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ABSTRACT: 

Alert aggregation is an important subtask of intrusion detection. The goal is to identify and to cluster different alerts—produced 

by low-level intrusion detection systems, firewalls, etc. belonging to a specific attack instance which has been initiated by an 

attacker at a certain point in time. Thus, meta-alerts can be generated for the clusters that contain all the relevant 

information whereas the amount of data (i.e., alerts) can be reduced substantially. Meta-alerts may then be the basis for reporting 

to security experts or for communication within a distributed intrusion detection system. We propose a novel technique for online 

alert aggregation which is based on a dynamic, probabilistic model of the current attack situation. Basically, it can be regarded as 

a data stream version of a maximum likelihood approach for the estimation of the model parameters. With three benchmark data 

sets, we demonstrate that it is possible to achieve reduction rates of up to 99.96 percent while the number of missing meta-alerts is 

extremely low. In using simulation of mobile device intrusion will attack to just display on the device. In addition, meta-alerts are 

generated with a delay of typically only a few seconds after observing the first alert belonging to a new attack instance. 
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INTRODUCTION: 

Intrusion detection systems (IDS) are besides other 

protective measures such as virtual private networks, 

authentication mechanisms, or encryption techniques very 

important to guarantee information security. They help to 

defend against the various threats to which networks and 

hosts are exposed to by detecting the actions of attackers or 

attack tools in a network or host-based manner with misuse 

or anomaly detection techniques. 

 

At present, most IDS are quite reliable in detecting 

suspicious actions by evaluating TCP/IP connections or log 

files, for instance. Once an IDS finds a suspicious action, it 

immediately creates an alert which contains information 

about the source, target, and estimated type of the 

attack(e.g., SQL injection, buffer overflow, or denial of 

service). As 

the intrusive actions caused by a single attack instance—

which is the occurrence of an attack of a particular type that 

has been launched by a specific attacker at a certain point in 

time are often spread over many network connections or log 

file entries, a single attack instance often results in hundreds 

or even thousands of alerts. IDS usually focus on detecting 

attack types, but not on distinguishing between different 

attack instances. In addition, even low rates of false 

alerts could easily result in a high total number of false 

alerts if thousands of network packets or log file entries are 

inspected. As a consequence, the IDS creates many alerts at 

a low level of abstraction. It is extremely difficult for a 

human security expert to inspect this flood of alerts, and 

decisions that follow from single alerts might be wrong with 

a relatively high probability. 

 

In our opinion, a “perfect” IDS should be situation-aware[2] 

in the sense that at any point in time it should “know” what 

is going on in its environment regarding attack instances (of 

various types) and attackers. In this paper, we 

 

make an important step toward this goal by introducing and 

evaluating a new technique for alert aggregation. Alerts may 

originate from low-level IDS such as those mentioned 

above, from firewalls (FW), etc. Alerts that belong to 

oneattack instance must be clustered together and meta-

alerts must be generated for these clusters. The main goal is 

to reduce the amount of alerts substantially without losing 

any important information which is necessary to identify on 

going attack instances. We want to have no missing meta 

alerts, but in turn we accept false or redundant meta-alerts to 

a certain degree. This problem is not new, but current 

solutions are typically based on a quite simple sorting of 

alerts, e.g., according to their source, destination, and attack 
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type. Under real conditions such as the presence of 

classification 

errors of the low-level IDS (e.g., false alerts), uncertainty 

with respect to the source of the attack due to spoofed IP 

addresses, or wrongly adjusted time windows, for instance, 

such an approach fails quite often. 

Our approach has the following distinct properties: 

 It is a generative modeling approach [3] using 

probabilistic methods. Assuming that attack 

instances can be regarded as random processes 

“producing” alerts, we aim at modeling these 

processes using approximative. maximum 

likelihood parameter estimation techniques. Thus, 

the beginning as well as the completion of attack 

instances can be detected. 

 It is a data stream approach, i.e., each observed 

alert is processed only a few times [4]. Thus, it can 

be applied online and under  harsh timing 

constraints. 

The remainder of this paper is organized as 

follows: In Section 2 some related work is 

presented. Section 3 describes the proposed alert 

aggregation approach, and  Section 4 provides 

experimental results for the alert aggregation using 

various data sets. Finally, Section 5 summarizes the 

major findings. 

 

RELATED WORK: 

Most existing IDS are optimized to detect attacks with high 

accuracy. However, they still have various disadvantages 

that have been outlined in a number of publications and a lot 

of work has been done to analyze IDS in order to direct 

future research (cf. [5], for instance). Besides others, one 

drawback is the large amount of alerts produced. Recent 

research focuses on the correlation of alerts from (possibly 

multiple) IDS. If not stated otherwise, all approaches 

outlined in the following present either online algorithms or 

as we see it can easily be extended to an online version. 

Probably, the most comprehensive approach to alert 

correlation is introduced . One step in the presented 

correlation approach is attack thread reconstruction, which 

can be seen as a kind of attack instance recognition. No 

clustering algorithm is used, but a strict sorting of alerts 

within a temporal window of fixed length according to the 

source, destination, and attack classification (attack type). In 

, a similar approach is used to eliminate duplicates, i.e., 

alerts that share the same quadruple of source and 

destination address as well as source and destination port. In 

addition, alerts are aggregated (online) into predefined 

clusters (so-called situations) in order to provide a more 

condensed view of the current attack situation. The 

definition of such situations is also used in to cluster alerts. 

In  alert clustering is used to group alerts that belong to the 

same attack occurrence. Even though called 

clustering, there is no clustering algorithm in a classic sense. 

The alerts from one (or possibly several) IDS are stored in a 

relational database and a similarity relation which is based 

on expert rules is used to group similar alerts together. Two 

alerts are defined to be similar, for instance, if both occur 

within a fixed time window and their source and target 

match exactly. As already mentioned, these approaches 

are likely to fail under real-life conditions with 

imperfect classifiers (i.e., low-level IDS) with false alerts or 

wrongly adjusted time windows. 

 

Another approach to alert correlation is presented .A 

weighted, attribute-wise similarity operator is used to decide 

whether to fuse two alerts or not. However, as already stated 

in  and , this approach suffers from the high number of 

parameters that need to be set. The similarity operator 

presented in [13] has the same disadvantage there are lots of 

parameters that must be set by the user and there is no or 

only little guidance in order to find good values. In , another 

clustering algorithm that is based on attribute-wise similarity 

measures with user defined parameters is presented. 

However, a closer look at the parameter setting reveals that 

the similarity measure, in fact, degenerates to a strict sorting 

according to the source and destination IP addresses and 

ports of the alerts. 

 

The first, quite simple one groups alerts according to their 

source IP address only. The other two approaches are based 

on different supervised learning techniques. Besides a basic 

least-squares error approach, multilayer perceptions, radial 

basis function networks, and decision trees are used to 

decide whether to fuse a new alert with an already existing 

meta-alert (called scenario) or not. Due to the supervised 

nature, labeled training data need to be generated which 

could be quite difficult in case of various attack instances. 

the learned model parameters.  

The same or quite similar techniques as described so far are 

also applied in many other approaches to alert correlation, 

especially in the field of intrusion scenario detection. 

Prominent research in scenario detection. 

for example. More details can be found in an 

offline clustering solution based on the CURE. algorithm is 

presented. The solution is restricted to numerical attributes. 

In addition, the number of clusters must be set manually. 

This is problematic, as in fact it assumes that the security 

expert has knowledge about the actual number of ongoing 

attack instances. The alert clustering solution described  is 

more related to ours. A link-based clustering approach is 

used to repeatedly fuse alerts into more generalized ones. 

The intention is to discover the reasons for the existence of 

the majority of alerts, the so called root causes, and to 

eliminate them subsequently. An attack instance in our sense 

can also be seen as a kind of root cause, but in  root causes 

are regarded as “generally persistent” which does not hold 

for attack instances that occur only within a limited time 

window. Furthermore, only root causes that are responsible 

for a majority of alerts are of 

interest and the attribute-oriented induction algorithm is 

forced “to find large clusters” as the alert load can thus be 

reduced at most. Attack instances that result in a small 

number of alerts (such as PHF or FFB) are likely to be 

ignored completely. The main difference to our approach is 

that the algorithm can only be used in an offline setting and 

is intended to analyze historical alert logs. In contrast, we 

use an online approach to model the current attack situation. 

The alert clustering approach described is based on but aims 

at reducing the false positive rate. The created cluster 

structure is used as a filter to reduce the amount of created 

alerts. Those alerts that are similar to already known false 

positives are kept back, whereas alerts that are considered to 

be legitimate (i.e., dissimilar to all known false positives) 

are reported and not further aggregated. 
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  A completely different clustering approach is presented in 

There, the reconstruction error of an auto associate neural 

network (AA-NN) is used to distinguish different types of 

alerts. Alerts that yield the same (or a similar) reconstruction 

error are put into the same cluster. The approach can be 

applied online, but an offline training phase and training 

data are needed to train the AA-NN and also to manually 

adjust intervals for the reconstruction error that 

Determine which alerts are clustered together. In addition, it 

turned out that due to the dimensionality reduction by the 

AA-NN, alerts of different types can have the same 

reconstruction error which leads to erroneous clustering. In 

our prior work, we applied the well-known c-means 

Clustering algorithm in order to identify attack instances. 

However, this algorithm also works in a purely offline 

manner. 

 

. 

 
Fig. 1. Architecture of an intrusion detection agent. 

 

A NOVEL ONLINE ALERT AGGREGATION 

TECHNIQUE 

In this section, we describe our new alert aggregation 

approach which is at each point in time based on a 

probabilistic model of the current situation. To outline the 

Pre conditions and objectives of alert aggregation, we start 

with a short sketch of our intrusion framework. Then, we 

briefly describe the generation of alerts and the alert format. 

We continue with a new clustering algorithm for offline 

alert aggregation which is basically a parameter estimation 

technique for the probabilistic model. After that, we extend 

this offline method to an algorithm for data stream 

clustering which can be applied to online alert aggregation. 

Finally, we make some remarks on the generation of meta-

alerts. 

 

 
 

Some additional remarks must be made: 

Initialization of model parameters. The aim of the 

initialization is to find good initial values. Instead of using a 

random initialization which results in higher runtimes and 

sub-optimal solutions, we use a heuristic which we 

have successfully applied to the training of radial basis 

function neural networks . This heuristic selects a initial 

cluster centers a set of alerts with a large spread in the 

attribute space. 

Hard assignment of alerts to components. More general EM 

algorithms make a gradual assignment of alerts to 

components in the E step (cf. responsibilities in [3]). In 

practical applications, a hard assignment reduces the 

runtimes significantly at the cost of slightly worse solutions 

in some situations. In our case, this is acceptable as we do 

not want to find the optimal model parameters at the end, 

but to generate the optimal set of meta-alerts. Stopping 

criterion. An EM algorithm guarantees that the 

set of parameters is improved in each step. In addition, due 

to the hard assignment of alerts, there exists a limited 

number of possible assignments. Thus, it can be guaranteed 

that the 

algorithm converges. For the sake of simplicity, however, 

we usually run the algorithm for a fixed number of 

iterations. Fixed mixing coefficients. One of the main 

difficulties in 

alert aggregation is the wide range of possible cluster sizes. 

There are clusters that contain thousands of alerts, but there 

are also clusters that consist of a few alerts only. For 

instance, 

a Neptune attack instance may result in 200,000 alerts 

whereas a PHF attack instance may consist of only five 

alerts . Thus, in contrast to a more general EM approach, it 

is important to fix the mixing coefficients (here: 
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Otherwise, if the mixing coefficients were estimated from 

the observed samples, the EM algorithm would focus on the 

optimization of the parameters of “heavy” components 

while neglecting the “light” ones.  

One important task has not been mentioned so far: The 

estimation of the number of components (clusters) J from 

the set of observed samples A. Up to now, we assumed that 

this number is given. In our case, the number of clusters 

shall correspond to the number of attack instances in an 

ideal case. To solve this problem, cluster validation 

measures can be used 

to assess the quality of a clustering result. A clustering 

algorithm is started several times with a varying number of 

clusters, the quality for each clustering result is assessed 

numerically, and finally the results are compared and the 

number that optimizes this measure is chosen (so-called 

relative criterion). Examples The idea that forms the basis of 

those measures is that they search for a clustering result that 

consists of clusters that are both, compact and separable. 

Although the usability of such measures has been proven in 

many (offline) application examples, they cannot be applied 

in a data streaming case as they suffer from high runtimes, 

e.g., O(N
2
) in the case of the Dunn index. We need a 

measure that can be updated incrementally when a new alert 

arrives. Therefore, we chose a density-based approach to 

estimate separability and compactness. 

As a final result of the EM algorithm, we not only know the 

optimized parameter values of the model, but also the final 

assignment of alerts to components. These clusters define a 

partition of the sample set. First, we define the compactness 

of a single cluster associated with a component j by 

 
Then, the compactness of the overall partition is 

 
That means, the compactness is influenced by the alert with 

the lowest likelihood. As a consequence, we get a bias 

toward a higher number of components, which is desirable 

in our application (high recall required, lower precision 

accepted). Note that we can easily update this measure in 

O(1) if a new alert is assigned to a component. Second, we 

define the separability of a pair of clusters associated with 

component i and j by 

 
where we use the alerts with the highest likelihoods 

 
Then, the separability of the overall partition is 

 
An incremental version of this measure with  O(1)  time 

complexity is also straightforward. 

Finally, the overall cluster validation measure Ω for a 

clustering result is 

 
We search for a number J that maximizes this measure. In 

Data Stream Alert Aggregation, it will become clear that 

only a small number of choices for J must actually be tested 

by our online aggregation algorithm. 

 

Data Stream Alert Aggregation 

  

In this section, we describe how the offline approach is 

extended to an online approach working for dynamic attack 

situations. Assume that in the environment observed by an 

ID agent attackers initiate new attack instances that cause 

alerts for a certain time interval until this attack instance is 

completed. Thus, at any point in time the ID agent—which 

is assumed to have a model of the current situation, cf. Fig. 

3a—has 

several tasks, cf. Fig. 3b: 

1. Component adaption: Alerts associated with already 

recognized attack instances must be identified as such and 

assigned to already existing clusters while adapting the 

respective component parameters. 

2. Component creation (novelty detection): The occurrence 

of new attack instances must be stated. New components 

must be parameterized accordingly. 

3. Component deletion (obsoleteness detection): The 

completion of attack instances must be detected and the 

respective components must be deleted from the model. 

That is, the ID agent must be situation-aware and try to keep 

his model of the current attack situation permanently up to 

date, see Fig. 3c. 

Clearly, there is a trade-off between runtime (or reaction 

time) and accuracy. For example, it is hardly possible to 

decide upon the existence of a new attack instance when 

only one observation is made. From the viewpoint of our 

objectives (cf. Section 3.1), the tasks 1 and 2 are more time 

critical than task 3. 

From a probabilistic viewpoint we can state that our overall 

random process is non stationary in a certain sense which 

can be regarded as being equivalent to changing the mixing 

coefficients at certain points in time. A mixing coefficient is 

either zero or the reciprocal of the number of 

“active” components (for the time interval of the respective 

attack instance). With appropriate novelty and obsoleteness 

detection mechanisms, we aim at detecting these points in 

time with both sufficient certainty and timeliness. The 

offline aggregation algorithm provides the basic idea for the 

online case, too. We have to consider, however, that we 

want to have a data stream algorithm with short runtimes. In 

the following, we do not distinguish between the following 

two views on solutions of the modeling problem: The 

probabilistic model with J components with parameters µj, 

α
2

j, Ƥj and j €{1,…,J}  and mixing coefficients 1/J  , and the 

partition of the overall set of alerts into a set of clusters C = 

{C1…,Cj} That is, we equate the 

terms partition and model as well as cluster and component, 

respectively. For online clustering, we require that each alert 

a has a time stamp ts (A) (time of observation) and that we 

always know the current point in time t. 

Algorithm 2 describes the online alert aggregation. If a new 

alert is observed we first have to decide whether a first 

component has to be created. In this case, we initialize its 

parameters with information taken from this alert. Random, 

small values are added, for example, to prevent any 

subsequent optimization steps from running into 

singularities of the respective likelihood function . 

Otherwise, 

we have to decide whether the alert has to be associated with 

an existing component or not, i.e., whether we believe that it 

belongs to an ongoing attack instance or not. Provisionally, 
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we assign the alert to the most likely component (E step) 

and optimize the parameters of this component (M step). For 

the reason of temporal efficiency, we do not conduct a 

sequence of E and M steps for the overall model. it turned 

out that our main goal not to miss any attack instances, 

Collaborating Intrusion Detection Agents can be achieved 

this way with substantially lower runtimes but at the cost of 

some redundant meta-alerts (due to split of clusters, Offline 

Alert Aggregation). 

The assignment of the alert to an existing component is not 

accepted in any case, only if the quality of the model 

increases or does not decrease too much, e.g., not more than 

15 percent (realized by means of threshold _). Otherwise, 

we consider the possibility that a new attack instance may 

have been initiated, do not modify the model, and 

temporarily store the alert in a buffer until this belief is 

corroborated by additional observations. 

 

 

 

 

 

 

 

 

 

 
Novelty handling basically means that we empty the buffer 

by assigning its content either to existing components or to 

new components. This procedure is initiated either 

when the temporal spread of the buffer content is too large 

or when the content is no longer homogeneous in the sense 

that we assume that another new attack instance may have 

been initiated: 

. Temporal spread: As the rate of incoming alerts depends 

on the current attack situation, it changes heavily over time 

ranging from thousands of alerts per minute to only a few 

alerts per hour. Thus, to keep the response time short, we 

have to take into account 

the temporal spread of the buffer content. The spread is 

defined as the difference between the time stamps of the 

oldest and the most recent alert in the buffer.  

. Homogeneity: The goal is to ensure that only alerts that are 

similar to each other are stored in the buffer. Thus, it is 

possible that the novelty handling Conducts for temporal 

performance reasons only a local optimization of the model 
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(see below). We regard the alerts in the buffer as being 

similar if they all have the same most likely component. 

That is, to initiate the novelty handling for a given model C 

and a buffer B, we use the function 

 
with a user-defined threshold ∂ to state novelty. Note, that 

spread and homogeneity can both be checked with low 

temporal effort.  

Algorithm 3 describes the novelty handling itself. Basically, 

to adapt the overall model, we run the offline aggregation 

algorithm several times with different possible component 

numbers to chose the optimal number. However, 

due to the homogeneity of the buffer, we may restrict the 

optimization to the alerts in the buffer and in one “neighbor” 

cluster on the one hand and a relatively small user-defined 

maximum number of components K on the 

other without violating our main goal . The result of this 

local optimization is finally fused with the unmodified 

parts of the model. 

 
In order to reduce the runtime of this algorithm further, we 

may reduce the number of alerts that have to be processed 

by means of an appropriate subsampling technique. 

To initiate the obsoleteness handling for a given model C 

and component Cj, we use 

 
where ∂  is a convex combination of a multiple of the mean 

interarrival time between the alerts in the cluster and prior 

knowledge which is faded out when the number of alerts in 

this cluster gets larger. That is, we use a kind of estimate of 

the arrival time of the next alert belonging to the 

corresponding attack instance. If obsoleteness is stated, the 

corresponding 

component is simply deleted from the model. 

Note that the mixing coefficients are always defined 

implicitly by the number of currently existing components. 

 

Meta-Alert Generation and Format 

With the creation of a new component, an appropriate 

metaalert that represents the information about the 

component in 

an abstract way is created. Every time a new alert is added 

to a component, the corresponding meta-alert is updated 

incrementally, too. That is, the meta-alert “evolves” with the 

component. Meta-alerts may be the basis for a whole set 

further tasks (cf. Fig. 1): 

. Sequences of meta-alerts may be investigated further in 

order to detect more complex attack scenarios (e.g., by 

means of hidden Markov models). 

. Meta-alerts may be exchanged with other ID agents in 

order to detect distributed attacks such as one-tomany 

attacks. 

. Based on the information stored in the meta-alerts, reports 

may be generated to inform a human security expert about 

the ongoing attack situation. 

Meta-alerts could be used at various points in time from the 

initial creation until the deletion of the corresponding 

component (or even later). For instance, reports could be 

created immediately after the creation of the component 

Or which could be more preferable in some cases a 

sequence of updated reports could be created in regular time 

intervals. Another example is the exchange of metaalerts 

between ID agents: Due to high communication costs, meta-

alerts could be exchanged based on the evaluation of their 

interestingness 

According to the task for which meta-alerts are used, they 

may contain different attributes. Examples for those 

attributes are aggregated alert attributes (e.g., lists or 

intervals of source addresses or targeted service ports, or a 

time interval that marks the beginning and the end if 

available of the attack instance), attributes extracted from 

the probabilistic model (e.g., the distribution parameters or 

the number of alerts assigned to the component), an 

aggregated alert assessment provided by the detection layer 

(e.g., the attack type classification or the classification 

confidence), and also information about the current attack 

situation (e.g., the number of recent attacks of the same or a 

similar type, links to attacks originating from the same or a 

similar source). 

 

EXPERIMENTAL RESULTS 

This section evaluates the new alert aggregation approach. 

We use three different data sets to demonstrate the 

 
Fig. 4. ROC curve for the SVM detector. 

 

feasibility of the proposed method: The first is the 

wellknown DARPA intrusion detection evaluation data set 

[32], for the second we used real-life network traffic data 

collected at our university campus network, and the third 



Sivaramaiah.Y 1
,
*
 IJECS Volume 2. Issue 10 October 2013 Page No.3051-3060 Page 3057 

contains firewall log messages from a commercial Internet 

service provider. All experiments were conducted on an PC 

with 2.20 GHz and 2 GB of RAM. 

 

Internet Service Provider Firewall Logs 

The third data set used here differs from the previous ones 

as we actually do not have a detector layer that performs a 

classification and searches for known attacks. Instead, we 

use log messages that were generated by a CISCO PIX 

system, which is a well-known commercial FW and network 

address translation (NAT) device. Typical PIX log messages 

are DENY or ACCEPT messages—depending 

on whether the incoming or outgoing network packets or 

connections are forbidden or allowed according to the 

firewall rule set. Here, the alerts consist of the source and 

destination IP address, the source and destination port, the 

creation time differences, and the PIX message type. Details 

on the log message format can be found in [43]. The PIX 

was installed in the network of an Internet service provider 

within a real-life environment. During the six hours of 

collection time, 4,898 log messages—we also use the term 

alerts in the following—were created. As the data were not 

collected within a controlled simulation environment, we do 

not have any information whether there occurred attacks or 

not and specifications of TPR and FPR are not 

possible. Nonetheless, this data set can be used to 

demonstrate the broad applicability of the proposed online 

alert aggregation technique. 

Performance Measures 

In order to assess the performance of the alert aggregation, 

we evaluate the following measures: 

Percentage of detected instances (p). We regard an attack 

instance as being detected if there is at least one metaalert 

that predominantly contains alerts of that particular instance. 

The percentage of detected attack instances p can thus be 

determined by dividing the number of instances 

that are detected by the total number of instances in the data 

set. The measure is computed with respect to the instances 

covered by the output of the detection layer, i.e., instances 

missed by the detectors are not considered. 

 

Number of meta-alerts (MA) and reduction rate (r). The 

number of meta-alerts (MA) is further divided into the 

number of attack meta-alerts MAattack which predominantly 

contain true alerts and the number of  nonattack  meta-alerts 

MAnonattack which predominantly contain false alerts. The 

reduction rate r is 1 minus the number of created meta-alerts 

MA divided by the total number of alerts N. 

 

Average runtime (tavg) and worst case runtime (tworst). The 

average runtime is measured in milliseconds per alert. 

Assuming up to several hundred thousand alerts a day, tavg 

should stay clearly below 100 ms per alert. The worst case 

runtime  tworse,  which is measured in seconds, states how 

long it takes at most to execute the while loop of Algorithm 

2, 

which may include the execution of Algorithms 3 and 1 (the 

latter several times). 

 

Meta-alert creation delay (d). It is obvious that there is a 

certain delay until a meta-alert is created for a new attack 

instance. The meta-alert creation delay d measures the delay 

between the actual beginning of the instance (i.e., the 

creation time of the first alert) and the creation of the first 

meta-alert for that instance. We investigate, how many 

seconds the algorithm needs to create 90 percent (d90%), 95 

percent (d95%), and 100 percent (d100%) of the meta-alerts. 

Results 

In the following, the results for the alert aggregation are 

presented. For all experiments, the same parameter settings 

are used. We set the threshold Ɵ, that decides whether to 

add a new alert to an existing component or not to five 

percent, and the value for the threshold γ that specifies the 

allowed temporal spread of the alert buffer to 180 seconds.  

Ɵ  was set That  low value in order to ensure that even a 

quite small degrade of the cluster quality, which could 

indicate a new attack instance, results in a new component. 

A small value of Ɵ, of course, results in more components 

and, thus, in a 

lower reduction rate, but it also reduces the risk of missing 

attack instances. The parameter Ɵ, which is used in the 

novelty assessment function, controls the maximum time 

that new alerts are allowed to reside in the buffer B. In order 

to keep the response time short, we set it to 180 s which we 

think is a reasonable value. For both parameters, there were 

large intervals in which parameter values could be chosen 

without deteriorating the results. 

 

DARPA Data 

Results for the DARPA data set are given in Table 2. First 

of all, it must be stated there is an operation point of the 

SVM at the detection layer (OP 1) where we do not miss 

any 

attack instances at all (at least in addition to those already 

missed at the detection layer). The reduction rate is with 

99.87 percent extremely high, and the detection delay is 

only 5.41 s in the worst case (d100%). Average and worst case 

runtimes are very good, too. 

All OP will now be analyzed in much more detail. 

All attack instances for which the detector produces at least 

a single alert are detected in the idealized case and with 

OP 1 and OP 2 . Choosing another OP, the rate of detected 

instances drops to 98.04 percent (OP 3) and 99.02 percent 

(OP 4) . In OP 3, a FORMAT instance and a MULTIHOP 

instance are missed. In OP 4, only the FORMAT instance 

could not be detected. A further analysis identified the 

following reasons: 

 . The main reason in the case of the FORMAT 

instance is the small number of only four alerts. Those alerts 

are created by the detector layer for all OP, i.e., there is 

obviously no benefit from choosing an OP with higher FPR. 

By increasing the FPR, the true FORMAT alerts are 

erroneously merged with false alerts into one cluster. Hence, 

as the false alerts easily outnumber the four true FORMAT 

alerts. With in this cluster, the FORMAT instance gets lost. 

 . For the MULTIHOP instance, for which we have 

19 alerts, the situation is more complex. The instance is only 

missed in OP 3 and not in OP 4. In OP 3, the downside of a 

higher FPR outweighs the benefit of a higher TPR—the 

MULTIHOP alerts are merged with 

a large number of false alerts. Further increasing the FPR 

(OP 4) leads to more false alerts as well, but, in this case, 

also to a further split of clusters such that the false alerts and 

the MULTIHOP alerts are placed into separate clusters. 

Next, we analyze the number of meta-alerts MA and the 

reduction rate r. In the idealized case, 324 meta-alerts are 

created. Compared to the about 1.6 million alerts, we get a 
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reduction rate of 99.98 percent, which is a reduction of 

almost three orders of magnitude. Unfortunately, with 

exception of the first of seven weeks, it was not possible to 

achieve the ideal case with exactly one meta-alert for every 

attack instance. Basically, there are four reasons: 

Distinguishable steps of an attack type. Often, a 

split of attack instances into more meta-alerts is caused by 

the nature of the attacks themselves. Actually, many attack 

types consist of different, clearly distinguishable steps. As 

an example, the FTP-WRITE attack exhibits three such 

steps: an FTP login on port 21, an FTP data transfer on 

port 20, and a remote login on port 513. Thus, a split into 

three related meta-alerts is quite natural. Subsequent tasks at 

the alert processing layer are supposed to handle such 

multistep attack scenarios (cf. Fig. 1). 

 Several independent attackers. In the DARPA data 

set, some attack instances are labeled as a single attack 

instance although they are in fact comprised of the actions 

of several 

independent attackers. A typical example is a 

WAREZCLIENT instance in week four: There, attackers 

download illegally provided software from a compromised 

FTP server. As there is no cooperation between the attackers 

as in the 

case of a coordinated denial of service attack, for example, 

there is an individual meta-alert created for every attacker. 

 

 

 

TABLE2 

 

Results of the Online Alert Aggregation for Three Benchmark Data Sets 

 

 
 

Long attack duration. Attack instances with a long 

duration are often split into several meta-alerts. Typical 

examples are slow or hidden port scans or 

(distributed)denial of service attacks which can last several 

hours. 

Bidirectional communication. TCP/IP-based 

communication between two hosts results in packets 

transmitted in both directions. If the detector layer produces 

alerts for both directions (e.g., due to malicious packets), the 

source and 

destination IP address are swapped, which in the end results 

in two meta-alerts. This problem could be solved with an 

appropriate preprocessing step. 

    With an increasing FPR, the number of meta-alerts also 

increases from 1,976 meta-alerts in OP 1 to 8,588 meta-

alerts in OP 4. Even though the number of meta-alerts 

increases clearly, we still have a reduction rate of 99.46 

percent in OP 4, which would heavily reduce the—possibly 

manual—effort of a human security expert that analyzes that 

information flood. It is also interesting to see that, although 

the overall number of meta-alerts MA increases, the  number of 

attack clusters MAattack remains roughly constant. The 

majority of additionally created meta-alerts contains only 

false alerts. 

   With more meta-alerts, the runtime increases. Even in OP 

4, with an average runtime of 0.97 ms per alert, the 

proposed technique is still very efficient. Fig. 5 shows the 

component creation delays for the four operating points. The 

figure depicts the percentage of attack instances for which a 

meta-alert was created after a time not exceeding the value 

specified at the x-axis. It can be seen that the creation delay 

is With in the range of a few seconds and, thus, meets the 

requirements for an online application. Table 2 displays the 

time after which for 90, 95, and 100 percent of the attack 

instances meta-alerts were created. Note that these values 

correspond to points on the curve in Fig. 5. Interestingly, in 

the idealized case, the delay is much higher which can be 

explained by the novelty detection mechanism (cf. (14)). In 

 

 
Fig.5.Cumulative creation delays for meta-alerts 
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the case of a more homogeneous alert stream, the novelty 

handling is mainly influenced by the temporal spread 

whereas in the case of a heterogeneous alert stream due to 

false alerts, the novelty handling is started more often which 

results in lower component creation delay times. 

 

Campus Network Data 

For the campus network data, for which the IDS Snort was 

used to create alerts, quite similar results could be achieved 

(see Table 2). All attack instances that have been launched 

were correctly detected. For the 17 attack instances with 

128,816 alerts, 52 meta-alerts were created, which is 

equivalent to a reduction rate of 99.96 percent. Again, the 

majority of meta-alerts is caused by false alerts. We have 20 

attack meta-alerts and 32 nonattack meta-alerts. For three of 

the 17 attack instances, a redundant meta-alert was created. 

The reasons are similar to the ones described for the 

DARPA data set. It is worth mentioning that for the attack 

instance where the attacker changed his IP address during 

the attack, only one meta-alert was created. The results for 

the runtime as well as for the cluster creation delay are 

similar to that of the DARPA data, too. 

 

Internet Service Provider Firewall Logs 

For the firewall log data, the proposed alert aggregation 

could also be applied successfully. As Table 2 shows, 56 

meta-alerts were created for the 4,989 alerts, which is a 

reduction rate of 98.86 percent. As it is not possible to 

specify a percentage of detected attack instances, we 

analyzed the content of the 56 resulting meta-alerts: In many 

cases, it is possible to find a particular reason for the meta-

alerts, e.g., we identified meta-alerts that subsume all alerts 

that are caused by obviously forbidden accesses from 

hosts within the DMZ to an external printer using the Printer 

PDL Datastream Port (HP JetDirect, port 9,100). Another 

example is meta-alerts that subsume alerts for illegal 

network time protocol (ntp, port 123) accesses from hosts 

outside the DMZ. The runtime turns out to be a little bit 

lower with 1.53 ms per alert, but, interestingly, the worst 

case runtime tworst is with 0.27 s much smaller than for the 

previous data sets. This effect might be explained by the 

more heterogeneous alert stream in case of the firewall log 

data which results in an increased number of calls of 

Algorithm 3 due to the novelty handling: On the one side, 

the more heterogeneous the alert stream is, the more often 

the (time expensive) Algorithm 3 is called which increases 

the overall runtime: On the other side, due to the increased 

number of calls of Algorithm 3, every call is conducted on 

an alert buffer that contains only a few new alerts which 

reduces the runtime of a single call of Algorithm 3—and, 

thus, the worst case runtime. 

 

Conclusion 

The experiments demonstrated the broad applicability of the 

proposed online alert aggregation approach. To approaching 

all result should be find out very easy to identified.We 

analyzed three different data sets and showed that machine-

learning-based detectors, conventional signaturebased 

detectors, and even firewalls can be used as alert generators. 

In all cases, the amount of data could be reduced 

substantially. Although there are situations as described in 

Section 3.3—especially clusters that are wrongly split—the 

instance detection rate is very high: None or only very few 

attack instances were missed. Runtime and component 

creation delay are well suited for an online application. 

 

SUMMARY AND OUTLOOK 

We presented a novel technique for online alert aggregation 

and generation of meta-alerts. We have shown that the sheer 

amount of data that must be reported to a human security 

expert or communicated within a distributed intrusion 

detection system, for instance, can be reduced 

significantly. The reduction rate with respect to the number 

of alerts was up to 99.96 percent in our experiments. At the 

same time, the number of missing attack instances is 

extremely low or even zero in some of our experiments and 

the delay for the detection of attack instances is within the 

range of some seconds only. In the future, we will develop 

techniques for interestingness- based communication 

strategies for a distributed IDS. This IDS will be based on 

organic computing principles [44]. In addition, we will 

investigate how human domain knowledge can be used to 

improve the detection processes further. We will also apply 

our techniques to benchmark data that fuse information from 

heterogeneous sources (e.g., 

combining host and network-based detection). 
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