always-on, metered, and

elastically scalable way), platform services

(sometimes called middleware as a service), and

application hosting (sometimes called software or

applications as a service). All of these ways seem

— in some way — right, but they are not helpful

to understand the topology of a cloud, the impact

that Cloud Computing will have on deployment of

business platforms, whether or not the business

system architecture being deployed in commercial

or private data centers today will be effective in a

cloud, or what architectures should be

implemented for cloud-based computing. Neither

do they even begin to get at the challenge of

managing very large and dynamic organizations,

called virtual organizations (to be defined later in

this paper), that reorient thinking about the need

for an architecture to scale massively, and the

need to make parts of an architecture public that,

to this point, have been kept private.

To satisfy the requirements of next century

computing, cloud computing will need to mean

more than just externalized data centers and

hosting models. Although architectures that we

deploy in data centers today should be able to run

in a cloud, simply moving them into a cloud stops

well short of what one might hope that Cloud

Computing will come to mean. In fact, tackling

global-scaled collaboration and trading partner

network problems in government, military,

scientific, and business contexts will require more

than what current architectures can readily

support. For example:

��It will be necessary to rapidly set up a

temporary collaboration network enabling

network members to securely interact online,

where interaction could imply interoperability

with back office systems as well as humanoriented

exchanges — all in a matter of hours. Examples

that come to

mind include emergency medical scenarios, global

supply chains and other business process

networks. Policies defining infrastructure and

business constraints will be varied, so policy must

be external to, and must interact with, deployed

functionality. These examples also imply the need

for interoperability between public and private

clouds.

��Business interactions have the potential to

become more complex than personal transactions.

Because they are likely to be formed as composite

services, and because services on which they

depend may be provisioned in multiple clouds, the

ability to provision and uniformly manage

composite cloud services will be required, as will

be the ability to ensure that these services satisfy

specified business policy constraints.

��The way that users and access control are

managed in typical applications today is no longer

flexible enough to express roles and

responsibilities that people will play in next-

generation business interactions. Roles will be

played by people outside of or across corporate

boundaries in an online context just as frequently

as they are inside. Access control and the

management of roles and responsibilities must be

externalized from business functionality so that it

becomes more feasible to composite functional

behavior into distributed serviceoriented

applications that can be governed by externalized

policy. These considerations suggest that clouds

will have to have at least the following

characteristicsii:

��Clouds should be uniquely identifiable so that

they can be individually managed even when

combined with other clouds. This will be

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3362

necessary to distinguish and harmonize cloud

business and infrastructure policies in force.

��A cloud should be dynamically configurable:

configuration should be automatable in varying

and unpredictable, possibly even event-driven,

conditions.

��Systems management technologies for clouds

must integrate constraints on business with

constraints on infrastructure to make them

manageable in aggregate.

- A cloud should be able to dynamically provision

itself and optimize its own construction and

resource consumption over time.

- A cloud must be able to recover from routine and

extraordinary events that might cause some or all

of its parts to malfunction.

- A cloud must be aware of the contexts in which

it is used so that

cloud contents can behave accordingly. For

example, if clouds are composited, policy will

have to be harmonized across cloud boundaries;

when in multitenant mode, service level

agreements may be used to determine priority

access to physical resources. Application

platforms today are unaware of their usage

context, but business functionality in next-

generation platforms will have to be managed

with context in mind.

�� A cloud must be secure, and it must be able to

secure itself. These coarse-grained characteristics,

sometimes described as autonomic computing, can

be represented in the form of finer-grained

architecture drivers that are useful in

characterizing steps toward an autonomic

computing architecture. Cloud Computing

offerings that are available today share many of

the same drivers that we have organized into

Systems and Application Management Drivers in

the figure below.

Numbered circles in the graphic above denote

drivers that are listed below:

0. Architecture state: no systems management

1. Systems and resources must be identifiable

2. System and resources must be manageable

3. Policy-driven secured access to the system and

managed resources must be provided

4. System must reallocate managed resources on

failures as a function of policy

5. System must reallocate managed resources on

various system-level conditions by policy

6. System must be managed lights-out in a single

data center context

7. Systems management capability must scale

across clouds of the same type

8. Systems management capability must scale

across clouds of different types; these clouds must

be managed uniformly while maintaining separate

cloud identities

9. System must reallocate managed resources on

various system-level conditions as a function of

policy to accommodate real-time and business-

oriented usage patterns

10. Systems management policies are harmonized

across cloud boundaries

11. It must be possible to integrate management

policies of different clouds

12. Monolithic applications and traditional

application integrations exist/are sufficient

13. Application platform must be service oriented

14. Applications are replaced with business

services

15. Business services have secured access

16. An Interaction Container1 must be used as

application container in a single-tenant

environment

17. Policies must be consolidated and managed

using a single (possibly federated) policy engine

18. System must reallocate managed business

services on various businesslevel conditions by

policy to accommodate real-time/batch usage

patterns

19. An Interaction Container must be used as

application container in a multitenant environment

20. Business service and systems management

policies are integrated

21. Architecture state: positioned as an autonomic

architecture platform for virtual organization-

oriented application systems

22. Architecture state: additional structural and

business constraints positioning architecture

platform as a service grid

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3363

1 Defined in the next section Cloud computing

The graphic shows two paths toward autonomic

computing that ultimately converge at an

architecture point that could support business

ecosystems and emergent and fluid virtual

organizations:

��The first path, Systems Management Drivers,

begins with no systems management, and ends

with a systems management capability that is

policy driven, and that enables automated systems

management in a cloud and harmonization of

business and infrastructure policies within and

across cloud boundaries — in both single- and

multi-tenant modes. The drivers for systems

management are grouped to illustrate needs

common to basic systems management (Systems

Management Capabilities), and needs that go

beyond basic capabilities (Utility Computing

Management and Outside-In Architectureiii

Capabilities).

��The second path, Applications Management

Drivers, begins with common monolithic

corporate applications. It ends with these

applications having been replaced with service-

oriented ones, where policy has been externalized

so that business policies can be harmonized with

utility management policies, where it is possible

to implement end-to-end service level agreements

and enforce conformance to business and

regulatory constraints, and where the use of

business functional and infrastructural

components can be metered and elastically load

balanced. At this endpoint, business services and

infrastructure can be organized into a cloud and

used in both single- and multitenant modes.

Systems and Applications Management Drivers

paths converge at the point where it is necessary

to manage both the business and the infrastructure

using common management capabilities, and

where related policies must be harmonized.

Presenting drivers on paths is sometimes risky, as

such suggests a linear progression toward

implementing an ultimate architecture, or gives

preference to one suggested architecture vision

over another. Neither is meant in this case. In fact,

one can view how far one traverses each path as

one of architecture need over a perceived

architecture maturity. To underscore, we make the

following observations relating to commercially

available cloud computing products:

��Cloud computing does not realize the goals of

autonomic computing as they are defined

currently, though combining the characteristics of

existing clouds gets closer to this goal. This fact

does not diminish their value for optimizing

deployments of applications in place today.

��Not every cloud needs to be autonomic — but

there are benefits along each path regardless. -

Implementing architecture features on the

Applications Management Drivers path will lead

to optimizing costs of operating and maintaining

infrastructure and business functionality that

currently run a business, and automating systems

management, resulting in more efficient data

center management. - Evolving an architecture

toward Utility Computing Management and

Outside-In Architecture Capabilities will help

organizations expand their IT systems beyond

corporate boundaries. This supports

implementation of more flexible partner networks

and value chains, but it also can scale to serve

virtual organizations.

Characteristics of an autonomic service

architecture

As cloud computing solutions and products are

implemented, we believe

it critical — especially to those being driven by

their business needs up the Systems and

Applications Management Drivers curves — to

carefully consider their need for support of the

architecture characteristics that we sketched in the

opening part of this paper and that we now

elaborate.

Architecture style

Architecture styles define families of software

systems in terms of patterns for characterizing

how architecture components interact. They define

what types of architecture components can exist in

architectures of those styles, and constraints on

how they may be combined. They define how

components may be combined together for

deployment. They define how units of work are

managed, e.g., whether or not they are

transactional (n-phase commit). And they define

how functionality that components provision may

be composited into higher order functionality, and

how such can be exposed for use by human beings

or other systems. The Outside-In architectural

style is inherently top-down and emphasizes

decomposition to the functional level, but not

lower; is serviceoriented rather than application-

oriented; factors out policy as a firstclass

architecture component that can be used to govern

transparent performance of service-related tasks;

and emphasizes the ability to adapt performance

to user/business needs without having to consider

the intricacies of architecture workings2.

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3364

The counter style, what we call inside-out, is

inherently bottom-up and takes much more of an

infrastructural point of view as a starting point,

building up to a business functional layer.

Application platforms constructed using client

server, object-oriented, and 2/3/n-tier architecture

styles are those to which we apply the

generalization inside-out because they form the

basis of enterprise application architectures today,

and because architectures of these types have

limitations that require transformation to scale in a

massive way vis-à-vis outside-in platforms (see

Web Services 2.0 for a more detailed discussion

of both Outside-In and Inside-Out architecture

styles). Implementation of an outside-in

architecture results in better architecture layering

and factoring, and interfaces that become more

business than data oriented.

2 An outside-in architecture is a kind of service-

oriented architecture (SOA) which is fully

elaborated in Thomas Erl’s book called “Service-

Oriented Architecture: Concepts, Technology, and

Design,” so we will not discuss SOA in detail in

this paper.

Cloud computing

Policy becomes more explicit and is exposed in a

way that makes it easier to change it as necessary.

Service orientation guides the implementation,

making it more feasible to integrate and

interoperate using commodity infrastructure rather

than using complex and inflexible application

integration middleware. As a rule, it is simpler to

integrate businesses at functional levels than at

lower technology layers where implementations

might vary widely. Hence we emphasize

decomposition to the functional level, which often

is dictated by standards within a market,

regulatory constraints on that market, or even

accounting (AP/AR/GL) practices. Architecture

style will be critical to orchestrating services and

enabling operability between thousands of

collaborating businesses. The Li & Fung Group

manages supply chains involving over 10,000

companies located in over 40 countries of the

world. Point integration solutions are infeasible at

this scale. Similarly, attempts to integrate

hundreds of hospital patient management systems

and devices into a healthcare cloud, replete with

HL7 variants and new and legacy applications,

would result in the same conclusion that

interoperability must be realized through the

implementation of an architecture that integrates

at a business functional level rather than a data

level.

External user and access control management

User and access control management usually is

implemented within a typical enterprise

application. A user is assigned one to many

application roles, and a role names a set of

privileges that correlate to use of particular

application functionality through a graphical user

interface, or through some programming interface.

User authentication and authorization can be

integrated with corporate identity management

solutions (e.g., single sign-on solutions) that are in

place to ensure that only people within a

corporation or corporate partner network are

permitted to use corporate applications. But as

businesses globalize and couple more fluidly and

dynamically, the management of users and their

assignments to roles and responsibilities/

privileges must be implemented in a scalable

fashion that supports composition of services into

more complex service-oriented behavior. Further,

it must be possible for role players to transparently

change in response to business- and partner-

related changes made over time, especially in

business interactions that could be in progress

over months to

years. A fundamental part of user management is

identity management. There are numerous identity

solutions available today from vendors like

Microsoft, Sun Microsystems, and Oracle. The

challenges facing these solution vendors include

their ability to manage the varied ways a user can

be represented in an online context, the means to

verify identity and detect and manage identity

theft, the need to accommodate audits of

transactions and interactions conducted with a

specific identity, and so forth. Identity

Management is much larger than any single cloud

or software vendor, and forming a solution for the

twenty-first-century is even likely to require help

from national governmentsiv.

Interaction container

The J2EE/Java EE community introduced the

notion of container to the enterprise architecture

community as a means to streamline the structure

of thin java clients. Normally, thin-client

multitiered applications would require code to

implement persistence, security, transaction

management, resource pool management,

directory, remote object networking, and object

life cycle management services. The J2EE

architecture introduced a container model that

made this functionality available — transparently,

in many cases — to business logic implemented

as classes of behavior as long as it was

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3365

implemented to conform to special (e.g., bean)

interfaces, freeing developers to focus on

implementing business functionality and not

infrastructure — resulting in a standardized use of

infrastructure services. Containers are hosted in

application servers. As we move toward service

orientation, there is need for an analog to an

application server that not only manages common

infrastructure services but provides the

infrastructure extension points for managing

policy that is harmonized across technology and

business functional stacks within a cloud. For the

purpose of discussion here, we use the term

Interaction Server to mean an architecture

component that provides runtime services used by

Interaction Containers (defined below) to manage

the life cycle of multi-party business service

interactions in both single- and multitenant

contexts. Runtime services can include those

similar to application services (e.g., like J2EE

container services), but also services to manage

policy (harmonization across architecture layers,

policy enforcement, and policy exceptions),

Interaction life cycle management, and even

specialized collaboration services (e.g., event-

based publish and subscribe capabilities, and

services that bring together those people who are

involved in business interactions). We use the

term Interaction to mean a service oriented

multiparty business collaboration. An interaction

can be viewed as an orchestration of business

services where orchestration flow (not workflow in

the typical enterprise application integration

sense) is managed using externalized policy

(please see Web Services 2.0 for a more detailed

discussion on this topic). An Interaction is hosted

within an Interaction Container (defined below),

and orchestrates services provisioned in

distributed contexts. Interaction life cycle events

are used to trigger system behavior and enforce

management policies and are published by the

Interaction Server to subscribers.

Cloud computing Finally, we use the term

Interaction Container as an analog to J2EE/Java

EE application container. The Interaction

Container is hosted in an Interaction Server,

statically and dynamically configured to provide

infrastructure and policy adjudication services that

are specific to a business user’s environment,

integrated with systems management capabilities,

and used to manage one-to-many Interactions and

their life cycles. An Interaction Container

essentially holds an execution context in which

role players — people or systems participating in

an Interaction and conforming to specific roles

(interfaces) — interact to perform their parts in a

business orchestration and manage exceptions

and/or faults should they occur in the process. An

Interaction Container can be considered to be

organizationally based (i.e., it can be used to

manage many Interactions between a set of

participants/role players over time), or outcome-

based (in which only one Interaction would be

performed). These two usage scenarios reflect the

need to manage Interactions in a dynamic user

community, where role players could change over

time, and the need to manage an Interaction as a

single possibly long-running business transaction.

Externalized policy management/policy engine

A Policy Engine harmonizes and adjudicates

conflicting policies used across architecture

layers. Components at all architecture layers can

participate in policy harmonization and

enforcement, which requires the following:

��Policy extension points must be exposed and

formally declared in any part of the architecture

that must be managed.

��Policy management must support policy

pushdown to enable extensible and dynamic

detection of policy violation and policy

enforcement.

��It must be possible to version policy so that

policy decisions made at a given time can be

reproduced.

��Policy exceptions should be managed in as

automated a fashion as possible, but support also

must be given to cases where human judgment

and decision making may be required. Note that

fault or exception can connote both system-level

occurrences and domain evolution in which policy

constraints valid in the past become invalid. For

example: - Inability to connect to a database is a

system fault that should be automatically handled

as a software system exception. - A regulatory

constraint that permitted conduct of business in

one way to a certain point in time, but that no

longer does due to changes in law, is a business

exception that may require human judgment to

determine if completion of a business transaction

according to old law should be permitted. Policy

embedded in application functionality is not easy

to change, but future software systems will have

to be implemented in a way that views change as

the norm — where change results from the

emergence of new markets, market evolution,

changes in regulations and standards, fixing of

policy bugs, the whims of interaction participants,

and maybe even their customers’ whims.

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3366

Cloud computing Externalizing policy highlights

a significant distinction between Inside-Out and

Outside-In architecture styles. Inside-Out

architectures usually involve legacy applications

in which policy is embedded and thus

externalizing it is — at best — very difficult.

Where application policies differ in typical

corporate environments, it becomes the

responsibility of integration middleware to

implement policy adjudication logic that may

work well to harmonize policies over small

numbers of integrated systems, but this will not

generalize to manage policy in larger numbers of

applications as would be the case in larger value

chains. The red rectangle in the figure below

identifies where an Inside-Out architecture must

transform (and simplify in the process) to become

an Outside-In architecture, making it more

feasible to externalize policy and progress toward

the fully autonomic computing endpoint. Within

certain communities, we refer to this

transformation as an architectural Laplace

Transform, noted in the graphic below near points

16 and 17, which helps in solving challenging

structural problems by creating an alternative

frame or point of view. But it actually represents

a fundamental change of mental models that

requires shifting from an inside the enterprise

(Inside-Out) point of view to an external,

distributed business process network (Outside-In)

point of view that considers the world with the

granularity inherent in the business process

network3. This results in factoring out policy

components such that the resulting architecture

better accommodates the policy requirements of

very large numbers of users in a variety of

combinations.

What is policy?

The word policy could have a number of meanings

as it is used in conjunction with IT architecture

and systems. For example, it could mean

governance relating to software architecture

development and implementation; or it could

mean operational rules and standards for

administering a deployed production system. Our

use of the word connotes constraints placed upon

the business functionality of a business system,

harmonized with constraints on the infrastructure

(hardware and software) that provisions that

functionality. These constraints could include

accounting rules that businesses follow, role-based

access control on business functionality, corporate

policy about the maximum allowable hotel room

rate that a nonexecutive employee could purchase

when using an online reservation service, rules

about peak business traffic that determine when a

new virtualized image of an application system

should be deployed, and the various infrastructural

policies that might give customer A preference

over customer B should critical resource

contention require such.

Policy extension points enable the means by

which policy requirements are harmonized

between interaction containers and the cloud

environment itself 4. They are not configuration

points that are usually known in advance of when

an application execution starts and that stay

constant until the application restarts. Rather,

policy extension points are dynamic and late

bound to business and infrastructural

functionality, and they provide the means to

dynamically shape execution of this functionality.

The sense of the word shape is consistent with

how policy is applied in the telecom world where,

for example, bandwidth might be made available

to users during particular times in the day as a

function of total number of users present. Just as

policy is used in the telecom world to shape use of

critical resources, policy can be used to shape

execution of business functionality. For example,

suppose that an interaction between business

partners is started by a partner located in a

European country that legally requires all

interaction data to remain in that country, whereas

this same type of data could be stored anywhere

that the deployment platform determines

convenient otherwise. A policy extension point on

storage could be exposed to ensure that storage

systems located in the appropriate European

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3367

country are used when required. Because policy is

externalized as described above, this policy does

not imply the need for multiple codebases to

realize this constraint. The example above is a

simple one that one could imagine implementing

at the application business layer of an enterprise

architecture. Suppose, however, that this type of

policy is moved from the business layer into the

network. From 2005 to date, we have seen the

emergence of XML accelerators (e.g., IBM/Data

Power, Intel, Layer 7 Technologies) that make

such possible by bringing to application protocol

management what network protocol analyzers, or

sniffers, bring to network protocol management.

These accelerators are able to inspect, transform,

and route both XML and binary data in ways that

are conscious of ecosystem and interaction

constraints, e.g., constraints like the European

storage rule above. Once equipment like this is

aware of the business data and the workflow

context in which it is communicated, it can carry

out networking functions such as forwarding,

security, usage analysis, traffic management, and

billing, in a much more sophisticated manner in

comparison to traditional networking techniques

— and it can do this taking into account policy

constraints across an entire technology stack.

Utility computing

The raison d’être of autonomic computing is the

need to address the growing complexity of IT

systems. While loosely coupling architecture

components makes them less brittle, it also

exposes more moving parts that also must have

management and configuration extension points.

The authors of The Vision of Autonomic

Computing worded their concerns over

complexity as follows:

“As systems become more interconnected and

diverse, architects are less able to anticipate and

design interactions among components, leaving

such issues to be dealt with at runtime. Soon

systems will become too massive and complex for

even the most skilled system integrators to install,

configure, optimize, maintain, and merge. And

there will be no way to make timely, decisive

responses to the rapid stream of changing and

conflicting demands.” Externalization of policy

goes a long way toward making it possible to

composite clouds and manage policy compliance.

But the structure of the cloud also must be

addressed if we expect to manageably scale a

cloud. An autonomic computing architecture calls

for architecture components to, themselves, be

autonomic. This might sound a bit far-fetched

unless we consider that we have been solving

heterogeneity problems with abstraction layers at

the operating system layer for some years now,

and that this technique can be used again to

manage large collections of computing resources

uniformly. In particular, if two clouds are

autonomic and essentially support the same

management interfaces, then they could be

composited into a larger cloud while preserving

the identities of the original clouds. Intuitively,

this simplifies scaling clouds and reconciling

policy differences. As we see the emergence of

Cloud Computing products into the market, we

see (at least) two that appear to recognize the need

to composite clouds, grids, or meshes of

manageable computing resources. Some cloud

infrastructure vendors have taken an approach in

which they intend to deal directly with

architecture components through a software

abstraction layer. One approach taken to manage

clouds is to provide a management 4 Policy

extension points provide the way for applications

and services within a container to communicate to

the cloud’s centralized or federated Policy Engine.

Cloud computing interface to which all

manageable resources, including the cloud itself,

conform so that management over heterogeneous

infrastructure is uniform. For example, the

approach that Microsoft has taken acknowledges a

need for a uniform management abstraction layer,

which it achieves by requiring that the set of

manageable resources conform to interfaces in the

.NET Framework. In either case, exposing a cloud

and its components through a well defined

management interface enables management

policies to be applied even to the contents of

containers like the interaction container discussed

earlier, making it possible to harmonize policies

and deliver information in context across business

and infrastructure layers.This is in contrast to

elastic computing strategies that are

virtualizationbased, in which the contents of

virtual images are not directly manageable by the

elastic computing infrastructure. Amazon, with its

CloudWatch management dashboard and APIs,

provide the ability to manage EC2-based systems

using standard systems management metrics.

Systems management functionality layered on top

of EC2 management could correlate business

resources to system resources through systems

metrics, though the correlation is made outside of

CloudWatch. Recent partnerships between IBM

and Amazon allow for containers filled with IBM

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3368

infrastructure to be managed using Tivoli or

similar systems management functionality.

However, even in this case, it is important to note

that management of what is in the container is

distinct from management of Amazon’s cloud

unless an integration between the two is ultimately

implemented. We have referred earlier in this

paper to the mechanism permitting contents of a

container to participate in cloud management as

policy extension points. In practice, policy

extension points implement a management

interface that makes the resources with which they

are associated manageable and makes it possible

for these resources to participate in cloud

management.

Cloud composition

The ability of one cloud to participate in managing

another will become critical to scaling a cloud. It

will provide a means for a private cloud to

temporarily use the resources of a public cloud as

part of an elastic resource capacity strategy. It also

will make it possible to more immediately share

functionality, information, and computing

resources. One real-life example of a composite

cloud is Skype. While Skype may be considered

to be just a p2p application, it actually is a global

mesh network of managed network elements

(servers, routers, switches, encoders/decoders,

etc.) that provisions a global VoIP network with

voice endpoints that are laptop/desktop computers

or handheld devices that run Skype’s client

application at the edge of the Skype cloud. When

the Skype application is not running on a

laptop/desktop/handheld device, VoIP

calls are not conducted through it. But when the

application is running and calls can be conducted,

the Skype cloud expands to use the laptop/

desktop/handheld device to route traffic and

manage network exceptions if needed. A second

real life example is FortiusOne’s GeoCommons

(http://www.FortiusOne.com,http://www.geocom

mons.com). FortiusOne is developing a next-

generation location intelligence platform by

blending analysis capabilities of geographic

information systems (GIS) with locationbased

information on the Web. FortiusOne’s premise is

that it can help organizations make better location-

sensitive decisions by simplifying how business

information is correlated to visual maps. The

technology and data that make up the FortiusOne

platform is a combination of open source

technology and data that it licenses to complement

what it can get from the public domain. Two

applications are made available at GeoCommons:

Finder! is an application used to find, organize,

and share geodata; and Maker! is an application

used to create maps using GeoCommons and

personal data. A simple use case involving both of

these tools is the upload of a named data set into

Finder! that can be linked through postal code,

longitude/latitude, or some other location hook to

a map, and the subsequent use of Maker! to

produce a rendering of a map with the named data

set superimposed onto it. FortiusOne has

implemented its functionality both as Web

applications and services (with a Web service

programming interface). It makes this

functionality available in its own cloud, which is

very similar to Amazon’s Elastic Compute Cloud

core.

��GeoCommons makes its software-as-a-service

platform available through a subscription, with

pricing determined by number of reports

generated, data set size, and data storage

requirements.

��For those who wish to operate in a more

secure yet managed enterprise context,

GeoCommons can be privately hosted for a

customer. This version of the platform includes an

expanded data set and data integration services.

��And for those wishing the ultimate in data

privacy who simply do not trust on-line secure

environments, FortiusOne packages its

GeoCommons functionality and supporting data

on a linux appliance and updates data and

functionality periodically as required. The

potential for two types of cloud composition can

be seen in the

FortiusOne offerings. First, Amazon’s Elastic

Computing offering can be used should

FortiusOne require additional resources beyond its

current capacity. Second, the GeoCommons is

accessible via a Web service programming

interface, which makes it possible to invoke the

services provisioned in the FortiusOne cloud from

another cloud. Invoking services of one cloud by

another does not require cloud composition, but a

need to manage multiple clouds with the same

policy set could.

Cloud computing With these examples in mind,

we characterize Utility Computing as follows:

��An OS management layer that transforms

hosted resources in a data center into a policy-

managed cloud, extensible beyond data center

boundaries. - It sits over (possibly components

physically run on) production hardware.

http://www.fortiusone.com/

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3369

��It enables clouds conforming to the same

cloud management interface to be composited

while maintaining cloud identity.

��It knows and manages all resources in a cloud

(recursively, as dictated by policy).

��It reallocates (in an autonomic sense)

resources in a cloud, as permitted by policy, to

accommodate real-time and business-oriented

usage patterns.

��It meters use of all resources managed within a

cloud.

��It provides security and access control that can

federate across cloud boundaries.

��It participates in adjudication of policy

collisions across all cloud architecture layers

where appropriate. Utility computing can be

considered an overlay on a cloud to make it and its

elements manageable and compositional.

Preservation of cloud identity also is a nod toward

the ability to federate clouds, which has been

elaborated in Service Grid: The Missing Link in

Web Services, together with early thinking of the

foundational nature of service grids vis-à-vis

business computing ecosystemsv.

Service grid — the benefit after the autonomic

endpoint

Before the term cloud, the term service grid was

sometimes used to define a managed distributed

computing platform that can be used for business

as well as scientific applications. Said slightly

differently, a service grid is a manageable

ecosystem of specific services deployed by service

businesses or utility companies. Service grids

have been likened to a power or utility grid:

always on, highly reliable, a platform for making

managed services

available to some user constituency. When the

term came into use in the IT domain, the word

service was implied to mean Web service, and

service grid was viewed as an infrastructure

platform on which an ecology of services could be

composed, deployed, and managed. The phrase

service grid implies structure. While grid

elements — servers together with functionality

they host within a service grid — may be

heterogeneous vis-à-vis their construction and

implementation, their presence within a service

grid implies manageability as part of the grid as a

whole. This implies that a capability exists to

manage grid elements using policy that is external

to implementations of services in a service grid (at

the minimum in conjunction with policy that

might be embedded in legacy service

implementations). And services in a grid become

candidates for reuse through service composition;

services outside of a grid also are candidates for

composition, but the service grid only can manage

services within its scope of control. Of course,

service grids defined as we have above are

autonomic, can be recursively structured, and can

collaborate in their management of composite

services provisioned across different grids.

Service grid deployment architecture

A cloud, as defined by the cloud taxonomy noted

earlier, is not necessarily a service grid. There is

nothing in cloud definitions that require all

services hosted in them to be managed in a

predetermined way. There is no policy engine

required in a cloud that is responsible to

harmonize policy across infrastructure and

business layers within or across its boundaries,

though increased attention is being given to

policy-driven infrastructure

management. Clouds are not formed with

registries or other infrastructure necessary to

support service composition and governance. A

service grid can be formed as an autonomic cloud

and will place additional constraints on cloud

structure (e.g., external policy management,

interaction container-supported composition, a

common management interface, support of

specific interface standards). These standards will

be necessary to manage a service grid both as a

technology and a business platform.

Container permeability

Clouds and service grids both have containers. In

clouds, container is used to mean a virtualized

image containing technology and application

stacks. The container might hold other kinds of

containers (e.g., a J2EE/Java EE application

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3370

container), but the cloud container is

impermeable, which means that the cloud does not

directly manage container contents, and the cloud

contents do not participate in cloud or container

management. In a service grid, container is the

means by which the grid provides underlying

infrastructural services, including security,

persistence, business transaction or interaction life

cycle management, and policy management. In a

service grid, it is possible for contents in a

container to participate in grid management as a

function of infrastructure management policies

harmonized with business policies like service

level agreements. It also is possible that policy

external to container contents can shape5 how the

container’s functionality executes. So a service

grid container’s wall is permeable vis-à-vis policy,

which is a critical distinction between clouds and

service grids6.

Cloud vendors and vendor lock-in

Vendor lock-in is a concern that will grow as

cloud computing becomes more prevalent. Lock-

in is best addressed by the implementation of and

compliance to standards. In particular, standards

for security, interoperability, service composition,

cloud and service grid composition, management

and governance, and auditing will become

especially criticalas clouds become embedded into

the way that corporations conduct business7.

Standards for cloud management are emerging as

vendors like Microsoft,Google and Amazon make

their offerings available for use. The Web

Services community has developed a set of

standards for Web service security, Web service

management, and Web service policy

management, and so forth, that can serve as a

basis for standards to be supported in cloud

computing. And software vendors8 are

implementing Web service management platforms

based on such standards that provide the means to

define service level agreements that, when

integrated with Web service and supporting

infrastructure, govern end-to-end Web service-

based interactions, ensure qualities of service,

throttle Web service use to ensure performance

minimums, etc. With all this said, however, the

fact is that comprehensive standards for cloud

computing do not yet exist, since cloud computing

is nascent. And until (and probably even after)

such standards exist, cloud users should expect to

see features and capabilities that justify lock-in —

just as one does with other software and utility

platforms. Externalizing policy (discussed later in

this paper) and implementing services from an

outside-in perspective will result in getting

benefits from clouds while ameliorating at least

some of the aspects of vendor lock-in through

loose couplings and manageable interfaces.

Virtual organizations and cloud computing

Social networks are examples of platforms that

use a somewhat amorphous definition of

organization similar to a virtual organization,

which is defined by the National Science

Foundation as “a group of individuals whose

members and resources may be dispersed

geographically and institutionally, but who

function as a coherent unit through the use of

cyberinfrastructure.”vi Virtual organizations can

form in a variety of ways, usually as a function of

roles/responsibilities played in interactions and

less as a function of title or position in an

organization. Roles/responsibilities represent

interfaces that have interaction scope and can be

used to automate computing and exception

handling.

5 The sense of the word shape is consistent with

how policy is applied in the telecom world where,

for example, bandwidth might be made available

to users during particular times in the day as a

function of total number of users present.

6 Cloud management typically is exposed by the

cloud vendor through a dashboard. Vendors like

Amazon also make functionality underlying the

dashboard available as Web services such that

cloud users’ functionality could programmatically

adjust resources based on some internal policy. A

service grid is constructed to actively manage

itself as a utility of pooled resources and

functionality for all grid users. Hence, a service

grid will require interaction with functionality

throughout the grid and determine with the use of

policy extension points whether resource supply

should be adjusted.

7 Note the absence of portability in this list.

Interoperability is far more important than

portability, which more often leads to senseless

technology wars. It is unlikely to be possible to

port applications from one cloud to another if

these applications make use of cloud APIs. Since

clouds are not standard as yet, neither will the

APIs be for some time. However, making policy

explicit, and providing APIs in the noted areas

will go a long way toward enabling interactions to

be orchestrated across cloud and service grid

boundaries. 8 See AmberPoint and SOA Software

as two examples of Web service management

platform vendors.

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3371

Cloud computing A virtual organization’s use of

cloud services could vary widely:

��A virtual organization might be a startup

company that uses an infrastructure cloud to

deploy its computing services because the

economic model is right — a pay-for-use model is

what it can afford as it gets off the ground, and

maybe even throughout its entire corporate

existence. This type of organization may be

interested in the elastic resources of a cloud, but

may not need more advanced capabilities.

��A network of thousands of supply chain

partners could be considered to be a virtual

organization. It could use a business interaction

server hosted in a cloud that manages interactions,

ensuring they conform to legal and contract

policies and giving all participants in an

interaction a record of their participation when

that interaction completes. This virtual

organization might need the full range of

autonomic computing capabilities to manage the

complexity of interoperating with many partner

systems and accommodating policy differences.

��A network of hundreds of thousands of

corporate clients that use travel and entertainment

services that comply with corporate standards all

hosted in a cloud — could be considered a virtual

organization. One can imagine transaction

consolidations and other clearinghouse functions

that are part of this small ecosystem. Interactions

might be complex and somewhat long-lived and

guided by business policies, though the roles/

responsibilities played are likely to be simple.

-ReardenCommerce

(http://www.reardencommerce.com/) implements

just such a platform that (as of Jan 2009) serves

over 4000 corporate clients and 2 million users

(client customers). It brings together corporate

business travel policies, reviews of

travel/entertainment

service providers, expense processing and

reporting, etc., in a way that recognizes life of a

traveler and makes it easier by eliminating the

need to build direct point-to-point traveler to

service provider relationships.

��A virtual organization could be composed of

scientists who collaborate from their labs across

the globe in compute- and data-intensive

interactions hosted in a cloud. These organizations

typically are not large, but their work requires

access to an elastic set of compute resources for

hours at a time, and the capability to manipulate

huge databases.

��And we could consider a healthcare context as

an example of an ecosystem of virtual

organizations that scales to be even larger than the

user bases of popular social network platforms.

Members might include healthcare providers

whose credentials must be tracked. Patients must

be able to access their health records securely, and

authorize access to portions of their charts to

others. Healthcare devices and applications or

service functionality emit HL7 message streams

and related events that result in updating patient

charts, informing care providers of procedure

results, communicating billing information to

hospital billing systems and insurance providers,

measuring quality of care, and keeping each

member of a care provider group informed of all

activities and the corresponding outcomes that

occur while they care for a patient who might be

physically located in another country. - HL7

application messaging protocols are evolving from

being ASCII/ special character delimited protocols

(v2.x) to being XML-based (v3.x). From a

technology point of view, HL7’s evolution to

XML is very complementary to Web service

orientation, though it does not force

standardization of HL7 messages as yet; we hope

that it will bring about standardization as v3.x

becomes more widely adopted. Use of XML (and

XSLT) also complements a strategy to enrich data

passed in messages in a more standard (data

extension point) fashion, making it possible for

participants in multiparty interactions to pass

information that they care about (but maybe no

other participant does) along with standard

information useful to all participants in the

interaction. Further, because XML structure can

be made very explicit, enforcement of business

policies is more easily enabled. Cloud computing

must (and in some cases already does) address

technical challenges to accommodate these

organizational forms, including the following:

��The number of machines in a cloud serving

hundreds of millions of users can reach tens of

thousands of machines physically distributed

across multiple data centers, where it also may be

necessary for data center capacity to spill over to

still other data centers. Failed servers in such a

large-scale environment have to be discoverable

and cannot impact the capabilities of the Cloud in

aggregate; failed cloud components must be

adopted as the norm and not the exception.

��Failed computers have to be replaced

(virtually) by others that are waiting in inventory

for automatic configuration and deployment.

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3372

��Storage models will have to be reconsidered,

since it may be expedient to use massively

distributed storage schemes in addition to the

centralized relational and hierarchical models now

in use. We are seeing the beginnings of such with

Microsoft’s and Amazon’s offerings (using

Hadoop-like storage models), and the Google File

System. “Backup and Recovery” takes on new

meanings with distributed file systems. Storage

fault tolerance likely will be implemented

differently in large clouds than in smaller

enterprise clouds.

��Security management systems might have to

be federated. Access control schemes will have to

accommodate global user bases securing service

methods throughout the cloud. There also are

global constraints to be considered: some

countries do not wish data relating to their citizens

to be hosted outside of their national boundaries.

��We often think of network traffic attributed to

systems management to be small in comparison to

the traffic generated by user interactions with

hosted business functionality. Management of

clouds and their components, especially clouds

containing business functionality managed with

externalized business and infrastructure policies,

may have

Cloud computing to be federated as a function of

the size of the cloud to manage a more appreciable

amount of management-related network traffic.

��Complete testing will be difficult to

impossible to perform in a very large and dynamic

cloud context, so it is likely that new test methods

and tools will be required. The range of cloud-

related virtual organization use cases noted above

leverage the cloud computing instantiations we

see in the market, and makes clear that the

demand is imminent for cloud computing to serve

as the infrastructure and utility service grid for a

user constituency that is much larger and varied

than we’ve seen to date. We see the first signs of

such in social networking platforms and the

success that they enjoy as measured by number of

users. It will be only a matter of time when we see

that business interactions will be conducted in

business network group contexts where business

policy, roles, responsibilities, and functionality

converge in a new type of cloud architecture.

Concluding remarks

Autonomic computing, though viewed with

suspicion or disbelief in the past years, can be

sensibly applied to Cloud Computing in a way

that will be useful when developing cloud

architectures capable of sustaining and supporting

ecosystem-scaled platforms. We suspect that this

will become the norm as adoption of cloud

computing increases and as social network

platforms transition to include business

capabilities. Cloud computing as we see it

emerging today is somewhat amorphously

defined, making it difficult to form a point of view

about the capabilities of currently available cloud

computing instances to manage nextcentury

platforms. While it is clear that they can manage

today’s common platforms, we see architectural

challenges for the future that we believe will be

difficult to address using current cloud

architectures and architecture styles. We identify

technical challenges — including architecture

style, user and access control management, the

need to have externally managed business and

infrastructure policies through interaction

containers, and the need for Utility Computing

capabilities — that must be addressed to meet

future architecture requirements. Aiming at

implementation of an ecosystem platform will take

us beyond the management capabilities of current

cloud offerings. Adding architecture components

like the interaction container and externalized

policy engine will improve cloud capabilities, but

until these become fundamental components in

cloud architecture, it is unlikely that a cloud will

be able to manage the concerns of a service grid.

It is interesting to note, however, that the construct

of a service grid enables it to manage the concerns

of a cloud. A service grid, as an autonomic

architecture that is hardened to be both a service-

oriented technology platform and a business

platform, can be expected to scale both downward

to support enterprise architectures and upward and

outward to support the types of architectures

likely to be pervasive in twenty-first-century

computing. Healthcare represents an area where

we believe service grid computing and next-

generation architectures will prove to be

invaluable. Healthcare systems world-wide are

difficult to manage and architecturally extend,

and they certainly are difficult to integrate.

Unifying information across healthcare facility

boundaries is not only an informatics problem, but

also an architecture problem that, if not addressed.

References:

[1] S. Berger, R. C´aceres, K. A. Goldman, R.

Perez, R. Sailer, and L. van Doorn. vTPM:

virtualizing the trusted platform module. In Proc.

of USENIX-SS’06, Berkeley, CA, USA, 2006.

Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3373

[2] Survey: Cloud Computing ’No Hype’, But

Fear of Security and Control Slowing Adoption.

http: //www.circleid.com/posts/20090226 cloud

computing hype security/.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E.

Jul, C. Limpach, I. Pratt, and A. Warfield. Live

migration of virtual machines. In Proc. of

NSDI’05, pages 273–286, Berkeley, CA, USA,

2005. USENIX Association.

[4] T. Garfinkel, B. Pfaff, J. Chow, M.

Rosenblum, and D. Boneh. Terra: A Virtual

Machine-Based Platform for Trusted Computing.

In Proc. of SOSP’03, 2003.

[5] D. G. Murray, G. Milos, and S. Hand.

Improving Xen security through disaggregation.

In Proc. of VEE’08, pages 151–160, New York,

NY, USA, 2008.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G.

Obertelli, S. Soman, L. Youseff, and D.

Zagorodnov. Eucalyptus: A Technical Report on

an Elastic Utility Computing Architecture Linking

Your Programs to Useful Systems. Technical

Report 2008-10, UCSB Computer Science, 2008.

[7] B. D. Payne, M. Carbone, and W. Lee. Secure

and Flexible Monitoring of Virtual Machines. In

Proc. of ACSAC’07, 2007.

[8] T. R. Peltier, J. Peltier, and J. Blackley.

Information Security Fundamentals. Auerbach

Publications, Boston, MA, USA, 2003.

[9] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R.

Perez, S. Berger, J. L. Griffin, and L. v. Doorn.

Building a MAC-Based Security Architecture for

the Xen Open-Source Hypervisor. In Proc. Of

ACSAC ’05, Washington, DC, USA, 2005.

[10] TCG.

https://www.trustedcomputinggroup.org.

