

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2. Issue 10 October 2013 Page No. 3051-3060

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3051

Generating Meta Alert with Intrusion Framework on

IDS

Sivaramaiah.Y 1 *
 S.Nagarjuna Reddy 2 *

1
 M.Tech, Department of CSE

2
Associate Professor, Department of CSE

Lakireddy Balireddy College of Engineering (Autonomous), Mylavaram , Affiliated to JNTUK, Kakinada

sivaramaiah999@gmail.com
*
;+91 8099999559.

ABSTRACT:

Alert aggregation is an important subtask of intrusion detection. The goal is to identify and to cluster different alerts—produced

by low-level intrusion detection systems, firewalls, etc. belonging to a specific attack instance which has been initiated by an

attacker at a certain point in time. Thus, meta-alerts can be generated for the clusters that contain all the relevant

information whereas the amount of data (i.e., alerts) can be reduced substantially. Meta-alerts may then be the basis for reporting

to security experts or for communication within a distributed intrusion detection system. We propose a novel technique for online

alert aggregation which is based on a dynamic, probabilistic model of the current attack situation. Basically, it can be regarded as

a data stream version of a maximum likelihood approach for the estimation of the model parameters. With three benchmark data

sets, we demonstrate that it is possible to achieve reduction rates of up to 99.96 percent while the number of missing meta-alerts is

extremely low. In using simulation of mobile device intrusion will attack to just display on the device. In addition, meta-alerts are

generated with a delay of typically only a few seconds after observing the first alert belonging to a new attack instance.

KEY WORDS:

Intrusion detection , alert aggregation , generative modeling , data stream algorithm.

INTRODUCTION:

Intrusion detection systems (IDS) are besides other

protective measures such as virtual private networks,

authentication mechanisms, or encryption techniques very

important to guarantee information security. They help to

defend against the various threats to which networks and

hosts are exposed to by detecting the actions of attackers or

attack tools in a network or host-based manner with misuse

or anomaly detection techniques.

At present, most IDS are quite reliable in detecting

suspicious actions by evaluating TCP/IP connections or log

files, for instance. Once an IDS finds a suspicious action, it

immediately creates an alert which contains information

about the source, target, and estimated type of the

attack(e.g., SQL injection, buffer overflow, or denial of

service). As

the intrusive actions caused by a single attack instance—

which is the occurrence of an attack of a particular type that

has been launched by a specific attacker at a certain point in

time are often spread over many network connections or log

file entries, a single attack instance often results in hundreds

or even thousands of alerts. IDS usually focus on detecting

attack types, but not on distinguishing between different

attack instances. In addition, even low rates of false

alerts could easily result in a high total number of false

alerts if thousands of network packets or log file entries are

inspected. As a consequence, the IDS creates many alerts at

a low level of abstraction. It is extremely difficult for a

human security expert to inspect this flood of alerts, and

decisions that follow from single alerts might be wrong with

a relatively high probability.

In our opinion, a “perfect” IDS should be situation-aware[2]

in the sense that at any point in time it should “know” what

is going on in its environment regarding attack instances (of

various types) and attackers. In this paper, we

make an important step toward this goal by introducing and

evaluating a new technique for alert aggregation. Alerts may

originate from low-level IDS such as those mentioned

above, from firewalls (FW), etc. Alerts that belong to

oneattack instance must be clustered together and meta-

alerts must be generated for these clusters. The main goal is

to reduce the amount of alerts substantially without losing

any important information which is necessary to identify on

going attack instances. We want to have no missing meta

alerts, but in turn we accept false or redundant meta-alerts to

a certain degree. This problem is not new, but current

solutions are typically based on a quite simple sorting of

alerts, e.g., according to their source, destination, and attack

http://www.ijecs.in/
mailto:sivaramaiah999@gmail.com*%20;+91

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3052

type. Under real conditions such as the presence of

classification

errors of the low-level IDS (e.g., false alerts), uncertainty

with respect to the source of the attack due to spoofed IP

addresses, or wrongly adjusted time windows, for instance,

such an approach fails quite often.

Our approach has the following distinct properties:

 It is a generative modeling approach [3] using

probabilistic methods. Assuming that attack

instances can be regarded as random processes

“producing” alerts, we aim at modeling these

processes using approximative. maximum

likelihood parameter estimation techniques. Thus,

the beginning as well as the completion of attack

instances can be detected.

 It is a data stream approach, i.e., each observed

alert is processed only a few times [4]. Thus, it can

be applied online and under harsh timing

constraints.

The remainder of this paper is organized as

follows: In Section 2 some related work is

presented. Section 3 describes the proposed alert

aggregation approach, and Section 4 provides

experimental results for the alert aggregation using

various data sets. Finally, Section 5 summarizes the

major findings.

RELATED WORK:

Most existing IDS are optimized to detect attacks with high

accuracy. However, they still have various disadvantages

that have been outlined in a number of publications and a lot

of work has been done to analyze IDS in order to direct

future research (cf. [5], for instance). Besides others, one

drawback is the large amount of alerts produced. Recent

research focuses on the correlation of alerts from (possibly

multiple) IDS. If not stated otherwise, all approaches

outlined in the following present either online algorithms or

as we see it can easily be extended to an online version.

Probably, the most comprehensive approach to alert

correlation is introduced . One step in the presented

correlation approach is attack thread reconstruction, which

can be seen as a kind of attack instance recognition. No

clustering algorithm is used, but a strict sorting of alerts

within a temporal window of fixed length according to the

source, destination, and attack classification (attack type). In

, a similar approach is used to eliminate duplicates, i.e.,

alerts that share the same quadruple of source and

destination address as well as source and destination port. In

addition, alerts are aggregated (online) into predefined

clusters (so-called situations) in order to provide a more

condensed view of the current attack situation. The

definition of such situations is also used in to cluster alerts.

In alert clustering is used to group alerts that belong to the

same attack occurrence. Even though called

clustering, there is no clustering algorithm in a classic sense.

The alerts from one (or possibly several) IDS are stored in a

relational database and a similarity relation which is based

on expert rules is used to group similar alerts together. Two

alerts are defined to be similar, for instance, if both occur

within a fixed time window and their source and target

match exactly. As already mentioned, these approaches

are likely to fail under real-life conditions with

imperfect classifiers (i.e., low-level IDS) with false alerts or

wrongly adjusted time windows.

Another approach to alert correlation is presented .A

weighted, attribute-wise similarity operator is used to decide

whether to fuse two alerts or not. However, as already stated

in and , this approach suffers from the high number of

parameters that need to be set. The similarity operator

presented in [13] has the same disadvantage there are lots of

parameters that must be set by the user and there is no or

only little guidance in order to find good values. In , another

clustering algorithm that is based on attribute-wise similarity

measures with user defined parameters is presented.

However, a closer look at the parameter setting reveals that

the similarity measure, in fact, degenerates to a strict sorting

according to the source and destination IP addresses and

ports of the alerts.

The first, quite simple one groups alerts according to their

source IP address only. The other two approaches are based

on different supervised learning techniques. Besides a basic

least-squares error approach, multilayer perceptions, radial

basis function networks, and decision trees are used to

decide whether to fuse a new alert with an already existing

meta-alert (called scenario) or not. Due to the supervised

nature, labeled training data need to be generated which

could be quite difficult in case of various attack instances.

the learned model parameters.

The same or quite similar techniques as described so far are

also applied in many other approaches to alert correlation,

especially in the field of intrusion scenario detection.

Prominent research in scenario detection.

for example. More details can be found in an

offline clustering solution based on the CURE. algorithm is

presented. The solution is restricted to numerical attributes.

In addition, the number of clusters must be set manually.

This is problematic, as in fact it assumes that the security

expert has knowledge about the actual number of ongoing

attack instances. The alert clustering solution described is

more related to ours. A link-based clustering approach is

used to repeatedly fuse alerts into more generalized ones.

The intention is to discover the reasons for the existence of

the majority of alerts, the so called root causes, and to

eliminate them subsequently. An attack instance in our sense

can also be seen as a kind of root cause, but in root causes

are regarded as “generally persistent” which does not hold

for attack instances that occur only within a limited time

window. Furthermore, only root causes that are responsible

for a majority of alerts are of

interest and the attribute-oriented induction algorithm is

forced “to find large clusters” as the alert load can thus be

reduced at most. Attack instances that result in a small

number of alerts (such as PHF or FFB) are likely to be

ignored completely. The main difference to our approach is

that the algorithm can only be used in an offline setting and

is intended to analyze historical alert logs. In contrast, we

use an online approach to model the current attack situation.

The alert clustering approach described is based on but aims

at reducing the false positive rate. The created cluster

structure is used as a filter to reduce the amount of created

alerts. Those alerts that are similar to already known false

positives are kept back, whereas alerts that are considered to

be legitimate (i.e., dissimilar to all known false positives)

are reported and not further aggregated.

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3053

 A completely different clustering approach is presented in

There, the reconstruction error of an auto associate neural

network (AA-NN) is used to distinguish different types of

alerts. Alerts that yield the same (or a similar) reconstruction

error are put into the same cluster. The approach can be

applied online, but an offline training phase and training

data are needed to train the AA-NN and also to manually

adjust intervals for the reconstruction error that

Determine which alerts are clustered together. In addition, it

turned out that due to the dimensionality reduction by the

AA-NN, alerts of different types can have the same

reconstruction error which leads to erroneous clustering. In

our prior work, we applied the well-known c-means

Clustering algorithm in order to identify attack instances.

However, this algorithm also works in a purely offline

manner.

.

Fig. 1. Architecture of an intrusion detection agent.

A NOVEL ONLINE ALERT AGGREGATION

TECHNIQUE

In this section, we describe our new alert aggregation

approach which is at each point in time based on a

probabilistic model of the current situation. To outline the

Pre conditions and objectives of alert aggregation, we start

with a short sketch of our intrusion framework. Then, we

briefly describe the generation of alerts and the alert format.

We continue with a new clustering algorithm for offline

alert aggregation which is basically a parameter estimation

technique for the probabilistic model. After that, we extend

this offline method to an algorithm for data stream

clustering which can be applied to online alert aggregation.

Finally, we make some remarks on the generation of meta-

alerts.

Some additional remarks must be made:

Initialization of model parameters. The aim of the

initialization is to find good initial values. Instead of using a

random initialization which results in higher runtimes and

sub-optimal solutions, we use a heuristic which we

have successfully applied to the training of radial basis

function neural networks . This heuristic selects a initial

cluster centers a set of alerts with a large spread in the

attribute space.

Hard assignment of alerts to components. More general EM

algorithms make a gradual assignment of alerts to

components in the E step (cf. responsibilities in [3]). In

practical applications, a hard assignment reduces the

runtimes significantly at the cost of slightly worse solutions

in some situations. In our case, this is acceptable as we do

not want to find the optimal model parameters at the end,

but to generate the optimal set of meta-alerts. Stopping

criterion. An EM algorithm guarantees that the

set of parameters is improved in each step. In addition, due

to the hard assignment of alerts, there exists a limited

number of possible assignments. Thus, it can be guaranteed

that the

algorithm converges. For the sake of simplicity, however,

we usually run the algorithm for a fixed number of

iterations. Fixed mixing coefficients. One of the main

difficulties in

alert aggregation is the wide range of possible cluster sizes.

There are clusters that contain thousands of alerts, but there

are also clusters that consist of a few alerts only. For

instance,

a Neptune attack instance may result in 200,000 alerts

whereas a PHF attack instance may consist of only five

alerts . Thus, in contrast to a more general EM approach, it

is important to fix the mixing coefficients (here:

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3054

Otherwise, if the mixing coefficients were estimated from

the observed samples, the EM algorithm would focus on the

optimization of the parameters of “heavy” components

while neglecting the “light” ones.

One important task has not been mentioned so far: The

estimation of the number of components (clusters) J from

the set of observed samples A. Up to now, we assumed that

this number is given. In our case, the number of clusters

shall correspond to the number of attack instances in an

ideal case. To solve this problem, cluster validation

measures can be used

to assess the quality of a clustering result. A clustering

algorithm is started several times with a varying number of

clusters, the quality for each clustering result is assessed

numerically, and finally the results are compared and the

number that optimizes this measure is chosen (so-called

relative criterion). Examples The idea that forms the basis of

those measures is that they search for a clustering result that

consists of clusters that are both, compact and separable.

Although the usability of such measures has been proven in

many (offline) application examples, they cannot be applied

in a data streaming case as they suffer from high runtimes,

e.g., O(N
2
) in the case of the Dunn index. We need a

measure that can be updated incrementally when a new alert

arrives. Therefore, we chose a density-based approach to

estimate separability and compactness.

As a final result of the EM algorithm, we not only know the

optimized parameter values of the model, but also the final

assignment of alerts to components. These clusters define a

partition of the sample set. First, we define the compactness

of a single cluster associated with a component j by

Then, the compactness of the overall partition is

That means, the compactness is influenced by the alert with

the lowest likelihood. As a consequence, we get a bias

toward a higher number of components, which is desirable

in our application (high recall required, lower precision

accepted). Note that we can easily update this measure in

O(1) if a new alert is assigned to a component. Second, we

define the separability of a pair of clusters associated with

component i and j by

where we use the alerts with the highest likelihoods

Then, the separability of the overall partition is

An incremental version of this measure with O(1) time

complexity is also straightforward.

Finally, the overall cluster validation measure Ω for a

clustering result is

We search for a number J that maximizes this measure. In

Data Stream Alert Aggregation, it will become clear that

only a small number of choices for J must actually be tested

by our online aggregation algorithm.

Data Stream Alert Aggregation

In this section, we describe how the offline approach is

extended to an online approach working for dynamic attack

situations. Assume that in the environment observed by an

ID agent attackers initiate new attack instances that cause

alerts for a certain time interval until this attack instance is

completed. Thus, at any point in time the ID agent—which

is assumed to have a model of the current situation, cf. Fig.

3a—has

several tasks, cf. Fig. 3b:

1. Component adaption: Alerts associated with already

recognized attack instances must be identified as such and

assigned to already existing clusters while adapting the

respective component parameters.

2. Component creation (novelty detection): The occurrence

of new attack instances must be stated. New components

must be parameterized accordingly.

3. Component deletion (obsoleteness detection): The

completion of attack instances must be detected and the

respective components must be deleted from the model.

That is, the ID agent must be situation-aware and try to keep

his model of the current attack situation permanently up to

date, see Fig. 3c.

Clearly, there is a trade-off between runtime (or reaction

time) and accuracy. For example, it is hardly possible to

decide upon the existence of a new attack instance when

only one observation is made. From the viewpoint of our

objectives (cf. Section 3.1), the tasks 1 and 2 are more time

critical than task 3.

From a probabilistic viewpoint we can state that our overall

random process is non stationary in a certain sense which

can be regarded as being equivalent to changing the mixing

coefficients at certain points in time. A mixing coefficient is

either zero or the reciprocal of the number of

“active” components (for the time interval of the respective

attack instance). With appropriate novelty and obsoleteness

detection mechanisms, we aim at detecting these points in

time with both sufficient certainty and timeliness. The

offline aggregation algorithm provides the basic idea for the

online case, too. We have to consider, however, that we

want to have a data stream algorithm with short runtimes. In

the following, we do not distinguish between the following

two views on solutions of the modeling problem: The

probabilistic model with J components with parameters µj,

α
2

j, Ƥj and j €{1,…,J} and mixing coefficients 1/J , and the

partition of the overall set of alerts into a set of clusters C =

{C1…,Cj} That is, we equate the

terms partition and model as well as cluster and component,

respectively. For online clustering, we require that each alert

a has a time stamp ts (A) (time of observation) and that we

always know the current point in time t.

Algorithm 2 describes the online alert aggregation. If a new

alert is observed we first have to decide whether a first

component has to be created. In this case, we initialize its

parameters with information taken from this alert. Random,

small values are added, for example, to prevent any

subsequent optimization steps from running into

singularities of the respective likelihood function .

Otherwise,

we have to decide whether the alert has to be associated with

an existing component or not, i.e., whether we believe that it

belongs to an ongoing attack instance or not. Provisionally,

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3055

we assign the alert to the most likely component (E step)

and optimize the parameters of this component (M step). For

the reason of temporal efficiency, we do not conduct a

sequence of E and M steps for the overall model. it turned

out that our main goal not to miss any attack instances,

Collaborating Intrusion Detection Agents can be achieved

this way with substantially lower runtimes but at the cost of

some redundant meta-alerts (due to split of clusters, Offline

Alert Aggregation).

The assignment of the alert to an existing component is not

accepted in any case, only if the quality of the model

increases or does not decrease too much, e.g., not more than

15 percent (realized by means of threshold _). Otherwise,

we consider the possibility that a new attack instance may

have been initiated, do not modify the model, and

temporarily store the alert in a buffer until this belief is

corroborated by additional observations.

Novelty handling basically means that we empty the buffer

by assigning its content either to existing components or to

new components. This procedure is initiated either

when the temporal spread of the buffer content is too large

or when the content is no longer homogeneous in the sense

that we assume that another new attack instance may have

been initiated:

. Temporal spread: As the rate of incoming alerts depends

on the current attack situation, it changes heavily over time

ranging from thousands of alerts per minute to only a few

alerts per hour. Thus, to keep the response time short, we

have to take into account

the temporal spread of the buffer content. The spread is

defined as the difference between the time stamps of the

oldest and the most recent alert in the buffer.

. Homogeneity: The goal is to ensure that only alerts that are

similar to each other are stored in the buffer. Thus, it is

possible that the novelty handling Conducts for temporal

performance reasons only a local optimization of the model

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3056

(see below). We regard the alerts in the buffer as being

similar if they all have the same most likely component.

That is, to initiate the novelty handling for a given model C

and a buffer B, we use the function

with a user-defined threshold ∂ to state novelty. Note, that

spread and homogeneity can both be checked with low

temporal effort.

Algorithm 3 describes the novelty handling itself. Basically,

to adapt the overall model, we run the offline aggregation

algorithm several times with different possible component

numbers to chose the optimal number. However,

due to the homogeneity of the buffer, we may restrict the

optimization to the alerts in the buffer and in one “neighbor”

cluster on the one hand and a relatively small user-defined

maximum number of components K on the

other without violating our main goal . The result of this

local optimization is finally fused with the unmodified

parts of the model.

In order to reduce the runtime of this algorithm further, we

may reduce the number of alerts that have to be processed

by means of an appropriate subsampling technique.

To initiate the obsoleteness handling for a given model C

and component Cj, we use

where ∂ is a convex combination of a multiple of the mean

interarrival time between the alerts in the cluster and prior

knowledge which is faded out when the number of alerts in

this cluster gets larger. That is, we use a kind of estimate of

the arrival time of the next alert belonging to the

corresponding attack instance. If obsoleteness is stated, the

corresponding

component is simply deleted from the model.

Note that the mixing coefficients are always defined

implicitly by the number of currently existing components.

Meta-Alert Generation and Format

With the creation of a new component, an appropriate

metaalert that represents the information about the

component in

an abstract way is created. Every time a new alert is added

to a component, the corresponding meta-alert is updated

incrementally, too. That is, the meta-alert “evolves” with the

component. Meta-alerts may be the basis for a whole set

further tasks (cf. Fig. 1):

. Sequences of meta-alerts may be investigated further in

order to detect more complex attack scenarios (e.g., by

means of hidden Markov models).

. Meta-alerts may be exchanged with other ID agents in

order to detect distributed attacks such as one-tomany

attacks.

. Based on the information stored in the meta-alerts, reports

may be generated to inform a human security expert about

the ongoing attack situation.

Meta-alerts could be used at various points in time from the

initial creation until the deletion of the corresponding

component (or even later). For instance, reports could be

created immediately after the creation of the component

Or which could be more preferable in some cases a

sequence of updated reports could be created in regular time

intervals. Another example is the exchange of metaalerts

between ID agents: Due to high communication costs, meta-

alerts could be exchanged based on the evaluation of their

interestingness

According to the task for which meta-alerts are used, they

may contain different attributes. Examples for those

attributes are aggregated alert attributes (e.g., lists or

intervals of source addresses or targeted service ports, or a

time interval that marks the beginning and the end if

available of the attack instance), attributes extracted from

the probabilistic model (e.g., the distribution parameters or

the number of alerts assigned to the component), an

aggregated alert assessment provided by the detection layer

(e.g., the attack type classification or the classification

confidence), and also information about the current attack

situation (e.g., the number of recent attacks of the same or a

similar type, links to attacks originating from the same or a

similar source).

EXPERIMENTAL RESULTS

This section evaluates the new alert aggregation approach.

We use three different data sets to demonstrate the

Fig. 4. ROC curve for the SVM detector.

feasibility of the proposed method: The first is the

wellknown DARPA intrusion detection evaluation data set

[32], for the second we used real-life network traffic data

collected at our university campus network, and the third

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3057

contains firewall log messages from a commercial Internet

service provider. All experiments were conducted on an PC

with 2.20 GHz and 2 GB of RAM.

Internet Service Provider Firewall Logs

The third data set used here differs from the previous ones

as we actually do not have a detector layer that performs a

classification and searches for known attacks. Instead, we

use log messages that were generated by a CISCO PIX

system, which is a well-known commercial FW and network

address translation (NAT) device. Typical PIX log messages

are DENY or ACCEPT messages—depending

on whether the incoming or outgoing network packets or

connections are forbidden or allowed according to the

firewall rule set. Here, the alerts consist of the source and

destination IP address, the source and destination port, the

creation time differences, and the PIX message type. Details

on the log message format can be found in [43]. The PIX

was installed in the network of an Internet service provider

within a real-life environment. During the six hours of

collection time, 4,898 log messages—we also use the term

alerts in the following—were created. As the data were not

collected within a controlled simulation environment, we do

not have any information whether there occurred attacks or

not and specifications of TPR and FPR are not

possible. Nonetheless, this data set can be used to

demonstrate the broad applicability of the proposed online

alert aggregation technique.

Performance Measures

In order to assess the performance of the alert aggregation,

we evaluate the following measures:

Percentage of detected instances (p). We regard an attack

instance as being detected if there is at least one metaalert

that predominantly contains alerts of that particular instance.

The percentage of detected attack instances p can thus be

determined by dividing the number of instances

that are detected by the total number of instances in the data

set. The measure is computed with respect to the instances

covered by the output of the detection layer, i.e., instances

missed by the detectors are not considered.

Number of meta-alerts (MA) and reduction rate (r). The

number of meta-alerts (MA) is further divided into the

number of attack meta-alerts MAattack which predominantly

contain true alerts and the number of nonattack meta-alerts

MAnonattack which predominantly contain false alerts. The

reduction rate r is 1 minus the number of created meta-alerts

MA divided by the total number of alerts N.

Average runtime (tavg) and worst case runtime (tworst). The

average runtime is measured in milliseconds per alert.

Assuming up to several hundred thousand alerts a day, tavg

should stay clearly below 100 ms per alert. The worst case

runtime tworse, which is measured in seconds, states how

long it takes at most to execute the while loop of Algorithm

2,

which may include the execution of Algorithms 3 and 1 (the

latter several times).

Meta-alert creation delay (d). It is obvious that there is a

certain delay until a meta-alert is created for a new attack

instance. The meta-alert creation delay d measures the delay

between the actual beginning of the instance (i.e., the

creation time of the first alert) and the creation of the first

meta-alert for that instance. We investigate, how many

seconds the algorithm needs to create 90 percent (d90%), 95

percent (d95%), and 100 percent (d100%) of the meta-alerts.

Results

In the following, the results for the alert aggregation are

presented. For all experiments, the same parameter settings

are used. We set the threshold Ɵ, that decides whether to

add a new alert to an existing component or not to five

percent, and the value for the threshold γ that specifies the

allowed temporal spread of the alert buffer to 180 seconds.

Ɵ was set That low value in order to ensure that even a

quite small degrade of the cluster quality, which could

indicate a new attack instance, results in a new component.

A small value of Ɵ, of course, results in more components

and, thus, in a

lower reduction rate, but it also reduces the risk of missing

attack instances. The parameter Ɵ, which is used in the

novelty assessment function, controls the maximum time

that new alerts are allowed to reside in the buffer B. In order

to keep the response time short, we set it to 180 s which we

think is a reasonable value. For both parameters, there were

large intervals in which parameter values could be chosen

without deteriorating the results.

DARPA Data

Results for the DARPA data set are given in Table 2. First

of all, it must be stated there is an operation point of the

SVM at the detection layer (OP 1) where we do not miss

any

attack instances at all (at least in addition to those already

missed at the detection layer). The reduction rate is with

99.87 percent extremely high, and the detection delay is

only 5.41 s in the worst case (d100%). Average and worst case

runtimes are very good, too.

All OP will now be analyzed in much more detail.

All attack instances for which the detector produces at least

a single alert are detected in the idealized case and with

OP 1 and OP 2 . Choosing another OP, the rate of detected

instances drops to 98.04 percent (OP 3) and 99.02 percent

(OP 4) . In OP 3, a FORMAT instance and a MULTIHOP

instance are missed. In OP 4, only the FORMAT instance

could not be detected. A further analysis identified the

following reasons:

 . The main reason in the case of the FORMAT

instance is the small number of only four alerts. Those alerts

are created by the detector layer for all OP, i.e., there is

obviously no benefit from choosing an OP with higher FPR.

By increasing the FPR, the true FORMAT alerts are

erroneously merged with false alerts into one cluster. Hence,

as the false alerts easily outnumber the four true FORMAT

alerts. With in this cluster, the FORMAT instance gets lost.

 . For the MULTIHOP instance, for which we have

19 alerts, the situation is more complex. The instance is only

missed in OP 3 and not in OP 4. In OP 3, the downside of a

higher FPR outweighs the benefit of a higher TPR—the

MULTIHOP alerts are merged with

a large number of false alerts. Further increasing the FPR

(OP 4) leads to more false alerts as well, but, in this case,

also to a further split of clusters such that the false alerts and

the MULTIHOP alerts are placed into separate clusters.

Next, we analyze the number of meta-alerts MA and the

reduction rate r. In the idealized case, 324 meta-alerts are

created. Compared to the about 1.6 million alerts, we get a

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3058

reduction rate of 99.98 percent, which is a reduction of

almost three orders of magnitude. Unfortunately, with

exception of the first of seven weeks, it was not possible to

achieve the ideal case with exactly one meta-alert for every

attack instance. Basically, there are four reasons:

Distinguishable steps of an attack type. Often, a

split of attack instances into more meta-alerts is caused by

the nature of the attacks themselves. Actually, many attack

types consist of different, clearly distinguishable steps. As

an example, the FTP-WRITE attack exhibits three such

steps: an FTP login on port 21, an FTP data transfer on

port 20, and a remote login on port 513. Thus, a split into

three related meta-alerts is quite natural. Subsequent tasks at

the alert processing layer are supposed to handle such

multistep attack scenarios (cf. Fig. 1).

 Several independent attackers. In the DARPA data

set, some attack instances are labeled as a single attack

instance although they are in fact comprised of the actions

of several

independent attackers. A typical example is a

WAREZCLIENT instance in week four: There, attackers

download illegally provided software from a compromised

FTP server. As there is no cooperation between the attackers

as in the

case of a coordinated denial of service attack, for example,

there is an individual meta-alert created for every attacker.

TABLE2

Results of the Online Alert Aggregation for Three Benchmark Data Sets

Long attack duration. Attack instances with a long

duration are often split into several meta-alerts. Typical

examples are slow or hidden port scans or

(distributed)denial of service attacks which can last several

hours.

Bidirectional communication. TCP/IP-based

communication between two hosts results in packets

transmitted in both directions. If the detector layer produces

alerts for both directions (e.g., due to malicious packets), the

source and

destination IP address are swapped, which in the end results

in two meta-alerts. This problem could be solved with an

appropriate preprocessing step.

 With an increasing FPR, the number of meta-alerts also

increases from 1,976 meta-alerts in OP 1 to 8,588 meta-

alerts in OP 4. Even though the number of meta-alerts

increases clearly, we still have a reduction rate of 99.46

percent in OP 4, which would heavily reduce the—possibly

manual—effort of a human security expert that analyzes that

information flood. It is also interesting to see that, although

the overall number of meta-alerts MA increases, the number of

attack clusters MAattack remains roughly constant. The

majority of additionally created meta-alerts contains only

false alerts.

 With more meta-alerts, the runtime increases. Even in OP

4, with an average runtime of 0.97 ms per alert, the

proposed technique is still very efficient. Fig. 5 shows the

component creation delays for the four operating points. The

figure depicts the percentage of attack instances for which a

meta-alert was created after a time not exceeding the value

specified at the x-axis. It can be seen that the creation delay

is With in the range of a few seconds and, thus, meets the

requirements for an online application. Table 2 displays the

time after which for 90, 95, and 100 percent of the attack

instances meta-alerts were created. Note that these values

correspond to points on the curve in Fig. 5. Interestingly, in

the idealized case, the delay is much higher which can be

explained by the novelty detection mechanism (cf. (14)). In

Fig.5.Cumulative creation delays for meta-alerts

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3059

the case of a more homogeneous alert stream, the novelty

handling is mainly influenced by the temporal spread

whereas in the case of a heterogeneous alert stream due to

false alerts, the novelty handling is started more often which

results in lower component creation delay times.

Campus Network Data

For the campus network data, for which the IDS Snort was

used to create alerts, quite similar results could be achieved

(see Table 2). All attack instances that have been launched

were correctly detected. For the 17 attack instances with

128,816 alerts, 52 meta-alerts were created, which is

equivalent to a reduction rate of 99.96 percent. Again, the

majority of meta-alerts is caused by false alerts. We have 20

attack meta-alerts and 32 nonattack meta-alerts. For three of

the 17 attack instances, a redundant meta-alert was created.

The reasons are similar to the ones described for the

DARPA data set. It is worth mentioning that for the attack

instance where the attacker changed his IP address during

the attack, only one meta-alert was created. The results for

the runtime as well as for the cluster creation delay are

similar to that of the DARPA data, too.

Internet Service Provider Firewall Logs

For the firewall log data, the proposed alert aggregation

could also be applied successfully. As Table 2 shows, 56

meta-alerts were created for the 4,989 alerts, which is a

reduction rate of 98.86 percent. As it is not possible to

specify a percentage of detected attack instances, we

analyzed the content of the 56 resulting meta-alerts: In many

cases, it is possible to find a particular reason for the meta-

alerts, e.g., we identified meta-alerts that subsume all alerts

that are caused by obviously forbidden accesses from

hosts within the DMZ to an external printer using the Printer

PDL Datastream Port (HP JetDirect, port 9,100). Another

example is meta-alerts that subsume alerts for illegal

network time protocol (ntp, port 123) accesses from hosts

outside the DMZ. The runtime turns out to be a little bit

lower with 1.53 ms per alert, but, interestingly, the worst

case runtime tworst is with 0.27 s much smaller than for the

previous data sets. This effect might be explained by the

more heterogeneous alert stream in case of the firewall log

data which results in an increased number of calls of

Algorithm 3 due to the novelty handling: On the one side,

the more heterogeneous the alert stream is, the more often

the (time expensive) Algorithm 3 is called which increases

the overall runtime: On the other side, due to the increased

number of calls of Algorithm 3, every call is conducted on

an alert buffer that contains only a few new alerts which

reduces the runtime of a single call of Algorithm 3—and,

thus, the worst case runtime.

Conclusion

The experiments demonstrated the broad applicability of the

proposed online alert aggregation approach. To approaching

all result should be find out very easy to identified.We

analyzed three different data sets and showed that machine-

learning-based detectors, conventional signaturebased

detectors, and even firewalls can be used as alert generators.

In all cases, the amount of data could be reduced

substantially. Although there are situations as described in

Section 3.3—especially clusters that are wrongly split—the

instance detection rate is very high: None or only very few

attack instances were missed. Runtime and component

creation delay are well suited for an online application.

SUMMARY AND OUTLOOK

We presented a novel technique for online alert aggregation

and generation of meta-alerts. We have shown that the sheer

amount of data that must be reported to a human security

expert or communicated within a distributed intrusion

detection system, for instance, can be reduced

significantly. The reduction rate with respect to the number

of alerts was up to 99.96 percent in our experiments. At the

same time, the number of missing attack instances is

extremely low or even zero in some of our experiments and

the delay for the detection of attack instances is within the

range of some seconds only. In the future, we will develop

techniques for interestingness- based communication

strategies for a distributed IDS. This IDS will be based on

organic computing principles [44]. In addition, we will

investigate how human domain knowledge can be used to

improve the detection processes further. We will also apply

our techniques to benchmark data that fuse information from

heterogeneous sources (e.g.,

combining host and network-based detection).

ACKNOWLEDGMENTS

This work was partly supported by the German Research

Foundation (DFG) under grant number SI 674/3-2. The

authors would like to thank D. Fisch for his support in

preparing one of the data sets. The authors highly appreciate

the suggestions of the anonymous reviewers that helped

them to improve the quality of the article.

REFERENCES

[1] S. Axelsson, “Intrusion Detection Systems: A Survey

and Taxonomy ,” Technical Report 99-15, Dept. of

Computer Eng., Chalmers Univ. of Technology, 2000.

[2] A. Allen, “Intrusion Detection Systems: Perspective,”

Technical Report DPRO-95367, Gartner, Inc., 2003.

[3] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer,

“A Comprehensive Approach to Intrusion Detection Alert

Correlation,” IEEE Trans. Dependable and Secure

Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

[4] F. Cuppens, “Managing Alerts in a Multi-Intrusion

Detection Environment,” Proc. 17th Ann. Computer

Security Applications Conf.

(ACSAC ’01), pp. 22-31, 2001.

[5] T. Pietraszek , “Alert Classification to Reduce False

Positives in Intrusion Detection,” PhD dissertation,

Universita¨ t Freiburg, 2006.

[6] G. Giacinto, R. Perdisci, and F. Roli, “Alarm Clustering

for Intrusion Detection Systems in Computer Networks,”

Machine

Learning and Data Mining in PatternRecognition, P. Perner

and A. Imiya, eds. pp. 184-193, Springer, 2005.

[7] F. Cuppens and R. Ortalo, “LAMBDA: A Language to

Model a Database for Detection of Attacks,” Recent

Advances in Intrusion Detection, H. Debar, L. Me, and S.F.

Wu, eds. pp. 197-216, Springer,2000.

[8] M.S. Shin, H. Moon, K.H. Ryu, K. Kim, and J. Kim,

“Applying Data Mining Techniques to Analyze Alert Data,”

Web Technologies and Applications, X. Zhou, Y. Zhang,

and M.E. Orlowska, eds. pp. 193-200, Springer, 2003.

Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3060

[9] R. Smith, N. Japkowicz, M. Dondo, and P. Mason,

“Using Unsupervised Learning for Network Alert

Correlation,” Advances in Artificial Intelligence, R. Goebel,

J. Siekmann, and W. Wahlster, eds. pp. 308-319, Springer,

2008.

[10] O. Buchtala, W. Grass, A. Hofmann, and B. Sick, “A

Distributed Intrusion Detection Architecture with Organic

Behavior,” Proc. First CRIS Int’l Workshop Critical

Information Infrastructures (CIIW ’05), pp. 47-56, 2005.

[11] J. Postel, “RFC 790—Assigned numbers,”

http://www.faqs.org/ rfcs/rfc790.html, Sept. 1981.

[12] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R.

Kendall, D. McClung, D. Weber, S.E. Webster, D.

Wyschogrod, R.K. Cunningham, and M.A. Zissman,

“Evaluating Intrusion Detection Systems: The 1998 DARPA

Offline Intrusion Detection Evaluation,” Proc. DARPA

Information Survivability Conf. and

Exposition (DISCEX), vol. 2, pp. 12-26, 2000.

[13] M. Halkidi and M. Vazirgiannis,“Clustering Validity

Assessment Using Multi Representatives,” Proc. SETN

Conf., vol. 2, pp.237- 249, 2002.

[14] M.V. Mahoney and P.K. Chan, “An Analysis of the

1999 DARPA/ Lincoln Laboratory Evaluation Data for

Network Anomaly Detection,” Recent Advances in

Intrusion Detection, G. Vigna, E. Jonsson, and C. Kru¨ gel,

eds., pp. 220-237, Springer, 2003.

[15] CISCO Systems, Inc., “Cisco PIX Firewall System Log

Messages, Version 6.3,”

http://www.cisco.com/en/US/docs/security/pix/

pix63/system/message/pixemsgs.html, 2009.

[16] J. McHugh, “Testing Intrusion Detection Systems: A

Critique of the 1998 and 1999 DARPA Intrusion Detection

System Evaluations

as Performed by Lincoln Laboratory,” ACM Trans.

Information and System Security, vol. 3, no. 4, pp. 262-294,

2000.

[17] M. Halkidi and M. Vazirgiannis, “Clustering Validity

Assessment Using Multi Representatives,” Proc. SETN

Conf., vol. 2, pp. 237-249, 2002.

