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Abstract—One of the biggest challenges today on web is to deal with the “Big data” problem. Finding documents which are near duplicates of 

each other is another challenge which is in turn brought up by Big data. In this paper the author focuses on finding out the near duplicate 

documents using a technique called shingling. This paper also presents the different types of shingling that can be used. Further, a measure 

called the Jaccard coefficient is discussed which can be used to judge the degree of similarity between the documents. 

 

Index Terms—Big data, shingling, Jaccard Coefficent 

 

INTRODUCTION 

“Big Data” as the name suggests refers to a large amount of 

data. Every industry today is enjoying the benefits as well as 

dealing with the challenges brought up by the ever increasing 

data of their own companies. Data mining is a process where 

in it is possible to mine huge amounts of data in order to 

expose hidden patterns. For instance, with the help of data 

mining techniques today, it is possible for a business 

organization to get insights into what their customer wants or 

how he will react in future. Therefore, mining this Big Data 

can help discover user’s hidden behavioral patterns and their 

intentions too. [1] The major challenges with “big data” are 

the increasing size, heterogeneity and velocity of data being 

added to the space every moment [2].  

The increasing size of data is resulting in storage overheads. A 

serious issue is what to do with this data. What data should to 

be discarded and what should be stored. The heterogeneity of 

data on the other hand refers to the data coming from several 

sources which might be unstructured or even incomplete. For 

instance, data can be in various formats ranging from simple 

records to geo spatial data.  

The velocity of data refers to the rate at which data is 

continuously being added on the web. Such data is becoming 

difficult to analyze and interpret which is also taking a large 

processing time. 

Duplicate or near duplicate documents are the documents 

which might be exact replicas of each other or might be 

similar to one another. Finding out the near duplicates of web 

documents in a scenario like today where the web is facing the 

challenges of Big data becomes a serious issue to handle. This 

is mainly because the users today are just not interested in 

responses that are mere duplicates of each other. Also, 

indexing such documents affects the storage and processing 

time of the search engines. The  resemblance between 

documents can vary between 0 to 1. A “1” indicates that the 

two documents compared for similarity are almost the same. 

Whereas a “0” indicates a higher level of dissimilarity 

between the two documents [4] 

Shingling is a technique which can be used to find out the near 

duplicate documents. It is based on creating contiguous 

subsequences of a document of length q. These  

shingles can be created by either using subsequences of 

characters or words. 

Jaccard Coefficient on the other hand, is a measure which 

determines the similarity between two documents that are 

represented as sets. This measure ranges from 0 to 1. 

This paper defines the problem definition in the first section 

which is to judge the level of resemblance between two 

documents.  

The second section describes about shingling as a technique 

used to solve the problem. The section thereby discusses about 

the Jaccard coefficient measure used to judge the similarity 

between documents. 

 

1.  PROBLEM DEFINITION 

One of the problems associated with “Big Data” is finding 

duplicate or near duplicate documents as discussed previously. 

As per [3] it has been estimated that as many as 40% of web 

pages are duplicates of each other. The duplicity here refers to 

documents which are textually similar and not semantically 
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similar. Some of the common examples of duplicate/near 

duplicate web documents are mirror sites, news articles from a 

common source, plagiarized documents. Mirror sites are sites 

which are duplicated at a number of hosts to facilitate load 

sharing. Plagiarized documents are the ones that may not be 

exact copies of one another but it is a possibility that they 

share large amounts of text which may not be in the same 

order. 

The documents which are exact replicas of each other are still 

easier to find as compared to documents that are similar. 

Finding such documents require the use of hash functions [8]. 

The items which are duplicates will have the same hash value 

as compared to the dissimilar items. Therefore detecting near 

duplicate pages is very important because it affects the search 

engines time and space complexity when it has to index and 

store duplicate web documents.  

 
2. SHINGLING: A SOLUTION 

Shingling as discussed above is a technique of creating 

consecutive subsequences of tokens of a document. The 

tokens here can refer to characters, words or lines. A 

document can be represented as a set of string of characters. 

Given a document d, we can create ‘t’ tokens of d which are 

contiguous sequences of the text of d. Creating a q-shingle/q-

gram  means creating a set of substrings of d which are of 

length q[4][5]  

Shingling can be done by creating tokens of characters as well 

as words. 

 

A.  Shingling by characters 

 Let S(d1) be a set of document d1 which is defined as 

“acdacef”. Then q-shingles based on letters for the above 

document where q=2 will be {ac, cd, da, ce, ef}. 

The elements appearing multiple times in the document are 

only considered once while creating a shingle set. 

 

B. Shingling by words 

Shingling by words is done by using words as substrings of a 

document. If S(d1) contains a string: 

 

“I did my work today”  

 

Then q-shingles based on words where q=3 will be: 

 

“ I did my”, “did my work” “my work today”  

 

In such a case, space used to store these shingles would be 

O(q*w), where q is the length of the shingle and w are the 

number of words in the document 

 

C. Size of Shingles 

While creating the shingle sets, the point to be focused upon is 

what should be the size of q so that the probability for the 

similarity between the similar documents is maximized as 

compared to dissimilar documents. If q is kept too small, there 

is a probability that most of the text in one document also 

appears in the other document in spite of them being 

dissimilar textually. As per [6], the size of q should be picked 

large enough so that the probability of one shingle set 

appearing in the other document is low. For comparing large 

documents like research papers the size of q can be taken 

around 9 whereas for documents like comparing emails for 

similarity, the size q can be picked as 5. 

 
3. JACCARD COEFFICIENT: 

         A MEASURE FOR RESEMBLANCE BETWEEN               

        DOCUMENTS  
 

Jaccard coefficient is used to measure resemblance between 

two documents. For two documents represented as sets A and 

B, the Jaccard coefficient is the ratio of intersection of two 

sets to the union of them[5][7]. It can be calculated as: 

    

 JC(A,B)=|A ∩ B| / |A U B|     

  

Where JC(A,B) denotes the Jaccard Coefficient between two 

sets A and B. Jaccard coefficients are therefore in a range of 

[0,1]. 

For instance if A={3,4,5,6} and B={5,6,7,8} then: 

JC(A,B)=2/4 

This measure is used to judge the similarity between only 

“textually” similar documents and not “semantically” similar 

document. Two documents with a high Jaccard coefficient 

denote a higher degree of similarity between them. But at the 

same time keeping the size of shingle too small may bring 

about a higher Jaccard coefficient which may not imply that 

the two documents are similar. 

 
                         
5. IMPLEMENTATION 

 

Here n is the no of documents to be compared for similarity. 

getShingle method first reads the document d1 and d2 amongst 

the list of documents being iterated and then makes shingles 

by characters and words of length q. It does it by finding 

consecutive substrings of length q for each document. It then 

finds the Jaccard similarity between each set being iterated. 

While making the shingle sets, the blank spaces can be split up 

to form one blank space. 

This algorithm makes O(n
2
) comparisons to compare each 

document against the other. For instance, if there are 10 

documents, each document will be compared with all the other 

documents resulting in overall 45 comparisons. The space 

compare(n) 

{ 

   for i=0 to n 

       for j=0 to n 

           Set S1=getShingle(readFile(d1, q) 

           Set S2=getShingle(readFile(d2,q) 

           findJaccardSimilarity(s1,s2)  

} 

//finds Jaccard Similarity between two sets 

 findJaccardSimilarity(S1,S2) 

     return (S1 intersection S2) /(S1 union S2) 
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complexity for the same would be O(q*w) as discussed 

previously. 

        

       
6. EXPERIMENT 

 

Shingling as a technique was used by the author on a dataset 

of 10 text files. The length of shingle was taken as 3, 4 and 5. 

A java program was written to implement the same. Out of the 

10 text files the Jaccard coefficients calculated for the first 

four files are summarized in Table1, 2 and 3. 

 

 

 
TABLE1 

q=3 

Similarity between  i: 2 j: 1  0.11809045226130653 

Similarity between  i: 3 j: 1 0.023178807947019868 

Similarity between  i: 3 j: 2 0.03070175438596491 

Similarity between  i: 4 j: 1 0.01559792027729636 

Similarity between  i: 4 j: 2 0.15834767641996558 

Similarity between  i: 4 j: 3 0.022974607013301087 

 

 

TABLE 2 

q=4 

Similarity between  i: 2 j: 1  0.09535452322738386 

Similarity between  i: 3 j: 1 0.01461038961038961 

Similarity between  i: 3 j: 2 0.018571428571428572 

Similarity between  i: 4 j: 1 0.003372681281618887 

Similarity between  i: 4 j: 2 0.13079470198675497 

Similarity between  i: 4 j: 3 0.009389671361502348 

 

TABLE 3 

q=5 

Similarity between  i: 2 j: 1  0.07971014492753623 

Similarity between  i: 3 j: 1 0.00967741935483871 

Similarity between  i: 3 j: 2 0.011315417256011316 

Similarity between  i: 4 j: 1 0.0016806722689075631 

Similarity between  i: 4 j: 2 0.11201298701298701 

Similarity between  i: 4 j: 

3 

0.003484320557491289 

 

Note: Here i and j refer to the documents that are being 

compared for similarity. 

 

The statistical analysis of the above result can be stated as 

below: 

 
 

Fig. 1. Jaccard coefficients for q=3, 4 and 5 

 

 

On experimenting the dataset with the algorithm, it was found 

that on varying the values of q the Jaccard coefficient also 

varied. For smaller values of q, Jaccard coefficient came out to 

be larger which indicated a higher degree of similarity 

between the documents. Whereas as the value of q was 

increased the Jaccard coefficient decreased.  

 
7. CONCLUSIONS 

The paper discussed about the problem of “Big Data” 

emerging at a speedy rate. It also focused on problems like 

near duplicate detection of documents for which it described a 

technique called shingling. In the later sections the author 

brought about two approaches by which shingling can be 

done.  

As per the experiment conducted by the author, it was found 

that for smaller values of the length of the shingle (q) the 

jaccard coefficient between the documents was larger as 

compared to when the value of q was increased.  

 

q α 1/JC(A,B) 

 

This implied that a higher Jaccard coefficient does not 

necessarily indicate that the documents are similar. It can vary 

depending upon what value of q is chosen. Therefore, the 

value of q should be appropriately chosen in order to have an 

accurate estimate of degree of similarity between the 

documents. 

 
8. LIMITATIONS 

For very large values of n where n is the number of documents 

to be compared for similarity, shingling alone as a technique 

used can result in large processing and storage overheads since 

it takes O(n
2
) comparisons to compare each document. As a 

solution shingling can be clubbed with Minhashing or Locality 

sensitive hashing(LSH) to improve the results. Locality 

sensitive hashing does not compare all the documents for 

similarity. It only focuses on the candidate pairs that are likely 

to be similar for comparison. This reduces the comparisons to 

be done while checking documents for similarity. Also LSH is 

a better technique while searching documents in high 

dimensional spaces. 

 
9. FUTURE SCOPE 

The author will extend the work discussed in this paper and 

implement Minhashing and Locality sensitive hashing 

techniques to improve the results in order for efficient near 

duplicate detection of web pages. 
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