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Introduction 

Cloud Computing is in vogue. But what is it? Is it 

just the same thing as outsourcing the hosting of 

Web applications? Why might it be useful and to 

whom? How does it change the future of 

enterprise architectures? How might clouds form 

the backbone of twenty-first-century ecosystems, 

virtual organizations and, for a particular example, 

healthcare systems that are truly open, scalable, 

heterogeneous and capable of supporting the 

players/ providers both big and small? In the past, 

IT architectures took aim at the enterprise as their 

endpoint. Perhaps now we must radically raise the 

bar by implementing architectures capable of 

supporting entire ecosystems and, in so doing, 

enable these architectures to scale both downward 

to an enterprise architecture as well as upward and 

outward. We see cloud computing offerings today 

that are suitable to host enterprise architectures. 

But while these offerings provide clear benefit to 

corporations by providing capabilities 

complementary to what they have, the fact that 

they can help to elastically scale enterprise 

architectures should not be understood to also 

mean that simply scaling in this way will meet 

twenty-first-century computing requirements. The 

architecture requirements of large platforms like 

social networks are radically different from the 

requirements of a healthcare platform in which 

geographically and corporately distributed care 

providers, medical devices, patients, insurance 

providers, clinics, coders, and billing staff 

contribute information to patient charts according 

to care programs, quality of service and HIPAA 

constraints. And the requirements for both of these 

are very different than those that provision 

straight-through processing services common in 

the financial services industry. Clouds will have to 

accommodate differences in architecture 

requirements like those implied here, as well as 

those relating to characteristics we subsequently 

discuss. In this paper, we want to revisit 

autonomic computing, which defines a 

set of architectural characteristics to manage 

systems where complexity is increasing but must 

be managed without increasing costs or the size of 

the management team, where a system must be 

quickly adaptable to new technologies integrated 

to it, and where a system must be extensible from 

within a corporation out to the broader ecosystem 

and vice versa. The primary goal of autonomic 

computing is that “systems manage themselves 

according to an administrator’s goals. New 

components integrate  effortlessly ...”i. Autonomic 

computing per se may have been viewed 

negatively in the past years — possibly due to its 

biological metaphor or the AI or magic-happens-

here feel of most autonomic initiatives. But 

innovations in cloud computing in the areas of 

virtualization and finergrained, container-based 

management interfaces, as well as those in 

hardware and software, are demonstrating that the 

goals of autonomic computing can be realized to a 

practical degree, and that they could be useful in 

developing cloud architectures capable of 

sustaining and supporting ecosystem-scaled use. 

Taking an autonomic approach permits us to 

identify core components of an autonomic 

http://www.ijecs.in/


Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3361 

computing architecture that Cloud Computing 

instantiations have thus far placed little emphasis 

on. We identify technical characteristics below 

that must not be overlooked in future 

architectures, and we elaborate them more fully 

later in this paper: 

��An architecture style (or styles) that should be 

used when implementing 

cloud-based services 

��External user and access control management 

that enables roles and related responsibilities that 

serve as interface definitions that control access to 

and orchestrate across business functionality 

��An Interaction Container that encapsulates the 

infrastructure services and policy management 

necessary to provision interactions 

��An externalized policy management engine 

that ensures that interactions conform to 

regulatory, business partner, and infrastructure 

policy constraints 

��Utility Computing capabilities necessary to 

manage and scale cloudoriented 

platforms 

An autonomic frame of mind 

Since a widely accepted industry definition of 

Cloud Computing — beyond a relationship to the 

Internet and Internet technologies — does not 

exist at present, we see the term used to mean 

hosting of hardware in an external data center 

(sometimes called infrastructure as a service), 

utility computing 

(which packages computing resources so they can 

be used as a utility in an always-on, metered, and 

elastically scalable way), platform services 

(sometimes called middleware as a service), and 

application hosting (sometimes called software or 

applications as a service). All of these ways seem 

— in some way — right, but they are not helpful 

to understand the topology of a cloud, the impact 

that Cloud Computing will have on deployment of 

business platforms, whether or not the business 

system architecture being deployed in commercial 

or private data centers today will be effective in a 

cloud, or what architectures should be 

implemented for cloud-based computing. Neither 

do they even begin to get at the challenge of 

managing very large and dynamic organizations, 

called virtual organizations (to be defined later in 

this paper), that reorient thinking about the need 

for an architecture to scale massively, and the 

need to make parts of an architecture public that, 

to this point, have been kept private. 

To satisfy the requirements of next century 

computing, cloud computing will need to mean 

more than just externalized data centers and 

hosting models. Although architectures that we 

deploy in data centers today should be able to run 

in a cloud, simply moving them into a cloud stops 

well short of what one might hope that Cloud 

Computing will come to mean. In fact, tackling 

global-scaled collaboration and trading partner 

network problems in government, military, 

scientific, and business contexts will require more 

than what current architectures can readily 

support. For example: 

��It will be necessary to rapidly set up a 

temporary collaboration network enabling 

network members to securely interact online, 

where interaction could imply interoperability 

with back office systems as well as humanoriented 

exchanges — all in a matter of hours. Examples 

that come to 

mind include emergency medical scenarios, global 

supply chains and other business process 

networks. Policies defining infrastructure and 

business constraints will be varied, so policy must 

be external to, and must interact with, deployed 

functionality. These examples also imply the need 

for interoperability between public and private 

clouds. 

��Business interactions have the potential to 

become more complex than personal transactions. 

Because they are likely to be formed as composite 

services, and because services on which they 

depend may be provisioned in multiple clouds, the 

ability to provision and uniformly manage 

composite cloud services will be required, as will 

be the ability to ensure that these services satisfy 

specified business policy constraints. 

��The way that users and access control are 

managed in typical applications today is no longer 

flexible enough to express roles and 

responsibilities that people will play in next-

generation business interactions. Roles will be 

played by people outside of or across corporate 

boundaries in an online context just as frequently 

as they are inside. Access control and the 

management of roles and responsibilities must be 

externalized from business functionality so that it 

becomes more feasible to composite functional 

behavior into distributed serviceoriented 

applications that can be governed by externalized 

policy. These considerations suggest that clouds 

will have to have at least the following 

characteristicsii: 

��Clouds should be uniquely identifiable so that 

they can be individually managed even when 

combined with other clouds. This will be 
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necessary to distinguish and harmonize cloud 

business and infrastructure policies in force. 

��A cloud should be dynamically configurable: 

configuration should be automatable in varying 

and unpredictable, possibly even event-driven, 

conditions. 

��Systems management technologies for clouds 

must integrate constraints on business with 

constraints on infrastructure to make them 

manageable in aggregate.  

- A cloud should be able to dynamically provision 

itself and optimize its own construction and 

resource consumption over time.  

- A cloud must be able to recover from routine and 

extraordinary events that might cause some or all 

of its parts to malfunction.  

- A cloud must be aware of the contexts in which 

it is used so that 

cloud contents can behave accordingly. For 

example, if clouds are composited, policy will 

have to be harmonized across cloud boundaries; 

when in multitenant mode, service level 

agreements may be used to determine priority 

access to physical resources. Application 

platforms today are unaware of their usage 

context, but business functionality in next-

generation platforms will have to be managed 

with context in mind. 

�� A cloud must be secure, and it must be able to 

secure itself. These coarse-grained characteristics, 

sometimes described as autonomic computing, can 

be represented in the form of finer-grained 

architecture drivers that are useful in 

characterizing steps toward an autonomic 

computing architecture. Cloud Computing 

offerings that are available today share many of 

the same drivers that we have organized into 

Systems and Application Management Drivers in 

the figure below. 

 

 
 

 

Numbered circles in the graphic above denote 

drivers that are listed below: 

0. Architecture state: no systems management 

1. Systems and resources must be identifiable 

2. System and resources must be manageable 

3. Policy-driven secured access to the system and 

managed resources must be provided 

4. System must reallocate managed resources on 

failures as a function of policy 

5. System must reallocate managed resources on 

various system-level conditions by policy 

6. System must be managed lights-out in a single 

data center context 

7. Systems management capability must scale 

across clouds of the same type 

8. Systems management capability must scale 

across clouds of different types; these clouds must 

be managed uniformly while maintaining separate 

cloud identities 

9. System must reallocate managed resources on 

various system-level conditions as a function of 

policy to accommodate real-time and business-

oriented usage patterns 

10. Systems management policies are harmonized 

across cloud boundaries 

11. It must be possible to integrate management 

policies of different clouds 

12. Monolithic applications and traditional 

application integrations exist/are sufficient 

13. Application platform must be service oriented 

14. Applications are replaced with business 

services 

15. Business services have secured access 

16. An Interaction Container1 must be used as 

application container in a single-tenant 

environment 

17. Policies must be consolidated and managed 

using a single (possibly federated) policy engine 

18. System must reallocate managed business 

services on various businesslevel conditions by 

policy to accommodate real-time/batch usage 

patterns 

19. An Interaction Container must be used as 

application container in a multitenant environment 

20. Business service and systems management 

policies are integrated 

21. Architecture state: positioned as an autonomic 

architecture platform for virtual organization-

oriented application systems 

22. Architecture state: additional structural and 

business constraints positioning architecture 

platform as a service grid 
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1 Defined in the next section Cloud computing 

The graphic shows two paths toward autonomic 

computing that ultimately converge at an 

architecture point that could support business 

ecosystems and emergent and fluid virtual 

organizations: 

��The first path, Systems Management Drivers, 

begins with no systems management, and ends 

with a systems management capability that is 

policy driven, and that enables automated systems 

management in a cloud and harmonization of 

business and infrastructure policies within and 

across cloud boundaries — in both single- and 

multi-tenant modes. The drivers for systems 

management are grouped to illustrate needs 

common to basic systems management (Systems 

Management Capabilities), and needs that go 

beyond basic capabilities (Utility Computing 

Management and Outside-In Architectureiii 

Capabilities). 

��The second path, Applications Management 

Drivers, begins with common monolithic 

corporate applications. It ends with these 

applications having been replaced with service-

oriented ones, where policy has been externalized 

so that business policies can be harmonized with 

utility management policies, where it is possible 

to implement end-to-end service level agreements 

and enforce conformance to business and 

regulatory constraints, and where the use of 

business functional and infrastructural 

components can be metered and elastically load 

balanced. At this endpoint, business services and 

infrastructure can be organized into a cloud and 

used in both single- and multitenant modes. 

Systems and Applications Management Drivers 

paths converge at the point where it is necessary 

to manage both the business and the infrastructure 

using common management capabilities, and 

where related policies must be harmonized. 

Presenting drivers on paths is sometimes risky, as 

such suggests a linear progression toward 

implementing an ultimate architecture, or gives 

preference to one suggested architecture vision 

over another. Neither is meant in this case. In fact, 

one can view how far one traverses each path as 

one of architecture need over a perceived 

architecture maturity. To underscore, we make the 

following observations relating to commercially 

available cloud computing products: 

��Cloud computing does not realize the goals of 

autonomic computing as they are defined 

currently, though combining the characteristics of 

existing clouds gets closer to this goal. This fact 

does not diminish their value for optimizing 

deployments of applications in place today. 

��Not every cloud needs to be autonomic — but 

there are benefits along each path regardless. - 

Implementing architecture features on the 

Applications Management Drivers path will lead 

to optimizing costs of operating and maintaining 

infrastructure and business functionality that 

currently run a business, and automating systems 

management, resulting in more efficient data 

center management. - Evolving an architecture 

toward Utility Computing Management and 

Outside-In Architecture Capabilities will help 

organizations expand their IT systems beyond 

corporate boundaries. This supports 

implementation of more flexible partner networks 

and value chains, but it also can scale to serve 

virtual organizations. 

Characteristics of an autonomic service 

architecture 

As cloud computing solutions and products are 

implemented, we believe 

it critical — especially to those being driven by 

their business needs up the Systems and 

Applications Management Drivers curves — to 

carefully consider their need for support of the 

architecture characteristics that we sketched in the 

opening part of this paper and that we now 

elaborate. 

Architecture style 

Architecture styles define families of software 

systems in terms of patterns for characterizing 

how architecture components interact. They define 

what types of architecture components can exist in 

architectures of those styles, and constraints on 

how they may be combined. They define how 

components may be combined together for 

deployment. They define how units of work are 

managed, e.g., whether or not they are 

transactional (n-phase commit). And they define 

how functionality that components provision may 

be composited into higher order functionality, and 

how such can be exposed for use by human beings 

or other systems. The Outside-In architectural 

style is inherently top-down and emphasizes 

decomposition to the functional level, but not 

lower; is serviceoriented rather than application-

oriented; factors out policy as a firstclass 

architecture component that can be used to govern 

transparent performance of service-related tasks; 

and emphasizes the ability to adapt performance 

to user/business needs without having to consider 

the intricacies of architecture workings2. 
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The counter style, what we call inside-out, is 

inherently bottom-up and takes much more of an 

infrastructural point of view as a starting point, 

building up to a business functional layer. 

Application platforms constructed using client 

server, object-oriented, and 2/3/n-tier architecture 

styles are those to which we apply the 

generalization inside-out because they form the 

basis of enterprise application architectures today, 

and because architectures of these types have 

limitations that require transformation to scale in a 

massive way vis-à-vis outside-in platforms (see 

Web Services 2.0 for a more detailed discussion 

of both Outside-In and Inside-Out architecture 

styles). Implementation of an outside-in 

architecture results in better architecture layering 

and factoring, and interfaces that become more 

business than data oriented. 

2 An outside-in architecture is a kind of service-

oriented architecture (SOA) which is fully 

elaborated in Thomas Erl’s book called “Service-

Oriented Architecture: Concepts, Technology, and 

Design,” so we will not discuss SOA in detail in 

this paper. 

Cloud computing  

Policy becomes more explicit and is exposed in a 

way that makes it easier to change it as necessary. 

Service orientation guides the implementation, 

making it more feasible to integrate and 

interoperate using commodity infrastructure rather 

than using complex and inflexible application 

integration middleware. As a rule, it is simpler to 

integrate businesses at functional levels than at 

lower technology layers where implementations 

might vary widely. Hence we emphasize 

decomposition to the functional level, which often 

is dictated by standards within a market, 

regulatory constraints on that market, or even 

accounting (AP/AR/GL) practices. Architecture 

style will be critical to orchestrating services and 

enabling operability between thousands of 

collaborating businesses. The Li & Fung Group 

manages supply chains involving over 10,000 

companies located in over 40 countries of the 

world. Point integration solutions are infeasible at 

this scale. Similarly, attempts to integrate 

hundreds of hospital patient management systems 

and devices into a healthcare cloud, replete with 

HL7 variants and new and legacy applications, 

would result in the same conclusion that 

interoperability must be realized through the 

implementation of an architecture that integrates 

at a business functional level rather than a data 

level. 

External user and access control management 

User and access control management usually is 

implemented within a typical enterprise 

application. A user is assigned one to many 

application roles, and a role names a set of 

privileges that correlate to use of particular 

application functionality through a graphical user 

interface, or through some programming interface. 

User authentication and authorization can be 

integrated with corporate identity management 

solutions (e.g., single sign-on solutions) that are in 

place to ensure that only people within a 

corporation or corporate partner network are 

permitted to use corporate applications. But as 

businesses globalize and couple more fluidly and 

dynamically, the management of users and their 

assignments to roles and responsibilities/ 

privileges must be implemented in a scalable 

fashion that supports composition of services into 

more complex service-oriented behavior. Further, 

it must be possible for role players to transparently 

change in response to business- and partner-

related changes made over time, especially in 

business interactions that could be in progress 

over months to 

years. A fundamental part of user management is 

identity management. There are numerous identity 

solutions available today from vendors like 

Microsoft, Sun Microsystems, and Oracle. The 

challenges facing these solution vendors include 

their ability to manage the varied ways a user can 

be represented in an online context, the means to 

verify identity and detect and manage identity 

theft, the need to accommodate audits of 

transactions and interactions conducted with a 

specific identity, and so forth. Identity 

Management is much larger than any single cloud 

or software vendor, and forming a solution for the 

twenty-first-century is even likely to require help 

from national governmentsiv. 

Interaction container 

The J2EE/Java EE community introduced the 

notion of container to the enterprise architecture 

community as a means to streamline the structure 

of thin java clients. Normally, thin-client 

multitiered applications would require code to 

implement persistence, security, transaction 

management, resource pool management, 

directory, remote object networking, and object 

life cycle management services. The J2EE 

architecture introduced a container model that 

made this functionality available — transparently, 

in many cases — to business logic implemented 

as classes of behavior as long as it was 
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implemented to conform to special (e.g., bean) 

interfaces, freeing developers to focus on 

implementing business functionality and not 

infrastructure — resulting in a standardized use of 

infrastructure services. Containers are hosted in 

application servers. As we move toward service 

orientation, there is need for an analog to an 

application server that not only manages common 

infrastructure services but provides the 

infrastructure extension points for managing 

policy that is harmonized across technology and 

business functional stacks within a cloud. For the 

purpose of discussion here, we use the term 

Interaction Server to mean an architecture 

component that provides runtime services used by 

Interaction Containers (defined below) to manage 

the life cycle of multi-party business service 

interactions in both single- and multitenant 

contexts. Runtime services can include those 

similar to application services (e.g., like J2EE 

container services), but also services to manage 

policy (harmonization across architecture layers, 

policy enforcement, and policy exceptions), 

Interaction life cycle management, and even 

specialized collaboration services (e.g., event-

based publish and subscribe capabilities, and 

services that bring together those people who are 

involved in business interactions). We use the 

term Interaction to mean a service oriented 

multiparty business collaboration. An interaction 

can be viewed as an orchestration of business 

services where orchestration flow (not workflow in 

the typical enterprise application integration 

sense) is managed using externalized policy 

(please see Web Services 2.0 for a more detailed 

discussion on this topic). An Interaction is hosted 

within an Interaction Container (defined below), 

and orchestrates services provisioned in 

distributed contexts. Interaction life cycle events 

are used to trigger system behavior and enforce 

management policies and are published by the 

Interaction Server to subscribers. 

Cloud computing Finally, we use the term 

Interaction Container as an analog to J2EE/Java 

EE application container. The Interaction 

Container is hosted in an Interaction Server, 

statically and dynamically configured to provide 

infrastructure and policy adjudication services that 

are specific to a business user’s environment, 

integrated with systems management capabilities, 

and used to manage one-to-many Interactions and 

their life cycles. An Interaction Container 

essentially holds an execution context in which 

role players — people or systems participating in 

an Interaction and conforming to specific roles 

(interfaces) — interact to perform their parts in a 

business orchestration and manage exceptions 

and/or faults should they occur in the process. An 

Interaction Container can be considered to be 

organizationally based (i.e., it can be used to 

manage many Interactions between a set of 

participants/role players over time), or outcome-

based (in which only one Interaction would be 

performed). These two usage scenarios reflect the 

need to manage Interactions in a dynamic user 

community, where role players could change over 

time, and the need to manage an Interaction as a 

single possibly long-running business transaction. 

Externalized policy management/policy engine 

A Policy Engine harmonizes and adjudicates 

conflicting policies used across architecture 

layers. Components at all architecture layers can 

participate in policy harmonization and 

enforcement, which requires the following: 

��Policy extension points must be exposed and 

formally declared in any part of the architecture 

that must be managed. 

��Policy management must support policy 

pushdown to enable extensible and dynamic 

detection of policy violation and policy 

enforcement. 

��It must be possible to version policy so that 

policy decisions made at a given time can be 

reproduced. 

��Policy exceptions should be managed in as 

automated a fashion as possible, but support also 

must be given to cases where human judgment 

and decision making may be required. Note that 

fault or exception can connote both system-level 

occurrences and domain evolution in which policy 

constraints valid in the past become invalid. For 

example: - Inability to connect to a database is a 

system fault that should be automatically handled 

as a software system exception. - A regulatory 

constraint that permitted conduct of business in 

one way to a certain point in time, but that no 

longer does due to changes in law, is a business 

exception that may require human judgment to 

determine if completion of a business transaction 

according to old law should be permitted. Policy 

embedded in application functionality is not easy 

to change, but future software systems will have 

to be implemented in a way that views change as 

the norm — where change results from the 

emergence of new markets, market evolution, 

changes in regulations and standards, fixing of 

policy bugs, the whims of interaction participants, 

and maybe even their customers’ whims. 



Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3366 

Cloud computing Externalizing policy highlights 

a significant distinction between Inside-Out and 

Outside-In architecture styles. Inside-Out 

architectures usually involve legacy applications 

in which policy is embedded and thus 

externalizing it is — at best — very difficult. 

Where application policies differ in typical 

corporate environments, it becomes the 

responsibility of integration middleware to 

implement policy adjudication logic that may 

work well to harmonize policies over small 

numbers of integrated systems, but this will not 

generalize to manage policy in larger numbers of 

applications as would be the case in larger value 

chains. The red rectangle in the figure below 

identifies where an Inside-Out architecture must 

transform (and simplify in the process) to become 

an Outside-In architecture, making it more 

feasible to externalize policy and progress toward 

the fully autonomic computing endpoint. Within 

certain communities, we refer to this 

transformation as an architectural Laplace 

Transform, noted in the graphic below near points 

16 and 17, which helps in solving challenging 

structural problems by creating an alternative 

frame or point of view. But it actually represents 

a fundamental change of mental models that 

requires shifting from an inside the enterprise 

(Inside-Out) point of view to an external, 

distributed business process network (Outside-In) 

point of view that considers the world with the 

granularity inherent in the business process 

network3. This results in factoring out policy 

components such that the resulting architecture 

better accommodates the policy requirements of 

very large numbers of users in a variety of 

combinations. 

 

 

 

 

 
 

 

 

What is policy? 

The word policy could have a number of meanings 

as it is used in conjunction with IT architecture 

and systems. For example, it could mean 

governance relating to software architecture 

development and implementation; or it could 

mean operational rules and standards for 

administering a deployed production system. Our 

use of the word connotes constraints placed upon 

the business functionality of a business system, 

harmonized with constraints on the infrastructure 

(hardware and software) that provisions that 

functionality. These constraints could include 

accounting rules that businesses follow, role-based 

access control on business functionality, corporate 

policy about the maximum allowable hotel room 

rate that a nonexecutive employee could purchase 

when using an online reservation service, rules 

about peak business traffic that determine when a 

new virtualized image of an application system 

should be deployed, and the various infrastructural 

policies that might give customer A preference 

over customer B should critical resource 

contention require such. 

Policy extension points enable the means by 

which policy requirements are harmonized 

between interaction containers and the cloud 

environment itself 4. They are not configuration 

points that are usually known in advance of when 

an application execution starts and that stay 

constant until the application restarts. Rather, 

policy extension points are dynamic and late 

bound to business and infrastructural 

functionality, and they provide the means to 

dynamically shape execution of this functionality. 

The sense of the word shape is consistent with 

how policy is applied in the telecom world where, 

for example, bandwidth might be made available 

to users during particular times in the day as a 

function of total number of users present. Just as 

policy is used in the telecom world to shape use of 

critical resources, policy can be used to shape 

execution of business functionality. For example, 

suppose that an interaction between business 

partners is started by a partner located in a 

European country that legally requires all 

interaction data to remain in that country, whereas 

this same type of data could be stored anywhere 

that the deployment platform determines 

convenient otherwise. A policy extension point on 

storage could be exposed to ensure that storage 

systems located in the appropriate European 
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country are used when required. Because policy is 

externalized as described above, this policy does 

not imply the need for multiple codebases to 

realize this constraint. The example above is a 

simple one that one could imagine implementing 

at the application business layer of an enterprise 

architecture. Suppose, however, that this type of 

policy is moved from the business layer into the 

network. From 2005 to date, we have seen the 

emergence of XML accelerators (e.g., IBM/Data 

Power, Intel, Layer 7 Technologies) that make 

such possible by bringing to application protocol 

management what network protocol analyzers, or 

sniffers, bring to network protocol management. 

These accelerators are able to inspect, transform, 

and route both XML and binary data in ways that 

are conscious of ecosystem and interaction 

constraints, e.g., constraints like the European 

storage rule above. Once equipment like this is 

aware of the business data and the workflow 

context in which it is communicated, it can carry 

out networking functions such as forwarding, 

security, usage analysis, traffic management, and 

billing, in a much more sophisticated manner in 

comparison to traditional networking techniques 

— and it can do this taking into account policy 

constraints across an entire technology stack. 

Utility computing 

The raison d’être of autonomic computing is the 

need to address the growing complexity of IT 

systems. While loosely coupling architecture 

components makes them less brittle, it also 

exposes more moving parts that also must have 

management and configuration extension points. 

The authors of The Vision of Autonomic 

Computing worded their concerns over 

complexity as follows: 

“As systems become more interconnected and 

diverse, architects are less able to anticipate and 

design interactions among components, leaving 

such issues to be dealt with at runtime. Soon 

systems will become too massive and complex for 

even the most skilled system integrators to install, 

configure, optimize, maintain, and merge. And 

there will be no way to make timely, decisive 

responses to the rapid stream of changing and 

conflicting demands.” Externalization of policy 

goes a long way toward making it possible to 

composite clouds and manage policy compliance. 

But the structure of the cloud also must be 

addressed if we expect to manageably scale a 

cloud. An autonomic computing architecture calls 

for architecture components to, themselves, be 

autonomic. This might sound a bit far-fetched 

unless we consider that we have been solving 

heterogeneity problems with abstraction layers at 

the operating system layer for some years now, 

and that this technique can be used again to 

manage large collections of computing resources 

uniformly. In particular, if two clouds are 

autonomic and essentially support the same 

management interfaces, then they could be 

composited into a larger cloud while preserving 

the identities of the original clouds. Intuitively, 

this simplifies scaling clouds and reconciling 

policy differences. As we see the emergence of 

Cloud Computing products into the market, we 

see (at least) two that appear to recognize the need 

to composite clouds, grids, or meshes of 

manageable computing resources. Some cloud 

infrastructure vendors have taken an approach in 

which they intend to deal directly with 

architecture components through a software 

abstraction layer. One approach taken to manage 

clouds is to provide a management 4 Policy 

extension points provide the way for applications 

and services within a container to communicate to 

the cloud’s centralized or federated Policy Engine. 

Cloud computing interface to which all 

manageable resources, including the cloud itself, 

conform so that management over heterogeneous 

infrastructure is uniform. For example, the 

approach that Microsoft has taken acknowledges a 

need for a uniform management abstraction layer, 

which it achieves by requiring that the set of 

manageable resources conform to interfaces in the 

.NET Framework. In either case, exposing a cloud 

and its components through a well defined  

management interface enables management 

policies to be applied even to the contents of 

containers like the interaction container discussed 

earlier, making it possible to harmonize policies 

and deliver information in context across business 

and infrastructure layers.This is in contrast to 

elastic computing strategies that are 

virtualizationbased, in which the contents of 

virtual images are not directly manageable by the 

elastic computing infrastructure. Amazon, with its 

CloudWatch management dashboard and APIs, 

provide the ability to manage EC2-based systems 

using standard systems management metrics. 

Systems management functionality layered on top 

of EC2 management could correlate business 

resources to system resources through systems 

metrics, though the correlation is made outside of 

CloudWatch. Recent partnerships between IBM 

and Amazon allow for containers filled with IBM 
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infrastructure to be managed using Tivoli or 

similar systems management functionality. 

However, even in this case, it is important to note 

that management of what is in the container is 

distinct from management of Amazon’s cloud 

unless an integration between the two is ultimately 

implemented. We have referred earlier in this 

paper to the mechanism permitting contents of a 

container to participate in cloud management as 

policy extension points. In practice, policy 

extension points implement a management 

interface that makes the resources with which they 

are associated manageable and makes it possible 

for these resources to participate in cloud 

management. 

Cloud composition 

The ability of one cloud to participate in managing 

another will become critical to scaling a cloud. It 

will provide a means for a private cloud to 

temporarily use the resources of a public cloud as 

part of an elastic resource capacity strategy. It also 

will make it possible to more immediately share 

functionality, information, and computing 

resources. One real-life example of a composite 

cloud is Skype. While Skype may be considered 

to be just a p2p application, it actually is a global 

mesh network of managed network elements 

(servers, routers, switches, encoders/decoders, 

etc.) that provisions a global VoIP network with 

voice endpoints that are laptop/desktop computers 

or handheld devices that run Skype’s client 

application at the edge of the Skype cloud. When 

the Skype application is not running on a 

laptop/desktop/handheld device, VoIP 

calls are not conducted through it. But when the 

application is running and calls can be conducted, 

the Skype cloud expands to use the laptop/ 

desktop/handheld device to route traffic and 

manage network exceptions if needed. A second 

real life example is FortiusOne’s GeoCommons 

(http://www.FortiusOne.com,http://www.geocom

mons.com). FortiusOne is developing a next-

generation location intelligence platform by 

blending analysis capabilities of geographic 

information systems (GIS) with locationbased 

information on the Web. FortiusOne’s premise is 

that it can help organizations make better location-

sensitive decisions by simplifying how business 

information is correlated to visual maps. The 

technology and data that make up the FortiusOne 

platform is a combination of open source 

technology and data that it licenses to complement 

what it can get from the public domain. Two 

applications are made available at GeoCommons: 

Finder! is an application used to find, organize, 

and share geodata; and Maker! is an application 

used to create maps using GeoCommons and 

personal data. A simple use case involving both of 

these tools is the upload of a named data set into 

Finder! that can be linked through postal code, 

longitude/latitude, or some other location hook to 

a map, and the subsequent use of Maker! to 

produce a rendering of a map with the named data 

set superimposed onto it. FortiusOne has 

implemented its functionality both as Web 

applications and services (with a Web service 

programming interface). It makes this 

functionality available in its own cloud, which is 

very similar to Amazon’s Elastic Compute Cloud 

core. 

��GeoCommons makes its software-as-a-service 

platform available through a subscription, with 

pricing determined by number of reports 

generated, data set size, and data storage 

requirements. 

��For those who wish to operate in a more 

secure yet managed enterprise context, 

GeoCommons can be privately hosted for a 

customer. This version of the platform includes an 

expanded data set and data integration services. 

��And for those wishing the ultimate in data 

privacy who simply do not trust on-line secure 

environments, FortiusOne packages its 

GeoCommons functionality and supporting data 

on a linux appliance and updates data and 

functionality periodically as required. The 

potential for two types of cloud composition can 

be seen in the 

FortiusOne offerings. First, Amazon’s Elastic 

Computing offering can be used should 

FortiusOne require additional resources beyond its 

current capacity. Second, the GeoCommons is 

accessible via a Web service programming 

interface, which makes it possible to invoke the 

services provisioned in the FortiusOne cloud from 

another cloud. Invoking services of one cloud by 

another does not require cloud composition, but a 

need to manage multiple clouds with the same 

policy set could. 

Cloud computing With these examples in mind, 

we characterize Utility Computing as follows: 

��An OS management layer that transforms 

hosted resources in a data center into a policy-

managed cloud, extensible beyond data center 

boundaries. - It sits over (possibly components 

physically run on) production hardware. 

http://www.fortiusone.com/


Er. Roma Soni, IJECS Volume 2 Issue 12, Dec. 2013, Page No.3360-3373 Page 3369 

��It enables clouds conforming to the same 

cloud management interface to be composited 

while maintaining cloud identity. 

��It knows and manages all resources in a cloud 

(recursively, as dictated by policy). 

��It reallocates (in an autonomic sense) 

resources in a cloud, as permitted by policy, to 

accommodate real-time and business-oriented 

usage patterns. 

��It meters use of all resources managed within a 

cloud. 

��It provides security and access control that can 

federate across cloud boundaries. 

��It participates in adjudication of policy 

collisions across all cloud architecture layers 

where appropriate. Utility computing can be 

considered an overlay on a cloud to make it and its 

elements manageable and compositional. 

Preservation of cloud identity also is a nod toward 

the ability to federate clouds, which has been 

elaborated in Service Grid: The Missing Link in 

Web Services, together with early thinking of the 

foundational nature of service grids vis-à-vis 

business computing ecosystemsv. 

Service grid — the benefit after the autonomic 

endpoint 

Before the term cloud, the term service grid was 

sometimes used to define a managed distributed 

computing platform that can be used for business 

as well as scientific applications. Said slightly 

differently, a service grid is a manageable 

ecosystem of specific services deployed by service 

businesses or utility companies. Service grids 

have been likened to a power or utility grid: 

always on, highly reliable, a platform for making 

managed services 

available to some user constituency. When the 

term came into use in the IT domain, the word 

service was implied to mean Web service, and 

service grid was viewed as an infrastructure 

platform on which an ecology of services could be 

composed, deployed, and managed. The phrase 

service grid implies structure. While grid 

elements — servers together with functionality 

they host within a service grid — may be 

heterogeneous vis-à-vis their construction and 

implementation, their presence within a service 

grid implies manageability as part of the grid as a 

whole. This implies that a capability exists to 

manage grid elements using policy that is external 

to implementations of services in a service grid (at 

the minimum in conjunction with policy that 

might be embedded in legacy service 

implementations). And services in a grid become 

candidates for reuse through service composition; 

services outside of a grid also are candidates for 

composition, but the service grid only can manage 

services within its scope of control. Of course, 

service grids defined as we have above are 

autonomic, can be recursively structured, and can 

collaborate in their management of composite  

services provisioned across different grids. 

 

Service grid deployment architecture 

 

 

 
 

 

 

A cloud, as defined by the cloud taxonomy noted 

earlier, is not necessarily a service grid. There is 

nothing in cloud definitions that require all 

services hosted in them to be managed in a 

predetermined way. There is no policy engine 

required in a cloud that is responsible to 

harmonize policy across infrastructure and 

business layers within or across its boundaries, 

though increased attention is being given to 

policy-driven infrastructure 

management. Clouds are not formed with 

registries or other infrastructure necessary to 

support service composition and governance. A 

service grid can be formed as an autonomic cloud 

and will place additional constraints on cloud 

structure (e.g., external policy management, 

interaction container-supported composition, a 

common management interface, support of 

specific interface standards). These standards will 

be necessary to manage a service grid both as a 

technology and a business platform. 

Container permeability 

Clouds and service grids both have containers. In 

clouds, container is used to mean a virtualized 

image containing technology and application 

stacks. The container might hold other kinds of 

containers (e.g., a J2EE/Java EE application 
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container), but the cloud container is 

impermeable, which means that the cloud does not 

directly manage container contents, and the cloud 

contents do not participate in cloud or container 

management. In a service grid, container is the 

means by which the grid provides underlying 

infrastructural services, including security, 

persistence, business transaction or interaction life 

cycle management, and policy management. In a 

service grid, it is possible for contents in a 

container to participate in grid management as a 

function of infrastructure management policies 

harmonized with business policies like service 

level agreements. It also is possible that policy 

external to container contents can shape5 how the 

container’s functionality executes. So a service 

grid container’s wall is permeable vis-à-vis policy, 

which is a critical distinction between clouds and 

service grids6. 

Cloud vendors and vendor lock-in 

Vendor lock-in is a concern that will grow as 

cloud computing becomes more prevalent. Lock-

in is best addressed by the implementation of and 

compliance to standards. In particular, standards 

for security, interoperability, service composition, 

cloud and service grid composition, management 

and governance, and auditing will become 

especially criticalas clouds become embedded into 

the way that corporations conduct business7. 

Standards for cloud management are emerging as 

vendors like Microsoft,Google and Amazon make 

their offerings available for use. The Web 

Services community has developed a set of 

standards for Web service security, Web service 

management, and Web service policy 

management, and so forth, that can serve as a 

basis for standards to be supported in cloud 

computing. And software vendors8 are 

implementing Web service management platforms 

based on such standards that provide the means to 

define service level agreements that, when 

integrated with Web service and supporting 

infrastructure, govern end-to-end Web service-

based interactions, ensure qualities of service, 

throttle Web service use to ensure performance 

minimums, etc. With all this said, however, the 

fact is that comprehensive standards for cloud 

computing do not yet exist, since cloud computing 

is nascent. And until (and probably even after) 

such standards exist, cloud users should expect to 

see features and capabilities that justify lock-in — 

just as one does with other software and utility 

platforms. Externalizing policy (discussed later in 

this paper) and implementing services from an 

outside-in perspective will result in getting 

benefits from clouds while ameliorating at least 

some of the aspects of vendor lock-in through 

loose couplings and manageable interfaces. 

Virtual organizations and cloud computing 

Social networks are examples of platforms that 

use a somewhat amorphous definition of 

organization similar to a virtual organization, 

which is defined by the National Science 

Foundation as “a group of individuals whose 

members and resources may be dispersed 

geographically and institutionally, but who 

function as a coherent unit through the use of 

cyberinfrastructure.”vi Virtual organizations can 

form in a variety of ways, usually as a function of 

roles/responsibilities played in interactions and 

less as a function of title or position in an 

organization. Roles/responsibilities represent 

interfaces that have interaction scope and can be 

used to automate computing and exception 

handling. 

5 The sense of the word shape is consistent with 

how policy is applied in the telecom world where, 

for example, bandwidth might be made available 

to users during particular times in the day as a 

function of total number of users present. 

6 Cloud management typically is exposed by the 

cloud vendor through a dashboard. Vendors like 

Amazon also make functionality underlying the 

dashboard available as Web services such that 

cloud users’ functionality could programmatically 

adjust resources based on some internal policy. A 

service grid is constructed to actively manage 

itself as a utility of pooled resources and 

functionality for all grid users. Hence, a service 

grid will require interaction with functionality 

throughout the grid and determine with the use of 

policy extension points whether resource supply 

should be adjusted. 

7 Note the absence of portability in this list. 

Interoperability is far more important than 

portability, which more often leads to senseless 

technology wars. It is unlikely to be possible to 

port applications from one cloud to another if 

these applications make use of cloud APIs. Since 

clouds are not standard as yet, neither will the 

APIs be for some time. However, making policy 

explicit, and providing APIs in the noted areas 

will go a long way toward enabling interactions to 

be orchestrated across cloud and service grid 

boundaries. 8 See AmberPoint and SOA Software 

as two examples of Web service management 

platform vendors. 
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Cloud computing A virtual organization’s use of 

cloud services could vary widely: 

��A virtual organization might be a startup 

company that uses an infrastructure cloud to 

deploy its computing services because the 

economic model is right — a pay-for-use model is 

what it can afford as it gets off the ground, and 

maybe even throughout its entire corporate 

existence. This type of organization may be 

interested in the elastic resources of a cloud, but 

may not need more advanced capabilities. 

��A network of thousands of supply chain 

partners could be considered to be a virtual 

organization. It could use a business interaction 

server hosted in a cloud that manages interactions, 

ensuring they conform to legal and contract 

policies and giving all participants in an 

interaction a record of their participation when 

that interaction completes. This virtual 

organization might need the full range of 

autonomic computing capabilities to manage the 

complexity of interoperating with many partner 

systems and accommodating policy differences. 

��A network of hundreds of thousands of 

corporate clients that use travel and entertainment 

services that comply with corporate standards  all 

hosted in a cloud — could be considered a virtual 

organization. One can imagine transaction 

consolidations and other clearinghouse functions 

that are part of this small ecosystem. Interactions 

might be complex and somewhat long-lived and 

guided by business policies, though the roles/ 

responsibilities played are likely to be simple. 

-ReardenCommerce 

(http://www.reardencommerce.com/) implements 

just such a platform that (as of Jan 2009) serves 

over 4000 corporate clients and 2 million users 

(client customers). It brings together corporate 

business travel policies, reviews of 

travel/entertainment 

service providers, expense processing and 

reporting, etc., in a way that recognizes life of a 

traveler and makes it easier by eliminating the 

need to build direct point-to-point traveler to 

service provider relationships. 

��A virtual organization could be composed of 

scientists who collaborate from their labs across 

the globe in compute- and data-intensive 

interactions hosted in a cloud. These organizations 

typically are not large, but their work requires 

access to an elastic set of compute resources for 

hours at a time, and the capability to manipulate 

huge databases. 

��And we could consider a healthcare context as 

an example of an ecosystem of virtual 

organizations that scales to be even larger than the 

user bases of popular social network platforms. 

Members might include healthcare providers 

whose credentials must be tracked. Patients must 

be able to access their health records securely, and 

authorize access to portions of their charts to 

others. Healthcare devices and applications or 

service functionality emit HL7 message streams 

and related events that result in updating patient 

charts, informing care providers of procedure 

results, communicating billing information to 

hospital billing systems and insurance providers, 

measuring quality of care, and keeping each 

member of a care provider group informed of all 

activities and the corresponding outcomes that 

occur while they care for a patient who might be 

physically located in another country. - HL7 

application messaging protocols are evolving from 

being ASCII/ special character delimited protocols 

(v2.x) to being XML-based (v3.x). From a 

technology point of view, HL7’s evolution to 

XML is very complementary to Web service 

orientation, though it does not force 

standardization of HL7 messages as yet; we hope 

that it will bring about standardization as v3.x 

becomes more widely adopted. Use of XML (and 

XSLT) also complements a strategy to enrich data 

passed in messages in a more standard (data 

extension point) fashion, making it possible for 

participants in multiparty interactions to pass 

information that they care about (but maybe no 

other participant does) along with standard 

information useful to all participants in the 

interaction. Further, because XML structure can 

be made very explicit, enforcement of business 

policies is more easily enabled. Cloud computing 

must (and in some cases already does) address 

technical challenges to accommodate these 

organizational forms, including the following: 

��The number of machines in a cloud serving 

hundreds of millions of users can reach tens of 

thousands of machines physically distributed 

across multiple data centers, where it also may be 

necessary for data center capacity to spill over to 

still other data centers. Failed servers in such a 

large-scale environment have to be discoverable 

and cannot impact the capabilities of the Cloud in 

aggregate; failed cloud components must be 

adopted as the norm and not the exception. 

��Failed computers have to be replaced 

(virtually) by others that are waiting in inventory 

for automatic configuration and deployment. 
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��Storage models will have to be reconsidered, 

since it may be expedient to use massively 

distributed storage schemes in addition to the 

centralized relational and hierarchical models now 

in use. We are seeing the beginnings of such with 

Microsoft’s and Amazon’s offerings (using 

Hadoop-like storage models), and the Google File 

System. “Backup and Recovery” takes on new 

meanings with distributed file systems. Storage 

fault tolerance likely will be implemented 

differently in large clouds than in smaller 

enterprise clouds. 

��Security management systems might have to 

be federated. Access control schemes will have to 

accommodate global user bases securing service 

methods throughout the cloud. There also are 

global constraints to be considered: some 

countries do not wish data relating to their citizens 

to be hosted outside of their national boundaries. 

��We often think of network traffic attributed to 

systems management to be small in comparison to 

the traffic generated by user interactions with 

hosted business functionality. Management of 

clouds and their components, especially clouds 

containing business functionality managed with 

externalized business and infrastructure policies, 

may have 

Cloud computing to be federated as a function of 

the size of the cloud to manage a more appreciable 

amount of management-related network traffic. 

��Complete testing will be difficult to 

impossible to perform in a very large and dynamic 

cloud context, so it is likely that new test methods 

and tools will be required. The range of cloud-

related virtual organization use cases noted above 

leverage the cloud computing instantiations we 

see in the market, and makes clear that the 

demand is imminent for cloud computing to serve 

as the infrastructure and utility service grid for a 

user constituency that is much larger and varied 

than we’ve seen to date. We see the first signs of 

such in social networking platforms and the 

success that they enjoy as measured by number of 

users. It will be only a matter of time when we see 

that business interactions will be conducted in 

business network group contexts where business 

policy, roles, responsibilities, and functionality 

converge in a new type of cloud architecture. 

Concluding remarks 

Autonomic computing, though viewed with 

suspicion or disbelief in the past years, can be 

sensibly applied to Cloud Computing in a way 

that will be useful when developing cloud 

architectures capable of sustaining and supporting 

ecosystem-scaled platforms. We suspect that this 

will become the norm as adoption of cloud 

computing increases and as social network 

platforms transition to include business 

capabilities. Cloud computing as we see it 

emerging today is somewhat amorphously 

defined, making it difficult to form a point of view 

about the capabilities of currently available cloud 

computing instances to manage nextcentury 

platforms. While it is clear that they can manage 

today’s common platforms, we see architectural 

challenges for the future that we believe will be 

difficult to address using current cloud 

architectures and architecture styles. We identify 

technical challenges — including architecture 

style, user and access control management, the 

need to have externally managed business and 

infrastructure policies through interaction 

containers, and the need for Utility Computing 

capabilities — that must be addressed to meet 

future architecture requirements. Aiming at 

implementation of an ecosystem platform will take 

us beyond the management capabilities of current 

cloud offerings. Adding architecture components 

like the interaction container and externalized 

policy engine will improve cloud capabilities, but 

until these become fundamental components in 

cloud architecture, it is unlikely that a cloud will 

be able to manage the concerns of a service grid. 

It is interesting to note, however, that the construct 

of a service grid enables it to manage the concerns 

of a cloud. A service grid, as an autonomic 

architecture that is hardened to be both a service-

oriented technology platform and a business 

platform, can be expected to scale both downward 

to support enterprise architectures and upward and 

outward to support the types of architectures 

likely to be pervasive in twenty-first-century 

computing. Healthcare represents an area where 

we believe service grid computing and next-

generation architectures will prove to be 

invaluable. Healthcare systems world-wide are 

difficult to manage and architecturally extend, 

and they certainly are difficult to integrate. 

Unifying information across healthcare facility 

boundaries is not only an informatics problem, but 

also an architecture problem that, if not addressed. 
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