

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 11 November, 2013 Page No. 3217-3222

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3217

A Realistic Approach to Systematic Reuse

Sampath Korra
1
, Dr S.Viswanadha Raju

2
, Dr A.Vinaya Babu

3

1
Research Scholar, Department of CSE, JNTUK, Kakinada.AP, INDIA.

2
 Professor, JNTUH College of Engineering, Jagtial, Karimnagar, AP, INDIA.

3
 Principal, Department of CSE, JNTUH, Hyderabad,A.P, INDIA.

ABSTACT:

Every software project practices some kind of reuse as a common sense practice. Very often, practitioners use parts of code,

documents and experiences from previous projects as a personal initiative. Of course, this kind of reuse brings some benefits to the

company. However, it is generally performed in isolation from other projects, depends on the individual’s initiative and has very

limited impact.

Systematic Software Reuse is the capability of an organization to obtain maximum profit from the experiences acquired in former

projects by identifying the reuse opportunities a priori and establishing the appropriate organizational, managerial and budgetary

support. Software Reuse reduces development costs and time by avoiding the duplication of work.

Keywords: reuse, objects, development, application.

1. INTRODUCTION

Although computing power and network bandwidth have

increased dramatically in recent years, the design and

implementation of networked applications remains expensive

and error-prone. Developing software that achieves these

qualities is hard; systematically developing high quality

reusable software components and frameworks is even harder

[5]. Reusable components and frameworks are inherently

abstract, which makes it hard to engineer their quality and to

manage their production.

During the past decade, worked with hundreds of

telecommunication, aerospace, and medical companies and

written millions of lines of code while developing widely

reusable middleware components and frameworks [10,7] for

networked applications. It also had the opportunity to

document several dozen patterns [9] and architectures [6] that

guide the design of these components and frameworks. In

addition, It have taught hundreds of tutorials and courses on

these topics for thousands of developers and students. In spite

of formidable non-technical and technical challenges, It is

identified a solid body of knowledge, experience, and software

artifacts that can significantly enhance the systematic reuse of

networked application software.

In this paper, outline of the paper is common reasons why the

systematic reuse has failed in the past. Then discuss proven

steps that organizations, projects, and individuals can take to

avoid these traps and pitfalls.

1.1 Systematic reuse needs a systematic

approach

By systematic reuse, we mean an institutionalized

organizational approach to product development in which

reusable assets are purposely created or acquired, and then

consistently used and maintained to obtain high levels of

reuse, thereby optimizing the organization's ability to produce

quality software products rapidly and effectively.

This requires a significant effort to change culture,

organization, and a multitude of other factors. These changes

are quite radical, and more widespread than those incremental

http://www.ijecs.in/

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3218

and ongoing changes associated with CPI (continuous process

improvement). Reuse is a business issue. It must be viewed as

an organizational asset, to be invested in, improved, and

leveraged effectively and consistently[14]

Often, sweeping changes in the software development

organization will be needed to institute large-scale, systematic

reuse. Business changes fund product family design and

construction with the goals of improved time to market and

cost for several related products, investing in reusable assets.

Software process changes manage and use a reusable asset

repository. Many cultural and management changes create

new, unfamiliar roles. The magnitude of the changes, and the

issues encountered, are similar to those encountered when

doing Business Process Reengineering. We find that the

systematic methods and skills used to design and implement

such changes can also be applied to software

organizations.[17]

2. WHY SYSTEMATIC REUSE HAS FAILED

In theory, organizations recognize the value of systematic

reuse and reward internal reuse efforts. As if these non-

technical impediments aren't daunting enough, reuse efforts

also frequently fail because developers lack technical skills

and organizations lack core competencies necessary to create

and/or integrate reusable components systematically. For

instance, developers often lack knowledge of, and experience

with, fundamental design patterns in their domain, which

makes it hard for them to understand how to create and/or

reuse frameworks and components effectively.

It is observed that developers often put too much faith in

language features, such as inheritance, polymorphism,

templates, and exception handling, as the primary means to

foster reuse. Unfortunately, languages alone don't adequately

capture the commonality and variability of abstractions and

components required to build and systematically apply

reusable software in complex application domains.

3. HOW TO MAKE SYSTEMATIC REUSE

SUCEESS

Although the track record for systematic software reuse has

been rather spotty historically, several key trends bode well

for software reuse in the future:

 Component- and framework-based middleware

technologies, such as CORBA, J2EE, and .NET, have

become mainstream.

 An increasing number of developers of projects over

the past decade have successfully adopted OO design

techniques, such as UML and patterns, and OO

programming languages, such as C++, Java, and C#.

These trends are particularly evident in markets, such as

electronic commerce and data networking, where reducing

development cycle time is crucial to business success.

Over the past decade, It has worked with many companies,

including Boeing, Cisco, Ericsson, Iridium, Kodak, Lucent,

Motorola, SAIC, Siemens, and Sprint, building reusable

networked applications using OO design techniques and

programming languages [9,10]. These projects have applied a

range of reusable middleware tools including CORBA, the

ACE framework [10], which is a C++ framework that

implements many patterns for concurrent networked

applications, and TAO [7], which is a high-performance, real-

time implementation of CORBA that leverages the framework

components in ACE.

Prerequisites for Successful Systematic Reuse

Ideally, an organization's software process should

reward developers who invest the time and effort to

build, document, and reuse robust and efficient

components. For instance, a reward system could be

built into project budgets, with incentives based on

the number of software components reused by

individuals or groups. Still it is find companies,

however, whose processes measure programmer

productivity solely in terms of the number of lines of

source code written from scratch, which penalizes

developers who attempt to reuse existing software.

1. Attractive ``reuse magnets'' exist -- To attract

systematic reuse, it crucial to develop and support

``reuse magnets,'' [3] i.e., well-documented

framework and component repositories. These

repositories must be well-maintained so that

application developers will have confidence in their

quality and assurance that any defects they encounter

will be fixed promptly. Likewise, framework and

component repositories must be well-supported so

that developers can gain experience through hands-on

training and mentoring programs.

In addition, ``open-source”' development processes

are an effective process for creating attractive reuse

magnets. Open-source processes have yielded many

widely used software tools and frameworks, such as

Linux, Apache, GNU, ACE, and TAO. The open-

source model allows users and developers to

participate together in evolving software assets. One

of the key strengths of this model is that it scales well

to large user communities, where application

developers and end-users can assist with much of the

quality assurance, documentation, and support [11].

Moreover, open-source development efforts tend to

have short feedback loops between the point when a

bug is discovered and the bug is fixed. This increases

the incentive for the user community to help with the

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3219

debugging process since they are ``rewarded'' by

rapid feedback and fixes once bugs are identified. In

addition, because the source code is available for

inspection, developers in the user community can

often help fix any bugs they find which further

amortize the overall debugging effort and improve

software quality rapidly.

2. Strong leadership and empowerment of skilled

architects and developers – It has been observed that

the ability of companies and projects to succeed with

reuse is highly correlated with the quality and

quantity of experienced developers and effective

leaders. Conversely, reuse projects that lack a critical

mass of developers with the necessarily technical and

leadership skills rarely succeed, regardless of the

level of managerial and organizational support.

In general, the level of experience required to

succeed with systematic reuse depends largely on

whether programmers are trying to develop reusable

components or to use them. It is found that

developing reusable frameworks and components for

complex domains, such as telecom or avionics,

requires highly experienced and skilled architects and

developers. These individuals must be trained and

empowered to create, document, and support

horizontal middleware platforms that reduce the

effort required to develop vertical applications.

In general, the more complex the domain, the greater

the skills and leadership required to develop effective

reusable middleware that can encapsulate complex

communication protocols and mechanisms for

concurrency, locking, persistence, fault tolerance,

connection management, event demuxing, and

service configuration. When middleware architects

and developers are successful, they create component

abstractions that hide these error-prone and tedious

mechanisms and protocols. Application developers

therefore needn't be as experienced with complex

systems-level technologies since they can program to

these higher-level component abstractions.

It is observed, however, that horizontal middleware

platform efforts generally fail when application

developers are (1) too inexperienced, (2) the domain

is sufficiently challenging, and (3) the middleware

team lacks sufficient training, resources, time, or

empowerment to create a stable platform. It's

therefore important that developers at all levels

improve their technical skills and learn how to apply

good software principles, patterns, and practices.

Unfortunately, many organizations lack the mainly two

prerequisites described above. As a result, these organizations

often fall victim to the ``not-invented-here'' syndrome and

redevelop many software components from scratch. However,

deregulation, global competition, and the general dearth of

experienced application and middleware developers is making

it increasingly hard to succeed by building complex networked

applications from the ground up.

Maintain a Close Feedback Loop between Middleware

Developers and Application Developers

Most useful middleware components and frameworks

originate from solving real problems in particular application

domains, such as telecommunications, medical imaging,

avionics, or electronic commerce. A time-honored way of

producing effective reusable middleware, therefore, is to

generalize and refactor them from working systems and

applications.

In contrast, reuse efforts that try to work top-down, e.g., from

high-level domain analysis, are highly likely to fail. The

culprit is often the lack of close feedback loops between

developers of reusable middleware and developers of

applications. For instance, It has been observed that it's

usually counter-productive to create reuse teams that build

middleware frameworks and components in complete isolation

from application teams.

Since reuse efforts rarely have sufficient resources to please

all possible customers, it's important to be goal-directed, rather

than exhaustive, in determining which assets to develop,

enhance, and maintain. Without intimate feedback from

application developers, therefore, the software artifacts

produced by component teams rarely address core business

problems and won't be reused effectively.

It's also important that the relationship between application

developers and reuse groups be mutually synergistic. For

instance, reuse teams should be responsive to fix problems

that inevitably arise in their middleware. Likewise, application

developers should actively help to improve reusable artifacts,

rather than waiting passively for the reuse team to find and fix

all the problems. While it's possible to depend upon developer

altruism and good will to achieve these goals, it's usually more

effective to institutionalize a reward system with incentives to

encourage effective relationships between developers and

users.

Buy, Rather than Build, System Infrastructure and

Middleware Integration Frameworks

Frameworks can be classified according to their scope, as

follows [8]:

 Middleware integration frameworks -- These

frameworks are commonly used to integrate

networked applications and components. Middleware

integration frameworks are designed to enhance the

ability of software developers to modularize, reuse,

and extend their software infrastructure to work

seamlessly in a distributed environment. There is a

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3220

thriving market for middleware integration

frameworks, which are rapidly becoming

commodities. Common examples include CORBA,

J2EE, .NET, and transactional databases.

 Enterprise application frameworks -- These

frameworks address vertical application domains,

such as avionics mission computing, call processing,

and manufacturing, and are the cornerstone of

enterprise business activities. Relative to system

infrastructure and middleware integration

frameworks, enterprise frameworks are expensive to

develop and/or purchase.

 In general, system infrastructure and middleware

integration frameworks focus largely on internal

software development concerns. Although these

frameworks are essential to creating high quality

software rapidly and cost-effectively, they typically

don't generate substantial revenue. It's therefore often

more cost effective to buy system infrastructure and

middleware integration frameworks rather than build

them in-house.

Develop Software Based on Architectures, Rather Than on

Particular Middleware Technologies

It's very risky to expect that industry standards, such as

CORBA, J2EE, or .NET middleware, will eliminate the

complexity of developing networked applications. No single

middleware technology is a panacea. Moreover, industry

standards for middleware are not ubiquitous, nor are they

implemented consistently.

For large-scale, long-lived networked applications it's

essential to design and use architectures that transcend any

specific technology or middleware standard. For instance,

programming directly to a proprietary middleware API is risky

since these APIs can rapidly become obsolete. Therefore

found it's more fruitful to develop networked applications

based on a common architecture that can be instantiated on a

range of middleware and OS platforms.

An effective pattern seen applied repeatedly to organize a

common software architecture is to use (1) frameworks in the

horizontal middleware platform layers and (2) components in

the vertical application layers. Components are self-contained

instances of abstract data types (ADTs) that can be plugged

together to form complete applications. Common examples of

components include COM+ controls and CORBA Object

Services.

The relationship between frameworks and components is

highly synergistic, with neither subordinate to the other.

Frameworks can be used to develop components, whereby

component interfaces provide Facades for internal class

structures inside a framework. Moreover, components can be

used as ``pluggable strategies'' within a framework.

Compared with frameworks, components are less tightly

coupled and can support binary-level reuse more readily. For

example, application developers can reuse components

without having to subclass from existing base classes. In

addition application developers are generally more

comfortable and successful programming with components

than they are customizing frameworks. Conversely,

frameworks are useful for middleware teams because they

help to simplify the development of horizontal platform

software. Naturally, components can also be used to develop

infrastructure and middleware.

Avoid One-dimensional ``Solutions'' Complex Software

Development Problems

Trying to apply one-dimensional technical solutions to

complex software development problems is an exercise in

frustration and a recipe for costly project failures. For

instance, attempting to translate software implementations

entirely from high-level SDL specifications or from abstract

``analysis rules'' rarely succeeds for complex networked

applications. Likewise, using the latest design methodology,

modeling notation, programming language, or middleware

technology fads can't guarantee success.

The urge to apply one-dimensional solutions to complex

problems isn't limited to technologists, however. For instance,

there is a school of thought that claims only the non-technical

impediments to reuse are worth addressing since systematic

reuse fails solely for economic and organizational reasons, not

technological ones. According to this perspective, investing in

education or training to improve the technical skills of

developers is pointless because it has no impact on success.

Unfortunately, one-dimensional non-technical solutions are no

better than one-dimensional technological solutions.

Managerial and organizational support is certainly desirable

and essential for large-scale adoption of systematic reuse

across an enterprise. In addition however, this support is not

sufficient, nor even always necessary, to succeed with

systematic reuse, particularly within smaller parts of

organizations.

Moreover, focusing solely on organizational and economic

impediments at the expense of technology and skills-building,

can yield a corporate culture of ``learned helplessness.''

Developers suffering from this malady often postpone

improving their design and reuse skills until the entire

organization is ``cured.'' This approach is as futile as waiting

for all the customer requirements to solidify before engaging

in architecture and design phases.

Failing to invest in technology and education can greatly

hamper a company's ability to compete effectively,

particularly when time-to-market is crucial to success. It can

also cause companies to become dangerously out of touch

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3221

with contemporary software practice, where an increasing

number of companies are in fact succeeding with systematic

reuse and COTS technology adoption. Not surprisingly, many

of the large companies that suffered the most during the

economic downturn in 2001 were also companies that most

strongly resisted adopting systematic reuse and COTS.

Therefore it is believed that we must not wait passively for

organizational and economic problems to be resolved

completely before building the technical skills and experience

level of developers. Instead, It must initiate and support skills-

building education now and sustain them over time. These

skills are ultimately required to succeed with systematic reuse,

in particular, and high-quality software development, in

general.

Respect and Reward Top-Notch Developers and Architects

Developing robust, efficient, and reusable networked

applications requires teams of people with a wide range of

skills. It need experienced managers who know how to

properly evaluate risks and opportunities in order to navigate

their teams through the constantly changing landscape of

technology and business drivers. Likewise, It need expert

analysts and designers who have mastered design patterns,

software architectures, and communication protocols in order

to alleviate the inherent and accidental complexities of

networked applications. Naturally, It also need seasoned

programmers who can implement these patterns, architectures,

and protocols to form reusable frameworks and components.

In practice, of course, it's hard to find top-notch software

developers. Ironically, many companies---particularly large

ones---still treat their developers as interchangeable,

``unskilled labor,'' who can be replaced easily. The

increasingly noticing, however, that companies who respect

and reward their top-notch software developers consistently

outperform those who don't.

Systematic reuse is largely a by-product of good designs and

experienced developers. Education is crucial to help improve

developers' design skills. Fortunately, developing good

reusable software requires many of the same set of skills, such

as knowledge of architectures, patterns, frameworks, and

components, necessary to develop good software in general.

The time and effort spent on education will pay off therefore,

whether or not developers actually write reusable software

artifacts.

Keep the Faith

The repeatedly witnessed organizations that initiate systematic

reuse efforts with the best of intentions, only to lose faith

when various impediments arise or schedules slip. Inevitably,

they then fall back onto familiar processes, i.e., developing

their software from scratch. It has been observed that reuse-in-

the-large is best achieved when development and management

leaders are unwavering and evangelistic.

Ultimately, organizations that attempt systematic reuse

without providing an incubation environment will lose their

faithful. Many of these faithful will be the most experienced

developers or those most capable of coming up to speed

quickly. In markets driven by ``Internet cycle times,'' the loss

of valuable developers can devastate an organization's long-

term competitive viability.

Keeping the faith requires keeping abreast of external R&D

developments and global technology trends. In my travels

throughout the software industry,

4. CONCLUSION AND FUTURE WORK

Over a decade's worth of experience developing and deploying

reusable networked application artifacts has taught the

importance of increasing developers' knowledge of patterns, as

well as improving their skills at creating and supporting

reusable components and frameworks. For more information

on using patterns to build reusable networked application

frameworks and components like CORBA, ACE, and TAO.

It has to stress, however, that these technological solutions

alone are not silver bullets [2]. Firmly believe the promise of

systematic reuse for networked applications will not be fully

realized until it address both technical and non-technical

impediments effectively. However, that there's no virtue in

waiting for organizational and managerial maladies to be

resolved completely before improving the education and

experience of software developers. Fortunately, most software

professionals are eager to hone their technical skills, so future

impediments to successful reuse will be largely self-

imposed.so now the companies look at horizontal reuse for

efficient reuse.

5. REFERENCES

[1] Frederick P. Brooks, ``The Mythical Man-Month,''

Addison-Wesley, Reading, MA, 1975.

[2] Frederick P. Brooks, ``No Silver Bullet: Essence and

Accidents of Software Engineering,'' IEEE Computer, Volume

20, Number 4, April 1987, 10-19.

[3] Brian Foote and Joseph Yoder, ``The Selfish Class,'' in

Pattern Languages of Program Design 3, eds. Robert C.

Martin, Dirk Riehle, and Frank Buschmann, Addison Wesley,

1997.

[4] Richard P. Gabriel, ``Patterns of Software, Tales from the

Software Community,'' Oxford University Press, 1998.

[5] Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading, MA,

1995.

Sampath Korra, IJECS Volume 2 Issue 11 November, 2013 Page No. 3217-3222 Page 3222

[6] Buschmann et al., Pattern-Oriented Software

Architectures, Wiley & Sons, 1996.

[7] Douglas C. Schmidt, David Levine, and Sumedh Mungee,

``The Design and Performance of Real-Time Object Request

Brokers,'' Computer Communications, Volume 21, No. 4,

April, 1998.

[8] Douglas C. Schmidt and Mohamed Fayad, ``Object-

Oriented Application Frameworks,'' Communications of the

ACM, Special Issue on Object-Oriented Application

Frameworks, Vol. 40, No. 10, October 1997.

[9] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and

Frank Buschmann, Pattern-Oriented Software Architecture:

Patterns for Concurrent and Networked Objects, Wiley and

Sons, 2000.

[10] Douglas C. Schmidt and Steve Huston, C++ Network

Programming: Mastering Complexity with ACE and Patterns,

Addison-Wesley, 2001.

[11] Douglas C. Schmidt and Adam Porter, Leveraging Open-

Source Processes to Improve the Quality and Performance of

Open-Source Software, 1st Workshop on Open Source

Software Engineering, ICSE 23, Toronto, Canada, May 15,

2001.

[12] ML Griss and RR Kessler, Building Object Oriented

Instrument Kits, Object Magazine, May 1996.

[13]R Malan and T Dicolen, Risk Management in an HP

Reuse Project, Fusion Newsletter, April 1996

[14]W Frakes and S Isoda, Systematic Reuse, Special Issue

IEEE Software, May 1994.

[15] J Hooper & R Chester, Software Reuse Guidelines and

Methods, Plenum, 1991.

[16] EA Karlson, Software Reuse: A holistic approach, Wiley

1995.

[17]W Schäfer, R Prieto-díaz and M Matsumoto, Software

Reusability, Ellis Horwood, 1994.

	BM997112
	BM997113
	BM997116
	BM1000098

