

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 10 October, 2013 Page No. 2944-2950

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2944-2950 Page 2944

 Cache Memory Organization
 Akshay Kanwar, Aditi Khazanchi, Lovenish Saluja

Abstract

The use of cache memories are so persistent in today’s computer systems it is difficult to imagine processors

without them. Cache memories, along with virtual memories and processor registers form a field of memory

hierarchies that rely on the principle of locality of reference. Most applications exhibit temporal and spatial

localities among instructions and data. Spatial locality implies that memory locations that are spatially near the

currently referenced address will likely be referenced. Temporal locality implies that the currently referenced

address will likely be referenced in the near future. Memory hierarchies are intended to keep most likely

referenced items in the fastest devices. This results in an effective reduction in access time.

Introduction

Cache memories are used in modern, medium and

high-speed CPUs to hold temporarily those portions

of the contents of main memory which are currently

in use. Since instructions and data in cache

memories can usually be referenced in 10 to 25

percent of the time required to access main

memory, cache memories permit the executing rate

of the machine to be substantially increased. In

order to function effectively, cache memories must

be carefully designed and implemented. In this

paper, we explain the various aspects of cache

memoirs and discuss in some detail the design

features and trade-offs. A large number of original,

trace-driven simulation results are presented.

Cache memories are small, high-speed buffer

memories used in modern computer systems to hold

temporarily those portions of the contents of main

memory which are currently in use. Information

located in cache memory may be accessed in much

less time than that located in main memory. Thus, a

central processing unit (CPU) with a cache memory

needs to spend far less time waiting for instructions

and operands to be fetched and stored. For example,

in typical large, high-speed computers, main

memory can be accessed in 300 to 600

nanoseconds; information can be obtained from a

cache, on the other hand, in 50 to 100 nanoseconds.

Since the performance of such machines is al- ready

limited in instruction execution rate by cache

memory access time, the absence of any cache

memory at all would produce a very substantial

decrease in execution speed.

1.1. Cache Memory Principles

- If data sought is not present in cache, a

block of memory of fixed size is read into

the cache.

- Locality of reference makes it likely that

other words in the same block will be

accessed soon

http://www.ijecs.in/

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2945

2. An Overview of Cache

Cache is small high speed memory usually Static

RAM (SRAM) that contains the most recently

accessed pieces of main memory. In today’s

systems, the time it takes to bring an instruction (or

piece of data) into the processor is very long when

compared to the time to execute the instruction. For

example, a typical access time for DRAM is 60ns.

A 100 MHz processor can execute most instructions

in 1 CLK or 10 ns. Therefore a bottle neck forms at

the input to the processor. Cache memory helps by

decreasing the time it takes to move information to

and from the processor. A typical access time for

SRAM is 15 ns. Therefore cache memory allows

small portions of main memory to be accessed 3 to

4 times faster than DRAM (main memory).

 The theory that explains this performance is called

“Locality of Reference.” The concept is that at any

given time the processor will be accessing memory

in a small or localized region of memory. The

cache loads this region allowing the processor to

access the memory region faster. How well does

this work? In a typical application, the internal

16K-byte cache of a Pentium® processor contains

over 90% of the addresses requested by the

processor. This means that over 90% of the

memory accesses occur out of the high speed cache.

2.1. Basic Model

Fig. 1: Basic Cache

Model

Fig.1: shows a simplified diagram of a system with

cache. In this system, every time the CPU performs

a read or write, the cache may intercept the bus

transaction, allowing the cache to decrease the

response time of the system. Before discussing this

cache model, let’s define some of the common

terms used when talking about cache.

Cache Hits
When the cache contains the information requested,

the transaction is said to be a cache hit.
Cache Miss
When the cache does not contain the information

requested, the transaction is said to be a cache

miss.
Cache Consistency
Since cache is a photo or copy of a small piece

main memory, it is important that the cache

always reflects what is in main memory. Some

common terms used to describe the process of

maintaining cache

Consistencies are:

Snoop

When a cache is watching the address lines for

transaction, this is called a snoop. This function

allows the cache to see if any transactions are

accessing memory it contains within itself.
Snarf
When a cache takes the information from the

data lines, the cache is said to have snarfed the

data. This function allows the cache to be

updated and maintain consistency.

Dirty Data

When data is modified within cache but not

modified in main memory, the data in the cache

is called “dirty data.”
Stale Data

When data is modified within main memory but not

modified in cache, the data in the cache is called

stale data.

2.2. Cache Architecture

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2946

Caches have two characteristics, a read architecture

and a write policy. The read architecture may be

either “Look Aside” or “Look Through.” The write

policy may be either “Write-Back” or “Write-

Through.” Both types of read architectures may

have either type of write policy, depending on the

design. Write policies will be described in more

detail in the next section. Let’s examine the read

architecture now.

2.2.1. Look Aside

Fig. 2: Look Aside

Cache

Fig. 2: shows a simple diagram of the “look aside

“cache architecture. In this diagram, main memory

is located opposite the system interface. The

discerning feature of this cache unit is that it sits in

parallel with main memory. It is important to

notice that both the main memory and the cache

see a bus cycle at the same time. Hence the name

“looks aside.”

 Look Aside Cache Example

When the processor starts a read cycle, the

cache checks to see if that address is a cache

hit.

HIT:

If the cache contains the memory location, then

the cache will respond to the read cycle and

terminate the bus cycle.

MISS:

If the cache does not contain the memory location,

then main memory will respond to the processor

and

ter

min

ate

the

bus

cycl

e. The cache will snarf the data, so next time the

processor requests this data it will be a cache hit.

Read Architecture: Look Through

Fig. 3: Look Through Cache

Fig. 3: Shows a simple diagram of cache

architecture. Again, main memory is located

opposite the system interface. The discerning

feature of this cache unit is that it sits between

the processor and main memory. It is important

to notice that cache sees the processors bus

cycle before allowing it to pass on to the system

bus.

Look through Read Cycle Example
When the processor starts a memory access, the

cache checks to see if that address is a cache hit.

HIT:

the cache responds to the processor’s request

without starting an access to main memory.

MISS:

The cache passes the bus cycle onto the system

bus. Main memory then responds to the processors

request. Cache snarfs the data so that next time the

processor requests this data, it will be a cache hit.

This architecture allows the processor to run out of

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2947

cache while another bus master is accessing main

memory, since the processor is isolated from the

rest of the system. However, this cache

architecture is more complex because it must be

able to control accesses to the rest of the system.

The increase in complexity increases the cost.

Another down side is that memory accesses on

cache misses are slower because main memory is

not accessed until after the cache is checked. This

is not an issue if the cache has a high hit rate and

there are other bus masters.

 Write Policy

A write policy determines how the cache deals with

a write cycle. The two common write policies are

Write-Back and Write-Through.

In Write-Back policy, the cache acts like a buffer.

That is, when the processor starts a write cycle the

cache receives the data and terminates the cycle.

The cache then writes the data back to main

memory when the system bus is available. This

method provides the greatest performance by

allowing the processor to continue its tasks while

main memory is updated at a later time. However,

controlling writes to main memory increase the

cache’s complexity and cost.

The second method is the Write-Through policy.

As the name implies, the processor writes through

the cache to main memory. The cache may update

its contents, however the write cycle does not end

until the data is stored into main memory. This

method is less complex and therefore less

expensive to implement. The performance with a

Write-Through policy is lower since the processor

must wait for main memory to accept the data.

2.3. Cache Components

The cache sub-system can be divided into three

functional blocks: SRAM, Tag RAM, and the

Cache Controller. In actual designs, these blocks

may be implemented by multiple chips or all may

be combined into a single chip.

2.3.1. SRAM

Static Random Access Memory (SRAM) is the

memory block which holds the data. The size of

the SRAM determines the size of the cache.

2.3.2. Tag RAM

Tag RAM (TRAM) is a small piece of SRAM

that stores the addresses of the data that is stored

in the SRAM.

2.3.3. Cache Controller
The cache controller is the brains behind the
cache. Its responsibilities include: performing the
snoops and snarfs, updating the SRAM and
TRAM and implementing the write policy. The
cache controller is also responsible for
determining if memory request is cacheable and if
a request is a cache hit or miss.

2.4. Cache Organization

Fig. 4: Cache Page

In order to fully understand how caches can be
organized, two terms need to be defined. These
terms are cache page and cache line. Let’s start by
defining a cache page. Main memory is divided
into equal pieces called cache pages. The size of a
page is dependent on the size of the cache and how
the cache is organized. A cache page is broken into
smaller piece each.It is not desirable to have all
memory cacheable. What regions of main memory
determined to be non-cacheable are dependent on
the design. For example, in a PC platform the
video region of main memory is not cacheable.

A cache page is not associated with a memory page
in page mode. The word page has several different
meaning when referring to PC architecture called a

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2948

cache line. The size of a cache line is determined by
both the processor and the cache design. Figure 2-4
shows how main memory can be broken into cache
pages and how each cache page is divided into
cache lines. We will discuss cache organizations
and how to determine the size of a cache page in the
following sections.

2.4.1. Fully-Associative

Fig. 5: Fully-

Associative Cache

The first cache organization to be discussed is

Fully-Associative cache. Fig. 5: shows a diagram

of a Fully Associative cache. This organizational

scheme allows any line in main memory to be

stored at any location in the cache. Fully-

Associative cache does not use cache pages, only

lines. Main memory and cache memory are both

divided into lines of equal size. For example

Figure 2-5 shows that Line 1 of main memory is

stored in Line 0 of cache. However this is not the

only possibility, Line 1 could have been stored

anywhere within the cache. Any cache line may

store any memory line, hence the name, Fully

Associative.

A Fully Associative scheme provides the best

performance because any memory location can be

stored at any cache location. The disadvantage is

the complexity of implementing this scheme. The

complexity comes from having to determine if the

requested data is present in cache. In order to meet

the timing requirements, the current address must

be compared with all the addresses present in the

TRAM. This requires a very large number of

comparators that increase the complexity and cost

of implementing large caches. Therefore, this type

of cache is usually only used for small caches,

typically less than 4K.

2.4.2. Direct Map

Fig. 6: Direct

Mapped

Direct Mapped cache is also referred to as 1-Way

set associative cache. Fig. 6: shows a diagram of a

direct map scheme. In this scheme, main memory

is divided into cache pages. The size of each page

is equal to the size of the cache. Unlike the fully

associative cache, the direct map cache may only

store a specific line of memory within the same

line of cache. For example, Line 0 of any page in

memory must be stored in Line 0 of cache

memory. Therefore if Line 0 of Page 0 is stored

within the cache and Line 0 of page 1 is requested,

then Line 0 of Page 0 will be replaced with Line 0

of Page 1. This scheme directly maps a memory

line into an equivalent cache line, hence the name

Direct Mapped cache.

A Direct Mapped cache scheme is the least

complex of all three caching schemes. Direct

Mapped cache only requires that the current

requested address be compared with only one cache

address. Since this implementation is less complex,

it is far less expensive than the other caching

schemes. The disadvantage is that Direct Mapped

cache is far less flexible making the performance

much lower, especially when jumping between

cache pages.

2.4.3. Set Associative

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2949

Fig. 7: Way Set Associative

A Set-Associative cache scheme is a combination of

Fully-Associative and Direct Mapped caching

schemes. A set-associate scheme works by dividing

the cache SRAM into equal sections (2 or 4 sections

typically) called cache ways. The cache page size is

equal to the size of the cache way. Each cache way

is treated like a small direct mapped cache. To make

the explanation clearer, lets look at a specific

example. Fig. 7: shows a diagram of a 2-Way Set-

Associate cache scheme. In this scheme, two lines

of memory may be stored at any time. This helps to

reduce the number of times the cache line data is

written-over.

This scheme is less complex than a Fully-

Associative cache because the number of

comparators is equal to the number of cache ways.

A 2-Way Set-Associate cache only requires two

comparators making this scheme less expensive

than a fully-associative scheme.

3. Types of Cache Memory

 Memory

Types

Description

1

Soft

reference

cache

When objects are

removed from the

memory cache in order

to keep the memory

cache size constant, they

are moved to a soft

reference cache, which

can grow or shrink based

on the available

memory. If the JVM has

to reclaim memory

space, it takes it from the

soft reference cache.

2

Memory

cache

Uses the amount of

memory necessary to

hold the objects in

memory at all times.

You can configure this

in the noapp.properties

file.

3

Disk cache

Objects can be read

more quickly from the

disk than from the

database. When objects

are no longer in the soft

reference cache because

they have been garbage

collected, the disk cache

provides a faster access

mechanism than object

retrieval from the

database. You can

configure this in the

noapp.properties file.

4. Features of cache

• The access time is faster than main memory.

• The cache is placed on the top in the memory
hierarchy.

• The cache organization is concerned with memory
write requests.

• The cache is initialized when the main memory is
loaded with a complete set of
 programs.

• Cache built into the CPU itself is referred to as
Level 1 cache.

• Cache that resides on a separate chip is called
Level 2 Eg: SRAM

5. Advantages and Disadvantages of Cache

Advantages

• It is the fastest memory in the system.

• Cache is so effective in system performance

• The CPU does not have to use the motherboard’s
system bus for data transfer.

Akshay Kanwar, IJECS Volume 2 Issue10 October, 2013 Page No.2944-2050 Page 2950

• The CPU can process data much faster by
avoiding the bottleneck created by the system bus.

• Programs can operate more quickly and
efficiently.

Disadvantage

• Cache is more expensive than RAM.

6. Conclusion

Cache memories play a important role in

recuperating the performance of today’s computer

systems. Copious techniques for the use of caches

and for maintaining coherent data have been

proposed and implemented in commercial SMP

systems. The use of cache memories in a distributed

processing system, however, must be carefully

implicit to benefit from them. In a related research

on memory consistency models, recital

improvements are achieved by requiring data

consistency only at synchronization points. The

research on cache memories in distributed systems

is very active. Furthermore research is currently

active on the use of cache memories in fully

distributed systems, including web-based

computing.

References

1. -

2. en.wikipedia.org/wiki/CPU_cache

3.

4.

5. - - -

6.

7. pic.dhe.ibm.com/infocenter/sb2bi/.../SIPM

8. personal.cityu.edu.hk/~dcykcho/dco2230/

chappp2/sld028.htm

9.

file:///C:/Users/ambika/Downloads/technav.ieee.org/tag/4457/cache-memory‎
file:///C:/Users/ambika/Downloads/en.wikipedia.org/wiki/CPU_cache
file:///C:/Users/ambika/Downloads/en.wikipedia.org/wiki/Cache‎
http://www.webopedia.com/TERM/C/cache.html‎
http://www.webopedia.com/TERM/C/cache.html‎
http://www.wisegeek.org/what-is-cache-memory.htm‎
http://www.wisegeek.org/what-is-cache-memory.htm‎
http://www.computerhope.com/jargon/c/cache.htm‎
http://www.computerhope.com/jargon/c/cache.htm‎
file:///C:/Users/ambika/Downloads/pic.dhe.ibm.com/infocenter/sb2bi/.../SIPM_TS_CacheMemTypes.html‎
file:///C:/Users/ambika/Downloads/pic.dhe.ibm.com/infocenter/sb2bi/.../SIPM_TS_CacheMemTypes.html‎
file:///C:/Users/ambika/Downloads/personal.cityu.edu.hk/~dcykcho/dco2230/chappp2/sld028.htm
file:///C:/Users/ambika/Downloads/personal.cityu.edu.hk/~dcykcho/dco2230/chappp2/sld028.htm

	page2
	page4
	page5
	page6
	page7
	page8

