

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2. Issue 10 October 2013 Page No. 2979-2984

Aditi Khazanchi,IJECS Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2979

JAVA DATABASE CONNECTIVITY (JDBC) -

DATA ACCESS TECHNOLOGY
Aditi Khazanchi, Akshay Kanwar, Lovenish Saluja

ABSTRACT

A serious problem facing many organizations today is the need to use information from multiple data sources that

have been developed separately. To solve this problem, Java Database Connectivity came into existence. JDBC helps

us to connect to a database and execute SQL statements against a database. JDBC API provides set of interfaces and

there are different implementations respective to different databases. This paper emphasis on its history and

implementation, architecture and JDBC drivers.

INTRODUCTION

JDBC is a Java-based data access technology from

Oracle Corporation. This technology is an API for the

Java programming language that defines how a client

may access a database. It provides methods for

querying and updating data in a database. JDBC (Java

Database Connectivity) is a standard API for accessing

relational databases from a Java program. This

interface makes it easy to access a database because

it provides an abstract layer that hides the low-level

details, such as managing sockets. It also provides for

interoperability and portability since it allows a single

application to access multiple database management

systems simultaneously. For example, a single

application can query and manipulate a database in

Oracle and a database in DB2.

JDBC actually has two levels of interface. In addition

to the main interface, there is also an API from a JDBC

"manager" that in turn communicates with individual

database product "drivers," the JDBC-ODBC Bridge if

necessary, and a JDBC network driver when the Java

program is running in a network environment (that is,

accessing a remote database).

When accessing a remote database, JDBC takes

advantage of the Internet's file addressing scheme

and a file name looks much like a Web page address

(or Uniform Resource Locator). For example, a Java

SQL statement might identify the database as :

jdbc:odbc://www.somecompany.com:400/databasefil

e

 Advantages of JDBC:

o Can read any database if proper drivers

are installed.

o Creates XML structure of data from

database automatically

o No content conversion required

o Query and Stored procedure supported.

o Can be used for both Synchronous and

Asynchronous processing.

o Supports modules

EVOLUTION

History and Implementation

Sun Microsystems released JDBC as part of JDK 1.1 on

February 19, 1997.It has since formed part of the Java

Standard Edition. The JDBC classes are contained in

the Java package java.sql and javax.sql. Starting with

version 3.1, JDBC has been developed under the Java

Community Process. JSR 54 specifies JDBC 3.0

(included in J2SE 1.4), JSR 114 specifies the JDBC

Rowset additions, and JSR 221 is the specification of

JDBC 4.0 (included in Java SE 6).The latest version,

http://www.ijecs.in/

Aditi Khazanchi,Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2980

JDBC 4.1, is specified by a maintenance release of JSR

221[3] and is included in Java SE 7.

Functionality

JDBC allows multiple implementations to exist and be

used by the same application. The API provides a

mechanism for dynamically loading the correct Java

packages and registering them with the JDBC Driver

Manager. The Driver Manager is used as a connection

factory for creating JDBC connections.

JDBC connections support creating and executing

statements. These may be update statements such as

SQL's CREATE, INSERT, UPDATE and DELETE, or they

may be query statements such as SELECT.

Additionally, stored procedures may be invoked

through a JDBC connection. JDBC represents

statements using one of the following classes:

Statement – the statement is sent to the database

server each and every time.

PreparedStatement – the statement is cached and

then the execution path is pre-determined on the

database server allowing it to be executed multiple

times in an efficient manner.

CallableStatement – used for executing stored

procedures on the database.

Update statements such as INSERT, UPDATE and

DELETE return an update count that indicates how

many rows were affected in the database. These

statements do not return any other

information.Query statements return a JDBC row

result set. The row result set is used to walk over the

result set. Individual columns in a row are retrieved

either by name or by column number. There may be

any number of rows in the result set. The row result

set has metadata that describes the names of the

columns and their types.

There is an extension to the basic JDBC API in the

javax.sql.

JDBC connections are often managed via a connection

pool rather than obtained directly from the driver.

Examples of connection pools include BoneCP, C3P0

and DBCP.

COMPONENTS OF JDBC

The JDBC API provides the following interfaces and
classes:

 DriverManager: This class manages a
list of database drivers. Matches
connection requests from the java
application with the proper database
driver using communication
subprotocol. The first driver that
recognizes a certain subprotocol
under JDBC will be used to establish a
database Connection.

 Driver: This interface handles the
communications with the database
server. You will interact directly with
Driver objects very rarely. Instead,
you use DriverManager objects, which
manage objects of this type. It also
abstracts the details associated with
working with Driver objects

 Connection: This interface with all
methods for contacting a database.
The connection object represents
communication context, i.e., all
communication with database is
through connection object only.

 Statement: You use objects created
from this interface to submit the SQL
statements to the database. Some
derived interfaces accept parameters
in addition to executing stored
procedures.

 ResultSet: These objects hold data
retrieved from a database after you
execute an SQL query using
Statement objects. It acts as an
iterator to allow you to move through
its data.

 SQLException: This class handles any
errors that occur in a database
application.

ARCHITECTURE

The JDBC API supports both two-tier and three-tier

processing models for database access.

Aditi Khazanchi,Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2981

Fig: Two-tier Architecture for Data

Access.

In the two-tier model, a Java application talks directly

to the data source. This requires a JDBC driver that

can communicate with the particular data source

being accessed. A user's commands are delivered to

the database or other data source, and the results of

those statements are sent back to the user. The data

source may be located on another machine to which

the user is connected via a network. This is referred to

as a client/server configuration, with the user's

machine as the client, and the machine housing the

data source as the server. The network can be an

intranet, which, for example, connects employees

within a corporation, or it can be the Internet.

 Fig: Three-tier Architecture for Data

Access.

In the three-tier model, commands are sent to a

"middle tier" of services, which then sends the

commands to the data source. The data source

processes the commands and sends the results back

to the middle tier, which then sends them to the user.

MIS directors find the three-tier model very attractive

because the middle tier makes it possible to maintain

control over access and the kinds of updates that can

be made to corporate data. Another advantage is that

it simplifies the deployment of applications. Finally, in

many cases, the three-tier architecture can provide

performance advantages.

5 JDBC DRIVERS

A JDBC driver is a software component enabling a Java

application to interact with database. JDBC drivers are

analogous to ODBC drivers, ADO.NET data providers,

and OLE DB providers. To connect with individual

databases, JDBC (the Java Database Connectivity API)

requires drivers for each database. The JDBC driver

gives out the connection to the database and

implements the protocol for transferring the query

and result between client and database.

JDBC technology drivers fit into one of four

categories-

 Type 1 Driver - JDBC-ODBC Bridge

 Type 2 Driver - Native-API Driver

 Type 3 Driver - Network-Protocol

Driver(MiddleWare Driver)

 Type 4 Driver - Database-Protocol

Driver(Pure Java Driver)

5.1 Type 1 Driver - JDBC-ODBC Bridge

The JDBC type 1 driver, also known as the JDBC-ODBC

Bridge, is a database driver implementation that

employs the ODBC driver to connect to the database.

The driver converts JDBC method calls into ODBC

function calls.

The driver is platform-dependent as it makes use of

ODBC which in turn depends on native libraries of the

underlying operating system the JVM is running upon.

Also, use of this driver leads to other installation

dependencies; for example, ODBC must be installed

on the computer having the driver and the database

must support an ODBC driver. The use of this driver is

discouraged if the alternative of a pure-Java driver is

available. The other implication is that any application

using a type 1 driver is non-portable given the binding

between the driver and platform. This technology isn't

suitable for a high-transaction environment. Type 1

Aditi Khazanchi,Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2982

drivers also don't support the complete Java

command set and are limited by the functionality of

the ODBC driver.

Sun provides a JDBC-ODBC Bridge driver:

sun.jdbc.odbc.JdbcOdbcDriver.

This driver is native code and not Java, and is closed

source.

If a driver has been written so that loading it causes

an instance to be created and also calls

DriverManager.registerDriver with that instance as

the parameter (as it should do), then it is in the

DriverManager's list of drivers and available for

creating a connection.

First the DriverManager tries to use each driver in the

order it was registered. (The drivers listed in

jdbc.drivers are always registered first.) It will skip any

drivers that are untrusted code unless they have been

loaded from the same source as the code that is trying

to open the connection.

It tests the drivers by calling the method

Driver.connect on each one in turn, passing them the

URL that the user originally passed to the method

DriverManager.getConnection. The first driver that

recognizes the URL makes the connection.

Fig. Schematic of the JDBC-ODBC Bridge

5.2 Type 2 Driver - Native-API Driver

In a Type 2 driver, JDBC API calls are converted into
native C/C++ API calls which are unique to the
database. These drivers typically provided by the
database vendors and used in the same manner as
the JDBC-ODBC Bridge, the vendor-specific driver
must be installed on each client machine.
If we change the Database we have to change the
native API as it is specific to a database and they are
mostly obsolete now but you may realize some speed
increase with a Type 2 driver, because it eliminates
ODBC's overhead.

1. Advantages: As there is no implementation of

jdbc-odbc Bridge, its considerably faster than a

type 1 driver.

2. Disadvantages:

-The vendor client library needs to be installed on

the client machine.

-Not all databases have a client side library This

driver is platform dependent

-This driver supports all java applications except

Applets

 Fig. Schematic of the Native

API driver

5.3 Type 3 Driver - Network-Protocol

Driver(Middleware Driver)

The JDBC type 3 driver, also known as the Pure Java

Driver for Database Middleware, is a database driver

Aditi Khazanchi,Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2983

implementation which makes use of a middle tier

between the calling program and the database. The

middle-tier (application server) converts JDBC calls

directly or indirectly into the vendor-

specific database protocol.

This differs from the type 4 driver in that the protocol

conversion logic resides not at the client, but in the

middle-tier. Like type 4 drivers, the type 3 driver is

written entirely in Java. The same driver can be used

for multiple databases. It depends on the number of

databases the middleware has been configured to

support. The type 3 driver is platform-independent as

the platform-related differences are taken care of by

the middleware. Also, making use of the middleware

provides additional advantages of security and

firewall access.

5.3.1 Functions

 Sends JDBC API calls to a middle-tier

net server that translates the calls

into the DBMS-specific network

protocol. The translated calls are then

sent to a particular DBMS.

 Follows a three tier communication

approach.

 Can interface to multiple databases -

Not vendor specific.

 The JDBC Client driver written in java,

communicates with a middleware-

net-server using a database

independent protocol, and then this

net server translates this request into

database commands for that

database.

 Thus the client driver to middleware

communication is database

independent.

 Fig. Schematic of the

Network Protocol driver

5.4 Type 4 Driver - Database-Protocol Driver(Pure

Java Driver)

The JDBC type 4 driver, also known as the Direct

to Database Pure Java Driver, is a database driver

implementation that converts JDBC calls directly

into a vendor-specific database protocol.

Written completely in Java, type 4 drivers are

thus platform independent. They install inside

the Java Virtual Machine of the client. This

provides better performance than the type 1 and

type 2 drivers as it does not have the overhead of

conversion of calls into ODBC or database API

calls. Unlike the type 3 drivers, it does not need

associated software to work.

As the database protocol is vendor specific, the

JDBC client requires separate drivers, usually

vendor supplied, to connect to different types of

databases. This type includes, for example, the

widely used Oracle thin driver.

 Advantages:-

 Completely implemented in Java to

achieve platform independence

 These drivers don't translate the

requests into an intermediary format

(such as ODBC).

Aditi Khazanchi,Volume 2. Issue 10 October 2013 Page No.2979-2984 Page 2984

 The client application connects

directly to the database server. No

translation or middleware layers are

used, improving performance.

 The JVM can manage all aspects of

the application-to-database

connection; this can facilitate

debugging.

Disadvantages: -

Drivers are database dependent, as different database

vendors use wildly different (and usually

proprietary) network protocols.

 Fig. Schematic of the
Native-Protocol driver

CONCLUSION

We presented the JDBC, an API(application

programming interface) for java that allows the Java

programmer to access the Database. The JDBC API

consists of a numbers of classes and interfaces,

written in java programming language, they provides

a numbers of methods for updating and querying a

data in a database. It is a relational database oriented

driver. It allows the java application to reuse database

connection the connection that has been created

already instead of creating a new connection every

time. Creating and destroying a database connection

is very costly, therefore this feature is very important

for java application.

REFERENCES

http://www.cs.ubc.ca/~ramesh/cpsc304/tutorial/JDB

C/jdbc1.html

http://en.wikipedia.org/wiki/Java_Database_Connecti

vity

http://searchoracle.techtarget.com/definition/Java-

Database-Connectivity

http://docs.oracle.com/javase/tutorial/jdbc/overview

/architecture.html

http://www.tutorialspoint.com/jdbc/jdbc-

introduction.htm

http://en.wikipedia.org/wiki/JDBC_driver

http://www.tutorialspoint.com/jdbc/jdbc-driver-

types.htm

