# A ZVS Interleaved Power factor correction based Boost, Half Bridge And Full bridge AC/DC Converter Used in Plug-in Electric Vehicles

## V. Ravi kumar, K.Prasad Yadav

Vaageswari college of engineering and technology

*Abstract*—This paper presents a novel, yet simple zero-voltage switching (ZVS) interleaved boost power factor correction (PFC) ac/dc converter used to charge the traction battery of an electric vehicle from the utility mains. The proposed opology consists of a passive auxiliary circuit, placed between two phases of the interleaved front-end boost PFC converter, which provides enough current to charge and discharge the MOSFETs' output capacitors during turn-ON times. Therefore, the MOSFETs are turned ON at zero voltage. The proposed converter maintains ZVS for the universal input voltage (85 to 265 Vrms), which includes a very wide range of duty ratios (0.07–1). In addition, the control system optimizes the amount of reactive current required to guarantee ZVS during the line cycle for different load conditions. This optimization is crucial in this application since the converter may work at very light loads for a long period of time. Experimental results from a 3 kW ac/dc converter are presented in the paper to evaluate the performance of the proposed converter. The results show a considerable increase in efficiency and superior performance of the proposed converter compared to the conventional hard-switched interleaved boost PFC converter

| factor<br>correcti<br>switchin<br>ΔiLA<br>ωι | on (PFC), zero-current switching (ZCS), zero-voltage<br>ng (ZVS).<br>NOMENCLATURE<br>Inductor current ripple of boost A (A).<br>Line frequency (rad/s).                                           | Vin<br>VBAT<br>Vd<br>Vo<br>x<br>ESR<br>SiC |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| ψ<br>Cso<br>D                                | Phase-shift between leading leg and lagging leg<br>pulses.<br>Output capacitance of the boost MOSFET (F).                                                                                         | e<br>usua                                  |
| $F_s$<br>iin<br>$(\Delta)$                   | Switching frequency (Hz).<br>Input current of power factor correction (PFC)                                                                                                                       | the e<br>the p<br>The                      |
| (A).<br>ila<br>ilb<br>iSA1                   | Inductor current of boost A (A).<br>Inductor current of boost B (A).<br>Switch <i>S</i> <sub>A1</sub> current (A).                                                                                | utilit<br>batte<br>ac/de                   |
| IBAT<br>Io<br>IP<br>Iref                     | Battery current (A).<br>DC output current (A).<br>Peak current of the boost inductor (A).<br>Peak value of the auxiliary circuit reference                                                        | two s<br>PFC<br>for                        |
| current<br>Iv<br>k1<br>pin                   | Valley current of the boost inductor (A).<br>Controller coefficient.<br>Instantaneous input power (W).                                                                                            | batte<br>to<br>impr<br>from                |
| pref<br>Pin,pk<br>Pref                       | Instantaneous input power reference value (W).<br>Peak input power (W).<br>Power reference value (W).                                                                                             | IEC<br>Fig. 1                              |
| Ro<br>Psw<br>Re<br>RL<br>t<br>td             | Load incremental resistance ( $\Omega$ ).<br>Switching losses<br>Converter effective load resistance ( $\Omega$ ).<br>PFC inductor series resistance ( $\Omega$ ).<br>Time (s).<br>Dead time (s). |                                            |

| и             | Control input.                             |
|---------------|--------------------------------------------|
| VAUX          | Voltage across auxiliary circuit (V).      |
| Vin           | Instantaneous input voltage of PFC (V).    |
| $V_{\rm BAT}$ | Battery voltage (V).                       |
| $V_d$         | Output diode forward voltage drop (V).     |
| $V_{o}$       | DC output voltage (V).                     |
| x             | State variables.                           |
| ESR           | Equivalent series resistance ( $\Omega$ ). |
| SiC           | Silicon carbide.                           |
|               | I. INTRODUCTION                            |
| -1            | this making (EV) as an ditioning constant  |

electric vehicle (EV) power conditioning systems usually utilize a high-energy battery pack to store energy for the electric traction system [1]. A typical block diagram of the power conditioning system in an EV is shown in Fig. 1. The high-energy battery pack is typically charged from a utility ac outlet [2]. This energy conversion during the battery charging is performed by an ac/dc converter. Such ac/dc converters, which

are used to charge the high-energy battery, usually consist of two stages: front-end boost converter, which performs input PFC and ac/dc conversion, and full-bridge dc/dc converter for

battery charging and galvanic isolation [3]. PFC is essential to

improve the quality of the input current, which is drawn from

the utility so as to comply with the regulatory standards like IEC

Fig. 1. Block diagram of EV power conditioning system.



Fig. 2. Interleaved boost PFC schematic.

Boost converters are generally used to realize input PFC and ac/dc conversion [4]-[9] in the front end of an ac/dc converter. In high power applications, interleaving continuous current mode (CCM) PFC boost stages, as shown in Fig. 2, is a very common approach to effectively decrease the inductor footprint and volume as well as the output capacitor current ripple [7]-[14]. A typical boost PFC utilizes a switch and a diode. In the range of a few kilowatt, power MOSFETs are usually used to realize the boost converter. The main sources of switching losses in boost PFC converters are hard turn-ON of the MOSFET and the reverse recovery of the boost diode during its turn-OFF. In order to eliminate the switching losses in a MOSFET-based boost PFC converter, different auxiliary circuits have been proposed [15]–[25]. The typical placement of a zero-voltage switching (ZVS) auxiliary circuit is shown in Fig. 3. Commonly, these auxiliary circuits consist of a combination of passive components such as small inductors and capacitors and additional active components such as MOSFETs and diodes. Auxiliary circuits in ZVSpuslewidth modulation (PWM) single-switch converters are generally one of two types, nonresonant [15] and resonant [16]-[23], depending on whether there is an LC resonant network placed in series with the switch. Typical nonresonant and resonant ZVS auxiliary circuits are shown in Fig. 4(a) and (b)–(d), respectively. There is a third type, dual auxiliary circuits [23], that is a combination of both

resonant and nonresonant circuits. These circuits, which were

first categorized in [23], are shown in Fig. 4(e).



Fig. 3. Placement of ZVS auxiliary circuit in boost PFC converter.

For each converter in Fig. 4, the auxiliary switch is turned ON just before the main converter switch is to be turned ON.

The auxiliary switch is used to discharge the capacitor across the

main switch so that it can turn ON with ZVS. Some capacitance,

either internal to the device and/or external, is needed to slow

down the rise in voltage across the main switch so that it can turn OFF with ZVS. The auxiliary switch is turned OFF shortly

after the main switch is turned ON, and all the energy in the auxiliary circuit is eventually transferred to the output.After this

is done, the auxiliary circuit is fully deactivated and the converter operates like a conventional PWM converter. The components in the auxiliary circuit have lower ratings than those in the main power circuit because the circuit is active for a fraction of the switching cycle. This allows a device that can turn ON with fewer switching losses than the main switch to be used as the auxiliary switch.

The addition of an active auxiliary circuit to a PWM converter

can also eliminate the reverse-recovery current of the main power boost diode if a Si device is used. It can be seen from Fig. 4 that all the auxiliary circuits have an inductor located in series with the auxiliary switch. This allows current to be gradually transferred away from the boost diode to the auxiliary switch when it is turned ON so that the charge in the diode is slowly removed during turn-OFF; with such a gradual transition from conduction state to OFF-state of the diode, its reverse-recovery current can be greatly reduced, thus, eliminating reverse recovery losses..

The key limitations of the previously proposed auxiliary circuits for single-switch boost PFC converters are the use of extra semiconductor devices such as diodes and MOSFETs [15]–[23] as well as passive components and the extra losses associated with the auxiliary circuit. In resonant-type auxiliary circuits, the main switch can suffer from addition current stress [20], while in nonresonant-type auxiliary circuits [15], the auxiliary switch may undergo hard switching; these key problems in ZVS auxiliary circuit tend to somewhat offset the gain in efficiency achieved by soft switching of the main boost switches. In addition, the gating pulse of the auxiliary switch needs to be precisely synchronized to that of the main switch, which adds to the complexity of the boost PFC control system.

Auxiliary circuits with active semiconductor devices have also been used to achieve ZVS in interleaved boost PFC converters [24]–[26]. The key issue related to such auxiliary circuits isthat basically two auxiliary circuits are implemented to achieve ZVS in both phases. This leads to use of multiple semiconductor switching devices to implement the auxiliary circuits [24]-[26], which increases the cost and complexity of the overall converter. ZVS in interleaved boost converter can be easily achieved if the current in the boost inductors is always in critical conduction mode [27], but the main problem related to such critical conduction mode boost converters is the limitation of the maximum power handling capacity of the overall converter, typically such converters are applicable for operation around 1 kW and their inherent line current distortion. Magnetically coupled boost inductors in interleaved boost PFC converter can help achieving ZVS of the main switches [28], but design and mass replication of such coupled boost inductor cannot be done easily.



In [29], a simple passive auxiliary circuit was proposed to achieve ZVS in interleaved boost converter for dc–dc voltage conversion applications. The main drawback of this circuit is that the duty ratio of the boost switches has to remain strictly above 0.5, which cannot be guaranteed in PFC ac/dc applications

especially for universal ac inputs that vary from 85 to 265  $V_{rms}$ . through this auxiliary circuit should be adjusted for the maximum load, so as to guarantee ZVS for all conditions. This causes excessive circulating current for light-load conditions and decreases the efficiency of the converter at light loads. In battery

charger applications, since the converter has to operate at light

loads for a long period of time, this constant circulating current

significantly deteriorates the performance of the converter. In this context, it should also be noted that in EV power conditioning systems, high efficiency of the power stages is imperative.

The front-end ac/dc boost PFC converter plays a

key role in transferring power from external utility mains to the EV battery packs, and the boost diodes in this converter are key source of losses. Presently, SiC diodes are gaining popularity

in ac/dc boost converters [30] since they have near-zero reverse

recovery losses but normally SiC diodes have greater forward

voltage drops, typically 2.4V and more as compared to 1.2V in

Si diodes for a 600V device, which is required in this application. For instance, a 600-V 10-A SiC diode C3D10060A, from CREE, Inc., Durham, NC, has a forward voltage drop of 2.4V compared to a 600-V 10-A fast recovery diode 10ETF06PBF, voltage drop. In addition, the thermal coefficient of SiC diodes on the forward voltage drop is positive, implying that the voltage drop increases with temperature, while the one for Si diode is

In this paper, a novel interleaved boost PFC converter is proposed to achieve soft switching in the main switches of the

converter. The proposed converter implements soft switching

through a simple passive auxiliary circuit placed in between the

two phases of the interleaved boost converter. This auxiliary circuit is able to provide reactive current to charge and discharge the output capacitors of the boost MOSFETs and guarantee ZVS. Since there are no extra semiconductors used in the auxiliary circuit, high efficiency and reliability are the main advantages of the proposed system. In addition, the proposed converter is able to optimize the amount of reactive current required to implement soft switching based on the load condition and the input voltage. Thus, the conduction losses caused by the auxiliary circuit are minimized based on the operating condition.

This paper is organized as follows. In Section II, the steadystate

analysis of the proposed interleaved boost PFC converter is explained.

II. STEADY-STATE ANALYSIS OF THE ZVS INTERLEAVED BOOST PFC CONVERTER

Fig. 5 shows the power circuit of the ZVS interleaved boost PFC converter. In this converter, two boost converters operate

with 180° phase shift in order to reduce the input current ripple

of the converter. This 180° phase shift can be used to provide

reactive current for realizing ZVS for power MOSFETs. This

auxiliary circuit consists of a HF inductor and a dc-blocking capacitor. Since there may be a slight difference between the duty ratios of the two phases, this dc-blocking capacitor is necessary to eliminate any dc current arising from the mismatch of the duty ratios of the main switches in the practical circuit.

Fig. 6 shows the key waveforms of the converter for D > 0.5. According to this figure, there are eight operating modes in one switching cycle of the converter. The operating modes are explained as follows.

*Mode I* ( $t_0 < t < t_1$ ): This mode starts when the gate pulse is applied to  $S_{A1}$ . Once the voltage is applied to the gate,  $S_{A1}$ is turned ON under zero voltage. Since  $S_{A1}$  and  $S_{B1}$  are ON during this interval, the voltage across the auxiliary inductor is zero. Thus, the current through the auxiliary circuit remains constant at  $I_{Aux,p}$ . During this interval, the switch  $S_{A1}$  current,

Fig. 5. Proposed ZVS interleaved boost PFC schematic.

 $i_{SA1}(t) = I_V - I_{Aux,p} - v_{in}/L_A(t - t_0) - \dots (1)$ 

Gate pulses



inductor current ILa





Fig. 6. Key waveforms of the converter for D > 0.5.

Since the two phases have  $180^{\circ}$  phase shift, the value of  $t_1$  is given by:

 $t_1 - t_0 = (D - 0.5) T_s$ .....(2) Therefore, the duty ratio is given by

 $D = (t_1 - t_0) f_s + 1/2.$  (3)

Inserting (2) into (1), the value of the switch current is calculated

at *t*1

 $I_1 = I_V - I_{Aux,p}(t) - v_{in}/2L_A f_s - v_{2in}/L_A f_s V_o$  ------(4) This mode ends once the gate voltage has been removed

from  $S_{B1}$ .

*Mode II* ( $t_1 < t < t_2$ ): This mode is the dead time between the

phase B MOSFETs. During this interval, the auxiliary circuit current charges the output capacitance of  $SB_1$  and discharges

the output capacitance of  $SB_2$ . In this mode, the average voltage

across the boost inductance  $L_B$  is zero. Therefore, the current through  $L_B$  remains constant at its peak value. The voltage across the auxiliary inductor is given by:

 $v_{AUX}(t) = -(V_0/(t_2 - t_1))(t - t_1)$ . -----(5) Thus, the current through auxiliary circuit is given by:

 $i_{AUX}(t) = I_{Aux,p} - V_{o/(2)}(t_2 - t_1)L_{AUX}(t - t_1)2-\dots (6)$ 

 $t_2 - t_1 = t_d$  is the dead time between  $S_{B-1}$  and  $S_{B-2}$ . During

this period, the output capacitors of the MOSFETs should fully

charge and discharge in order to guarantee ZVS for SB 1 and SB 2. Thus, the dead time is calculated as follows:

$$I_{P} + I_{Aux,p} - \frac{V_{o}}{2L_{AUX}} t_{d} = 2C_{So} \frac{V_{o}}{t_{d}}$$
(7)  
$$t_{d} = \frac{(I_{P} + I_{Aux,p})L_{AUX}}{V_{o}}$$
$$+ \sqrt{\frac{(I_{P} + I_{Aux,p})^{2}L_{AUX}^{2} - 4C_{So}L_{AUX}}{V_{o}^{2}}}$$
(8)

the current through switch SA1 is calculated as follows

\

$$i_{SA1}(t) = I_V - I_{Aux,p} - \frac{v_{in}}{L_A}(t - t_0) + \frac{V_o}{2t_d L_{AUX}}(t - t_1)^2.$$
(9)

This mode ends when the output capacitors completely charged and discharged. The switch current *isA1* at this point is given by:

$$I_2 = I_V - I_{Aux,p} - \frac{v_{in}}{L_A} \left( t_d + t_1 - t_0 \right) + \frac{V_o}{2L_{AUX}} t_d.$$
(10)

*Mode III* ( $t_2 < t < t_3$ ): Once the output capacitors of  $S_{B,1}$  and  $S_{B,2}$  have been charged and discharged completely, the gate

signal of  $SB_2$  is applied and  $SB_2$  is turned ON under ZVS.During this interval, the voltage across the auxiliary circuit is  $-V_o$ . The current through the auxiliary inductor, inductor  $L_A$  and switch  $SA_1$ , is given by

$$i_{\text{AUX}} = I_{\text{Aux},p} - \frac{V_o}{2L_{\text{AUX}}} t_d - \frac{V_o}{L_{\text{AUX}}} \left(t - t_2\right) \quad (11)$$

$$i_{LA}(t) = I_V + \frac{v_{\rm in}}{L_A} \left( t - t_0 \right).$$
(12)

$$i_{SA1}(t) = I_V - I_{Aux,p} - \frac{v_{in}}{L_A} (t - t_0) + \frac{V_o}{2L_{AUX}} t_d + \frac{V_o}{L_{AUX}} (t - t_2).$$
(13)

This mode ends once the gate signal of *SB* 2 has become zero  $(t_3 = t_0 + 0.5 T_s - t_d)$ . The value of *isA*1 at this point is given by:

$$I_{3}(t) = I_{V} - I_{Aux,p} + \frac{v_{in}}{2f_{s}L_{A}} - \frac{v_{in}t_{d}}{L_{A}} + \frac{V_{o}}{2L_{AUX}}t_{d} + \frac{V_{o}}{f_{s}L_{AUX}}(1-D) - \frac{2V_{o}}{L_{AUX}}t_{d}.$$
 (14)

*Mode IV* ( $t_3 < t < t_4$ ): During this mode, the output capacitor

of SB 2 is charging from zero to  $V_o$  and the output capacitor of SB 1 is discharging from  $V_o$  to zero. This period is actually the dead time between SB 2 and SB 1 (t4 - t3 = td). The auxiliary inductor current, the boost inductor current, and the switch current, during this mode, is given by:

$$i_{AUX}(t) = I_{Aux,p} + \frac{3V_o}{2L_{AUX}}t_d - \frac{V_o}{f_s L_{AUX}}(1-D) - \frac{V_o}{2t_d L_{AUX}}(t-t_3)^2$$
(15)  
$$i_{LA}(t) = I_V + \frac{v_{in}}{L_A}(t-t_0)$$
(16)

$$i_{SA1}(t) = I_V - I_{Aux,p} - \frac{v_{in}}{L_A}(t - t_0) + \frac{V_o}{2L_{AUX}} t_d + \frac{V_o}{L_{AUX}}(t - t_2).$$
(17)

This mode ends once the gate signal is applied to  $S_{B1}$ . The value of *i*sA1 at this instant is given by:

$$I_{4}(t) = I_{V} - I_{Aux,p} + \frac{v_{in}}{2f_{s}L_{A}} + \frac{V_{o}}{L_{AUX}}t_{d} + \frac{V_{o}}{f_{s}L_{AUX}}(1-D).$$
(18)

*Mode V* (t4 < t < t5): This mode starts when the gate signal is

applied to  $SB \perp$  . Once the gate has been applied,  $SB \perp$  is turned ON

under ZVS. Since *SA*<sup>1</sup> and *SB*<sup>1</sup> are ON during this period, the voltage across the auxiliary inductor is zero; hence, the auxiliary

inductor current remains constant at its peak value,  $I_{Aux,p}$ . The

boost inductor current and the switch current, during this mode, are given by:

$$i_{LA}(t) = I_V + \frac{v_{\rm in}}{L_A} (t - t_0)$$
(19)

$$i_{SA1}(t) = I_V + I_{Aux,p} - \frac{v_{in}}{L_A}(t - t_0).$$
 (20)

*Mode VI* ( $t_5 < t < t_6$ ): During this mode, the output capacitor

of  $S_{A1}$  is charging from zero to  $V_o$  and the output capacitor of  $S_{A2}$  is discharging from  $V_o$  to zero. This period is actually the dead time between  $S_{A1}$  and  $S_{A2}$  ( $t_6 - t_5 = t_d$ ). In this period, the current through the boost inductor  $L_A$  remains constant at its peak value. The auxiliary inductor current *i*AUX is given by:

This mode ends once the gate signal is removed from *S*<sub>A1</sub>. The value of *is*<sub>A1</sub> at this time is given by:

$$i_{SA1}(t) = I_V + I_{Aux,p} - \frac{v_{in}}{f_s L_A} D.$$
 (21)

*Mode VI* ( $t5 < t < t_6$ ): During this mode, the output capacitor

of  $S_{A1}$  is charging from zero to  $V_o$  and the output capacitor of  $S_{A2}$  is discharging from  $V_o$  to zero. This period is actually the dead time between  $S_{A1}$  and  $S_{A2}$  ( $t_6 - t_5 = t_d$ ). In this period, the current through the boost inductor  $L_A$  remains constant at its peak value. The auxiliary inductor current *i*AUX is given by:

$$i_{\text{AUX}}(t) = -I_{\text{Aux},p} + \frac{V_o}{2t_d L_{\text{AUX}}} (t - t_5)^2 .$$
 (22)

This mode ends once the output capacitors have completely been charged and discharged.

*Mode VII* ( $t_6 < t < t_7$ ): During this mode, the voltage across the auxiliary circuit is  $V_o$ ; hence, the current through the auxiliarycircuit is given by:

$$i_{\text{AUX}}(t) = -I_{\text{Aux},p} + \frac{V_o}{2L_{\text{AUX}}}t_d + \frac{V_o}{L_{\text{AUX}}}(t - t_6).$$
 (23)

During this mode, the MOSFET channel *S*<sub>A2</sub> is conducting the current to the output. The current through this switch is given by:

$$i_{SA2}(t) = I_{Aux,p} - \frac{V_o}{2L_{AUX}} t_d + \frac{V_o}{L_{AUX}} (t - t_6) + I_P - \frac{v_{in} - V_o}{L_A} (t - t_6).$$
(24)

The peak value of this current is given by:

$$I_5(t) = -I_{Aux,p} + \frac{V_o}{2L_{AUX}} t_d + I_P.$$
 (25)

This mode ends when *isA2* reaches zero. Thus *t7* is given by

$$t_7 = t_6 + \frac{I_{\text{Aux},p} - (V_o/2L_{\text{AUX}})t_d}{(V_o/L_{\text{AUX}}) + (v_{\text{in}} - V_o/L_A)}.$$
 (26)

*Mode VIII* ( $t_7 < t < t_8$ ): During this mode, the output capacitor of *S*<sub>A1</sub> is discharging from *V*<sub>0</sub> to zero and the output capacitor of *S*<sub>A2</sub> is charging from zero to *V*<sub>0</sub>. In this mode, the current through *L*<sub>A</sub> is at its minimum value *Iv* and the excess current from the auxiliary circuit charges and discharges the output capacitors. The auxiliary inductor current is given by:.

$$i_{AUX}(t) = -I_{Aux,p} + \frac{V_o}{2L_{AUX}} t_d + \frac{V_o}{L_{AUX}} \frac{I_{Aux,p} - (V_o/2L_{AUX})t_d}{(V_o/L_{AUX}) + ((v_{in} - V_o)/L_A)} + \frac{V_o}{2L_{AUX}} (t - t_7)^2.$$
(27)

Fig. 7. Key waveforms of the converter for D < 0.5 and discharged completely. Fig. 7 shows the key waveforms of the circuit for D < 0.5. According to this figure, the modes of operation are the same for the proposed circuit

### **III SIMULATION OF PFC BUCK HALF-BRIDGE CONVERTER BASED PMBLDCM DRIVE**



The proposed PMBLDCM drive is modeled in Mat lab-Simulink , speed of which is controlled effectively by controlling the DC link voltage. The detailed data of the motor and simulation parameters are given in Appendix. The performance of the proposed PFC drive is evaluated on the basis of various parameters such as total harmonic distortion (THDi) of the current at input AC mains, power factor (PF) and efficiency of the drive system (ndrive) at different speeds of the motor. Moreover, these parameters are (a)evaluated for variable speed at constant supply voltage(220v) and also (b)evaluated for variable input AC voltage at rated speed (1500 rpm) of the PMBLDCM.

#### A. Performance during Starting

The performance of the proposed PMBLDCM drive fed from 220 V AC mains during starting at rated torque and 600 rpm speed is shown in Fig. 8a. A rate limiter of 560 V/s is introduced in the reference voltage to limit the starting current of the motor as well as the charging current of the DC link capacitor. The PI controller closely tracks the reference speed so that the motor attains reference speed smoothly within 0.3 sec while keeping the stator current within the desired limits i.e. double the rated value. The current (is) waveform at input AC mains is in phase with the supply voltage (vs) demonstrating nearly unity power factor during the starting.



#### fig 8(a) performance during starting speed of 600rpm

#### **B.** Performance under Speed Control

Figs. 8(b)-8(d) show the performance of the proposed PMBLDCM drive under the speed control at constant rated torque (9.55 Nm) and 220 V AC mains supply voltage. These results are categorized as performance during transient and steady state conditions.

1) Transient Condition: Figs. 8b-c shows the performance of the drive during the speed control of the compressor. The reference speed is changed from 600 rpm to 1500 rpm for the rated load performance of the compressor; from 1500 rpm to 900 rpm for performance of the compressor at light load. It is observed that the speed control is fast and smooth in either direction i.e. acceleration or retardation with power factor maintained at nearly unity value. Moreover, the stator current of PMBLDCM is within the allowed limit (twice the rated current) due to the introduction of rate limiter in the а referencevoltage.

|      |                           |        |           |           | Vt     | 15                                       |                       |        |                                                                                                                  |               |
|------|---------------------------|--------|-----------|-----------|--------|------------------------------------------|-----------------------|--------|------------------------------------------------------------------------------------------------------------------|---------------|
| 0    | WW                        | $\sim$ |           | $\sim$    | $\sim$ | WW                                       |                       | $\sim$ | $\mathcal{M}$                                                                                                    | $\mathbb{A}$  |
|      |                           |        |           |           | Is     | •                                        |                       |        |                                                                                                                  |               |
| 0    | ~~~~                      | $\sim$ | ~~~~      | $\sim$    | $\sim$ | $\mathcal{M}\mathcal{M}$                 |                       |        | $\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}$ | $\mathcal{M}$ |
|      |                           |        |           |           | Ve     | le .                                     |                       |        |                                                                                                                  |               |
|      | ~~~~~                     |        |           |           |        | $\sim$                                   |                       |        |                                                                                                                  |               |
|      | speed                     |        |           |           |        |                                          |                       |        |                                                                                                                  |               |
| 200  |                           |        |           |           |        | <u></u>                                  |                       |        |                                                                                                                  |               |
| 0    | ~                         |        | 1         | i         |        |                                          | i                     |        | i                                                                                                                |               |
| 40   |                           |        |           |           | Ton    | ine                                      | 1                     |        |                                                                                                                  | _             |
| 20   |                           |        |           |           |        |                                          |                       |        |                                                                                                                  |               |
| 0    | A Deserver and the second |        | ****      | *****     |        | and the second second second             | and the second second |        |                                                                                                                  |               |
| 100  |                           |        |           |           |        |                                          |                       |        |                                                                                                                  |               |
|      |                           |        |           |           |        | Assassas                                 |                       |        |                                                                                                                  |               |
|      | - M.M.M.                  | ~~~~   | ຜ່ຜ່ຜ່ຜ່າ | ผ่ามามาทา | ๛๛๛๛   | 1.A.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a. | บงกงางการ             |        | AAAAAAAAAAAA                                                                                                     | 1000000       |
| -201 | 20°                       |        |           |           |        |                                          |                       |        |                                                                                                                  |               |
| 200  |                           |        |           | !         |        |                                          | 1                     |        |                                                                                                                  |               |
| 200  |                           |        |           |           |        |                                          | -                     |        |                                                                                                                  |               |
| 0    |                           | .1 0   | 12 0      | 3 0       | 4 0.   | 5 0                                      | 16 0                  | 7 0    | 8 0.9                                                                                                            | 1             |

Fig8(b) performance during speed of 600 to 1500 rpm



Fig8(c) performance during speed of 1500 to 900rpm

**2) Steady State Condition**: The speed control of the PMBLDCM driven compressor under steady state condition is shown below Table-II to demonstrate the effectiveness of the proposed drive in wide speed range. Figs of voltage (vs) and current (is) waveforms at AC mains, DC link voltage (Vdc), speed of the motor (N), developed electromagnetic torque of the motor (Te), the stator current of the motor for phase 'a' (Ia), and shaft power output (Po) at 1500 rpm speed are below.

V. Ravi kumar, IJECS Volume 2. Issue 10 October 2013 Page No.3019-3025



**Fig8(d) performance during speed of 1500 rpm Power Quality Performance:** The performance of the proposed PMBLDCM drive in terms of various PQ

parameters such as THDi, and PF is summarized in Table(I)

## Performance of drive under speed control at 220 v ac input

| Speed | Vdc          | THDi          | PF     | Efficien |
|-------|--------------|---------------|--------|----------|
| (rpm) | ( <b>v</b> ) | (%)           |        | cy (%)   |
| 300   | 100          | 4.84 <b>T</b> | 0.9987 | 74.2     |
| 400   | 126          | 4.50          | 0.9991 | 79.1     |
| 500   | 153          | 2.99          | 0.9993 | 81.8     |
| 600   | 179          | 2.90          | 0.9995 | 83.8     |
| 700   | 205          | 2.74          | 0.9996 | 85.3     |
| 800   | 232          | 2.58          | 0.9996 | 86.1     |
| 900   | 258          | 2.29          | 0.9996 | 87.0     |
| 1000  | 284          | 2.24          | 0.9997 | 87.6     |
| 1100  | 310          | 2.20          | 0.9997 | 88.1     |
| 1200  | 334          | 2.18          | 0.9997 | 88.1     |
| 1300  | 363          | 2.14          | 0.9997 | 88.2     |
| 1400  | 390          | 2.11          | 0.9997 | 88.1     |
| 1500  | 416          | 2.09          | 0.9997 | 88.1     |

The following graphs (a) speed vs Vdc(b)Speed vs thd (c)Speed vs pf (d)Speed vs efficiency are shown below

## IV. CONCLUSION

In this paper, a new interleaved boost PFC converter, and buck based half bridge based PFC converter is proposed, which provides soft switching for the power MOSFETs, In addition, the control system effectively optimizes the amount of reactive current required to achieve ZVS for the power MOSFETs. The frequency loop, which is introduced in the control system, determines the frequency of the modulator based on the load condition and the duty cycle of the converter.

## REFERENCES

[1] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, "Energy storage systems for automotive applications," *IEEE Trans. Ind. Electron.*, vol. 55, no. 6, pp. 2258–2267, Jun. 2008.

[2] Y.-J. Lee, A. Khaligh, and A. Emadi, "Advanced integrated bidirectional

AC/DC and DC/DC converter for plug-in hybrid electric vehicles," *IEEE Trans. Veh. Technol.*, vol. 58, no. 8, pp. 3970–3980, Oct. 2009.

[3] A. Emadi, Y. J. Lee, and K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,"

IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237–2245, Jun. 2008.

[4] T. Nussbaumer, K. Raggl, and J. W. Kolar, "Design Guidelines for interleaved

single-phase boost PFC circuits," *IEEE Trans. Ind. Electron.*, vol. 56, no. 7, np. 2550, 2572, J. 1, 2000

vol. 56, no. 7, pp. 2559–2573, Jul. 2009.

[5] T. Nussbaumer, M. Baumann, and J. W. Kolar, "Comparative evaluation

of modulation methods of a three-phase buck + boost PWM rectifier. Part II: Experimental verification," *Power Electron., IET*, vol. 1, no. 2, pp. 268–274, Jun. 2008.

[6] T. Nussbaumer and J. W. Kolar, "Comparison of 3-phase wide output voltage range PWM rectifiers," *IEEE Trans. Ind. Electron.*, vol. 54, no. 6, pp. 3422–3425, Dec. 2007.

[7] R. Giral, L. Martinez-Salamero, and S. Singer, "Interleaved converters operation based on CMC," *IEEE Trans. Power Electron.*, vol. 14, no. 4, pp. 643–652, Jul. 1999.

[8] H. Kosai, S. McNeal, B. Jordan, J. Scofield, B. Ray, and Z. Turgut, "Coupled inductor characterization for a high performance interleaved boost converter," *IEEE Trans. Magn.*, vol. 45, no. 10, pp. 4812–4815, Oct. 2009.

[9] C. A. Gallo, F. L. Tofoli, and J. A. C. Pinto, "A passive lossless snubber applied to the AC–DC interleaved boost converter," *IEEE Trans. Power Electron.*, vol. 25, no. 3, pp. 775–785, Mar. 2010.

[10] Y. Jang and M. M. Jovanovic, "Interleaved boost converter with intrinsic

voltage-doubler characteristic for universal-line PFC front end," *IEEE Trans. Power Electron.*, vol. 22, no. 4, pp. 1394–1401, Jul. 2007. [11] F. Musavi, W. Eberle, and W. G. Dunford, "A high-performance singlephase

bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers," *IEEE Trans. Ind. Appl.*, vol. 47, no. 4, pp. 1833–1843, Jul./Aug. 2011.

[12] C. A. Gallo, F. L. Tofoli, and J. A. C. Pinto, "Two-stage isolated switchmode

power supply with high efficiency and high input power factor," *IEEE Trans. Ind. Electron.*, vol. 57, no. 11, pp. 3754–3766, Nov. 2010. [13] M. O'Loughlin, "UCC28070 300-W interleaved PFC pre-regulator design

review," TI Appl. Rep. SLUA479B, Aug. 2008, revised Jul. 2010. [14] C.-P. Ku, D. Chen, C.-S. Huang, and C.-Y. Liu, "A novel SFVM-M3 control scheme for interleaved CCM/DCM boundary-mode boost converter in PFC applications," *IEEE Trans. Power Electron.*, vol. 26, no. 8, pp. 2295–2303, Aug. 2011.

[15] R. Streit and D. Tollik, "A high efficiency telecom rectifier using a novel

soft-switching boost-based input current shaper," in *Proc.Conf. Rec. IEEE INTELEC*, 1991, pp. 720–726.

[16] K. M. Smith and K. M. Smedley, "A comparison of voltage-mode softswitching

methods for PWM converters," *IEEE Trans. Power Electron.*, vol. 12, no. 2, pp. 376–386, Mar. 1997.

[17] C.-J. Tseng and C.-L. Chen, "Novel ZVT-PWM converter with active snubbers," *IEEE Trans. Power Electron.*, vol. 13, no. 5, pp. 861–869, Sep. 1998.

[18] G. Moschopoulos, P. Jain, G. Joos, and Y.-F Liu, "Zero voltage switched

PWMboost converter with an energy feedforward auxiliary circuit," *IEEE Trans. Power Electron.*, vol. 14, no. 4, pp. 653–662, Jul. 1999.

[19] T.-W. Kim, H.-S. Kim, and H.-W. Ahn, "An improved ZVT PWM boost

converter," in Proc. Conf. Rec. IEEE Power Electron. Spec. Conf., 2000, pp. 615–619.