

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 10 October, 2013 Page No. 2936-2943

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2936

 Empowering Auditability of Public and Data

Dynamics for Depot Protection in Cloud

Prof.Santosh Kumar. B
1
, Vijaykumar .L

2

1Department of computer science and engineering, Poojya doddappa Appa College of engineering, Gulbarga, Karnataka, India,

email: santosh.bandak@gmail.com

2Department of computer science and engineering, Poojya doddappa Appa College of engineering, Gulbarga, Karnataka, India,

email:vijay86.lak@gmail.com

Abstract: Cloud Computing has been envisioned as the next-generation architecture of IT Enterprise. It moves the application software

and databases to the centralized large data centers, where the management of the data and services may not be fully trustworthy. This

unique paradigm brings about many new security challenges, which have not been well understood. This work studies the problem of

ensuring the integrity of data storage in Cloud Computing. In particular, we consider the task of allowing a third party auditor (TPA), on

behalf of the cloud client, to verify the integrity of the dynamic data stored in the cloud. The introduction of TPA eliminates the involvement

of the client through the auditing of whether his data stored in the cloud are indeed intact, which can be important in achieving economies

of scale for Cloud Computing. The support for data dynamics via the most general forms of data operation, such as block modification,

insertion, and deletion, is also a significant step toward practicality, since services in Cloud Computing are not limited to archive or backup

data only. While prior works on ensuring remote data integrity often lacks the support of either public Auditability or dynamic data

operations, this paper achieves both. We first identify the difficulties and potential security problems of direct extensions with fully dynamic

data updates from prior works and then show how to construct an elegant verification scheme for the seamless integration of these two

salient features in our protocol design. In particular, to achieve efficient data dynamics, we improve the existing proof of storage models by

manipulating the classic Merkle Hash Tree construction for block tag authentication. To support efficient handling of multiple auditing

tasks, we further explore the technique of bilinear aggregate signature to extend our main result into a multi-user setting, where TPA can

perform multiple auditing tasks simultaneously. Extensive security and performance analysis show that the proposed schemes are highly

efficient and provably secure.

Keywords: data dynamics, public auditability, data storage, cloud computing.

1. Introduction

Several trends are opening up the era of Cloud Computing,

which is an Internet-based development and use of computer

technology. The ever cheaper and more powerful processors,

together with the “software as a service” (SaaS) computing

architecture, are transforming data centers into pools of

computing service on a huge scale. Meanwhile, the increasing

network bandwidth and reliable yet flexible network

connections make it even possible that clients can now

subscribe high-quality services from data and software that

reside solely on remote data centers. Although envisioned as a

promising service platform for the Internet, this new data

storage paradigm in “Cloud” brings about many challenging

design issues which have profound influence on the security

and performance of the overall system. One of the biggest

concerns with cloud data storage is that of data integrity

verification at untrusted servers. For example, the storage

service provider, which experiences Byzantine failures

occasionally, may decide to hide the data errors from the

clients for the benefit of their own. What is more serious is that

for saving money and storage space the service provider might

neglect to keep or deliberately delete rarely accessed data files

which belong to an ordinary client. Consider the large size of

the outsourced electronic data and the client’s constrained

resource capability, the core of the problem can be generalized

as how can the client find an efficient way to perform

periodical integrity verifications without the local copy of data

files.

In order to solve the problem of data integrity checking, many

schemes are proposed under different systems and security

models . In all these works, great efforts are made to design

solutions that meet various requirements: high scheme

efficiency, stateless verification, unbounded use of queries and

retrievability of data, etc.

Considering the role of theverifier in the model, all the schemes

presented before fall into two categories: private auditability

and public auditability. Although schemes with private

auditability can achieve higher scheme efficiency, public

auditability allows anyone, not just the client (data owner), to

challenge the cloud server for correctness of data storage while

keeping no private information. Then, clients are able to

http://www.ijecs.in/
mailto:santosh.bandak@gmail.com

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2937

delegate the evaluation of the service performance to an

independent third party auditor (TPA), without devotion of

their computation resources. In the cloud, the clients

themselves are unreliable or may not be able to afford the

overhead of performing frequent integrity checks. Thus, for

practical use, it seems more rational to equip the verification

protocol with public auditability, which is expected to play a

more important role in achieving economies of scale for Cloud

Computing.

 Moreover, for efficiency consideration, outsourced data

themselves should not be required by the verifier for the

verification purpose. Another major concern among previous

designs is that of supporting dynamic data operation for cloud

data storage applications. In Cloud Computing, the remotely

stored electronic data might not only be accessed but also

updated by the clients, e.g., through block modification,

deletion, insertion, etc. Unfortunately, the state of the art in the

context of remote data storage mainly focus on static data files

and the importance of this dynamic data updates has received

limited attention so far . Moreover, as will be shown later, the

direct extension of the current provable data possession (PD

schemes to support data dynamics may lead to security

loopholes. Although there are many difficulties faced by

researchers, it is well believed that supporting dynamic data

operation can be of vital importance to the practical application

of storage outsourcing services. In view of the key role of

public auditability and data dynamics for cloud data storage,

we propose an efficient construction for the seamless

integration of these two components in the protocol design.

Our contribution can be summarized as follows:

1. We motivate the public auditing system of data storage

security in Cloud Computing, and propose a protocol

supporting for fully dynamic data operations, especially to

support block insertion, which is missing in most existing

schemes.

2. We extend our scheme to support scalable and efficient

public auditing in Cloud Computing. In particular, our scheme

achieves batch auditing where multiple delegated auditing tasks

from different users can be performed simultaneously by the

TPA.

3. We prove the security of our proposed construction and

justify the performance of our scheme through concrete

implementation and comparisons with the state of the art.

1.1 Related Work

Recently, much of growing interest has been pursued in the

context of remotely stored data verification Ateniese was the

first to consider public auditability in their defined “provable

data possession” model for ensuring possession of files on

untrusted storages. In their scheme, they utilize RSA-based

homomorphic tags for auditing outsourced data, thus public

auditability is achieved. However, Ateniese et al. do not

consider the case of dynamic data storage, and the direct

extension of their scheme from static data storage to dynamic

case may suffer design and security problems. In their

subsequent work , Ateniese et al. propose a dynamic version of

the prior PDP scheme. However, the system imposes a priori

bound on the number of queries and does not support fully

dynamic data operations, i.e., it only allows very basic block

operations with limited functionality, and block insertions

cannot be supported. Wang et al. consider dynamic data

storage in a distributed scenario, and the proposed challenge-

response protocol can both determine the data correctness and

locate possible errors. Similar to [12], they nly consider partial

support for dynamic data operation. Juels and Kaliski [3]

describe a “proof of retrievability” model, where spot-checking

and error-correcting codes are used to ensure both “possession”

and “retrievability” of data files on archive service systems.

Specifically, some special blocks called “sentinels” are

randomly embedded into the data file F for detection purpose,

and F is further encrypted to protect the positions of these

special blocks. However, like [12], the number of queries a

client can perform is also a fixed priori, and the introduction of

precomputed “sentinels” prevents the development of realizing

dynamic data updates. In addition, public auditability is not

supported in their scheme. Shacham and Waters [4] design an

improved PoR scheme with full proofs of security in the

security model defined in [3]. They use publicly verifiable

homomorphic authenticators built from

BLS signatures [16], based on which the proofs can be

aggregated into a small authenticator value, and public

retrievability is achieved. Still, the authors only consider static

data files. Erway et al. [14] were the first to explore

constructions for dynamic provable data possession.

They extend the PDP model in [2] to support provable updates

to stored data files using rank-based authenticated skip lists.

This scheme is essentially a fully dynamic version of the PDP

solution. To support updates, especially for block insertion,

they eliminate the index information in the “tag” computation

in Ateniese’s PDP model [2] and employ authenticated skip list

data structure to authenticate the tag information of challenged

or updated blocks first before the verification procedure.

However, the efficiency of their scheme remains unclear.

Although the existing schemes aim at providing integrity

verification for different data storage systems, the problem of

supporting both public auditability and data dynamics has not

been fully addressed. How to achieve a secure and efficient

design to seamlessly integrate these two important components

for data storage service remains an open challenging task in

Cloud Computing.

Portions of the work presented in this paper have previously

appeared as an extended abstract [1]. We revise the paper a lot

and add more technical details as compared to [1]. First, in

Section 3.3, before the introduction of our proposed

construction, we present two basic solutions (i.e., the MAC-

based and signature-based schemes) for realizing data

auditability and discuss their demerits in supporting public

auditability and data dynamics. Second, wegeneralize the

support of data dynamics to both PoR and PDP models and

discuss the impact of dynamic data operations on the overall

system efficiency both. In particular, we emphasize that while

dynamic data updates can be performed efficiently in PDP

models more efficient protocols need to be designed for the

update of the encoded files in PoR models.

Fig 1: cloud data storage architecture

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2938

2. Reserch Elaborations
Ateniese et al. [2] are the first to consider public auditability in

their defined “provable data possession” model for ensuring

possession of files on untrusted storages. In their scheme, they

utilize RSA-based homomorphic tags for auditing outsourced

data, thus public auditability is achieved. However, Ateniese et

al. do not consider the case of dynamic data storage, and the

direct extension of their scheme from static data storage to

dynamic case may suffer design and security problems.

In their subsequent work [12], Ateniese et al. propose a

dynamic version of the prior PDP scheme. However, the

system imposes a priori bound on the number of queries and

does not support fully dynamic data operations, i.e., it only

allows very basic block operations with limited functionality,

and block insertions cannot be supported.

In [13], Wang et al. consider dynamic data storage in a

distributed scenario, and the proposed challenge-response

protocol can both determine the data correctness and locate

possible errors.

Similar to [12], they only consider partial support for dynamic

data operation. Juels and Kaliski [3] describe a “proof of

retrievability”model, where spot-checking and error-correcting

codes are used to ensure both “possession” and “retrievability”

of data files on archive service systems. Specifically, some

special blocks called “sentinels” are randomly embedded into

the data file F for detection purpose, and F is further encrypted

to protect the positions of these special blocks. However, like

[12], the number of queries a client can perform is also a fixed

priori, and the introduction of precomputed “sentinels”

prevents the development of realizing dynamic data updates. In

addition, public Auditability is not supported in their scheme.

Shacham and Waters [4] design an improved PoR scheme with

full proofs of security in the security model defined in [3].

They use publicly verifiable homomorphic authenticators built

from BLS signatures [16], based on which the proofs can be

aggregated into a small authenticator value, and public

retrievability is achieved. Still, the authors only consider static

data files. Erway et al. [14] were the first to explore

constructions for dynamic provable data possession. They

extend the PDP model in [2] to support provable updates to

stored data files using rank-based authenticated skip lists. This

scheme is essentially a fully dynamic version of the PDP

solution.

To support updates, especially for block insertion, they

eliminate the index information in the “tag” computation in

Ateniese’s PDP model [2] and employ authenticated skip list

data structure to authenticate the tag information of challenged

or updated blocks first before the verification procedure.

However, the efficiency of their scheme remains unclear.

Although the existing schemes aim at providing integrity

verification for different data storage systems, the problem of

supporting both public auditability and data dynamics has not

been fully addressed. How to achieve a secure and efficient

design to seamlessly integrate these two important components

for data storage service remains an open challenging task in

Cloud Computing. Portions of the work presented in this paper

have previously appeared as an extended abstract [1]. We

revise the paper a lot and add more technical details as

compared to [1].

3 Problem Statement
3.1 System Model

A representative network architecture for cloud data storage is

illustrated in Fig. 1. Three different network entities can be

identified as follows:

Client: an entity, which has large data files to be stored in the

cloud and relies on the cloud for data maintenance and

computation, can be either individual consumers or

organizations;

Cloud Storage Server (CSS): an entity, which is managed by

Cloud Service Provider (CSP), has significant storage space

and computation resource to maintain the clients’ data;

Third Party Auditor: an entity, which has expertise and

capabilities that clients do not have, is trusted to assess and

expose risk of cloud storage services on behalf of the clients

upon request.

In the cloud paradigm, by putting the large data files on the

remote servers, the clients can be relieved of the burden of

storage and computation. As clients no longer possess their

data locally, it is of critical importance for the clients to ensure

that their data are being correctly stored and maintained. That

is, clients should be equipped with certain security means so

that they can periodically verify the correctness of the remote

data even without the existence of local copies.

In case that clients do not necessarily have the time, feasibility

or resources to monitor their data, they can delegate the

monitoring task to a trusted TPA.

2.2 Security Model

Following the security model defined in [4], we say that the

checking scheme is secure if 1) there exists no polynomialtime

algorithm that can cheat the verifier with nonnegligible

probability; and 2) there exists a polynomialtime extractor that

can recover the original data files by carrying out multiple

challenges-responses. The client or TPA can periodically

challenge the storage server to ensure the correctness of the

cloud data, and the original files can be recovered by

interacting with the server. The authors in [4] also define the

correctness and soundness of their scheme: the scheme is

correct if the verification algorithm accepts when interacting

with the valid prover (e.g., the server returns a valid response)

and it is sound if any cheating server that convinces the client it

is storing the data file is actually storing that file. Note that in

the “game” between the adversary and the client, the adversary

has full access to the information stored in the server, i.e., the

adversary can play the part of the prover (server). The goal of

the adversary is to cheat the verifier successfully, i.e., trying to

generate valid responses and pass the data verification without

being detected.

Our security model has subtle but crucial difference from that

of the existing PDP or PoR models [2], [3], [4] in the

verification process. As mentioned above, these schemes do

not consider dynamic data operations, and the block insertion

cannot be supported at all. This is because the construction of

the signatures is involved with the file index information

.HðnamekiÞ or hðvkiÞ should be generated by the client in the

verification process. However, in our new construction the

client has no capability to calculate HðmiÞ without the data

information. In order to achieve this blockless verification, the

server should take over the job of computing HðmiÞ and then

return it to the prover. The consequence of this variance will

lead to a serious problem: it will give the adversary more

opportunities to cheat the prover by manipulating HðmiÞ or mi.

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2939

Due to this construction, our security model differs from that of

the PDP or PoR models in both the verification and the data

updating process. Specifically, the tags in our scheme should

be authenticated in each protocol execution other than

calculated or prestored by the verifier (the details will Fig. 1.

Cloud data storage architecture. be shown in Section 3). In the

following descriptions, we will use server and prover (or client,

TPA, and verifier) interchangeably.

3.3 Design Goals

Our design goals can be summarized as the following:

1. Public auditability for storage correctness assurance to

allow anyone, not just the clients who originally stored the file

on cloud servers, to have the capability to verify the correctness

of the stored data on demand.

2. Dynamic data operation support: to allow the clients to

perform block-level operations on the data files while

maintaining the same level of data correctness assurance. The

design should be as efficient as possible so as to ensure the

seamless integration of public auditability and dynamic data

operation support.

3. Blockless verification: no challenged file blocks should be

retrieved by the verifier (e.g., TPA) during verification process

for efficiency concern.

4. System Analysis
Existing System:

From the perspective of data security, which has always been

an important aspect of quality of service, Cloud Computing

inevitably poses new challenging security threats for number of

reasons.

1.Firstly, traditional cryptographic primitives for the purpose of

data security protection can not be directly adopted due to the

users’ loss control of data under Cloud Computing. Therefore,

verification of correct data storage in the cloud must be

conducted without explicit knowledge of the whole data.

Considering various kinds of data for each user stored in the

cloud and the demand of long term continuous assurance of

their data safety, the problem of verifying correctness of data

storage in the cloud becomes even more challenging.

2.Secondly, Cloud Computing is not just a third party data

warehouse. The data stored in the cloud may be frequently

updated by the users, including insertion, deletion,

modification, appending, reordering, etc. To ensure storage

correctness under dynamic data update is hence of paramount

importance.

Disadvantages:

These techniques, while can be useful to ensure the storage

correctness without having users possessing data, can not

address all the security threats in cloud data storage, since they

are all focusing on single server scenario and most of them do

not consider dynamic data operations.

As an complementary approach, researchers have also

proposed distributed protocols for ensuring storage correctness

across multiple servers or peers. Again, none of these

distributed schemes is aware of dynamic data operations. As a

result, their applicability in cloud data storage can be

drastically limited.

Proposed System:

In this paper, we propose an effective and flexible distributed

scheme with explicit dynamic data support to ensure the

correctness of users’ data in the cloud. We rely on erasure

correcting code in the file distribution preparation to provide

redundancies and guarantee the data dependability. This

construction drastically reduces the communication and storage

overhead as compared to the traditional replication-based file

distribution techniques. By utilizing the homomorphic token

with distributed verification of erasure-coded data, our scheme

achieves the storage correctness insurance as well as data error

localization: whenever data corruption has been detected

during the storage correctness verification, our scheme can

almost guarantee the simultaneous localization of data errors,

i.e., the identification of the misbehaving server(s).

Advantages:

1. Compared to many of its predecessors, which only provide

binary results about the storage state across the distributed

servers, the challenge-response protocol in our work further

provides the localization of data error.

2. Unlike most prior works for ensuring remote data integrity,

the new scheme supports secure and efficient dynamic

operations on data blocks, including: update, delete and

append.

3. Extensive security and performance analysis shows that the

proposed scheme is highly efficient and resilient against

Byzantine failure, malicious data modification attack, and even

server colluding attacks.

5. Security Analysis
In this section, we evaluate the security of the proposed scheme

under the security model Following [4], we consider a file F

after Reed-Solomon coding.

Definition 1 (CDH Problem):

CDH assumption holds in G if no t time algorithm has the non-

negligible probability in solving the CDH problem. A proof-

of-retrievability protocol is sound if any cheating prover that

convinces the verification algorithm that it is storing a file F is

actually storing that file, which we define in saying that it

yields up the file F to an extractor algorithm which interacts

with it using the proof-of-retrievability protocol. We say that

the adversary (cheating server) is admissible if it convincingly

answers an fraction of verification challenges. We formalize

the notion of an extractor and then give a precise definition for

soundness.

Theorem1. If the signature scheme is existentially unforgeable

and the computational Diffie-Hellman problem is hard in

bilinear groups, no adversary against the soundness of our

public verification scheme could cause verifier to accept in a

proof-of retrievability protocol instance with non-negligible

probability, except by responding with correctly computed

values.

Theorem 2. Suppose a cheating prover on an n-block file F is

well-behaved in the sense above, and that it is admissible.

Proof. The verification of the proof-of-retrievability is similar

to [4], we omit the details of the proof here. The difference in

our work is to replace HðiÞ with HðmiÞ such that secure

update can still be realized without including the index

information. These two types of tags are used for the same

purpose (i.e., to prevent potential attacks), so this change will

not affect the extraction algorithm defined in the proof-of-

retrievability. We can also prove that extraction always

succeeds against a well-behaved cheating prover, with the same

probability analysis given in [4].

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2940

Theorem 3. Given a fraction of the n blocks of an encoded file

F, it is possible to recover the entire original file F with all but

negligible probability. Proof. Based on the rate Reed-Solomon

codes, this result can be easily derived, since any fraction of

encoded fileblocks suffices for decoding.

The security proof for the multiclient batch auditing is similar

to the single-client case, thus omitted here.

6. Performance Analysis
We list the features of our proposed scheme in Table 3 and

make a comparison of our scheme and the state of the art. The

scheme in [14] extends the original PDP [2] to support data

dynamics using authenticated skip list. Thus, we call it DPDP

scheme thereafter. For the sake of completeness, we

implemented both our BLS and RSA-based instantiations as

well as the state-of-the-art scheme [14] in Linux.

Our experiment is conducted using C on a system with an Intel

Core 2 processor running at 2.4 GHz, 768 MB RAM, and a

7200 RPM Western Digital 250 GB Serial ATA drive with an

8 MB buffer. Algorithms (pairing, SHA1 etc.) are implemented

using the Pairing-Based Cryptography (PBC) library version

0.4.18 and the crypto library of OpenSSL version 0.9.8h. To

achieve 80-bit security parameter, the curve group we work on

has a 160-bit group order and the size of modulus N is 1,024

bits. All results are the averages of 10 trials. Table 4 lists the

performance metrics for 1 GB file under various erasure code

rate while maintaining high detection probability (99 percent)

of file corruption.

From Table 4, it can be observed that the overall performance

of the three schemes are comparable to each other. Due to the

smaller block size (i.e., 20 bytes) compared to RSA-based

instantiation, our BLS-based instantiation is more than two

times faster than the other two in terms of server computation

time. However, it has larger computation cost at the verifier

side as the pairing operation in BLS scheme consumes more

time than RSA techniques. Notethat the communication cost of

DPDP scheme is the largest among the three in practice. This is

because there are 4 tuple values associated with each skip list

node for one proof, which results in extra communication cost

as compared to our constructions. The communication

overhead (server’s response to the challenge) of our RSA-

based instantiation and DPDP scheme [14] under different

block sizes is illustrated in Fig. 6 We also conduct experiments

for multiclient batch auditing and demonstrate its efficiency in

Fig. 7, where the number of clients in the system is increased

from 1 to approximately 100 with intervals of 4. As we can see,

batch auditing not only enables simultaneously verification

from multiple-client, but also reduces the computation cost on

the TPA side. Given total K clients in the system, the batch

auditing equation helps reduce the number of expensive pairing

operations from 2K, as required in the individual auditing.

Fig 2:Performance Comparison under Different Tolerance Rate

of File Corruption for 1GB File

Fig 3: Comparison of communication complexity between our

RSAbased instantiation and DPDP [14], for 1 GB file with

variable block sizes. The detection probability is maintained to

be 99 percent.

Fig 4: Performance comparison between individual auditing

and batch auditing. The average per client auditing time is

computed by dividing total auditing time by the number of

clients in the system.

7. Results And Discussion

The below fig shows the services in the cloud.

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2941

Fig 5: Cloud Login page

Fig 6:Cloud Authentication server

Fig 7:Resource page

Fig 8:User Authentication by entering key

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2942

Fig 9: IP address of user

Fig 10:Mobile Alert page

CONCLUSION

In this paper, we investigated the problem of data security in

cloud data storage, which is essentially a distributed storage

system. To ensure the correctness of users’ data in cloud data

storage, we proposed an effective and flexible distributed

scheme with explicit dynamic data support, including block

update, delete, and append. We rely on erasure-correcting code

in the file distribution preparation to provide redundancy parity

vectors and guarantee the data dependability. By utilizing the

homomorphic token with distributed verification of erasure

coded data, our scheme achieves the integration of storage

correctness insurance and data error localization, i.e., whenever

data corruption has been detected during the storage

correctness verification across the distributed servers, we can

almost guarantee the simultaneous identification of the

misbehaving server(s). Through detailed security and

performance analysis, we show that our scheme is highly

efficient and resilient to Byzantine failure, malicious data

modification attack, and even server colluding attacks.We

believe that data storage security in Cloud Computing, an area

full of challenges and of paramount importance, is still in its

infancy now, and many research problems are yet to be

identified. We envision several possible directions for future

research on this area.

REFERENCES

[1] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling

Public Verifiability and Data Dynamics for Storage Security in

CloudComputing,” Proc. 14th European Symp. Research in

Computer Security (ESORICS ’09), pp. 355-370, 2009.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song, “Provable Data Possession at

Untrusted Stores,” Proc. 14th ACM Conf. Computer and

Comm. Security (CCS ’07), pp. 598-609, 2007.

[3] A. Juels and B.S. Kaliski Jr., “Pors: Proofs of Retrievability

for Large Files,” Proc. 14th ACM Conf. Computer and Comm.

Security (CCS ’07), pp. 584-597, 2007.

[4] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Proc. 14th Int’l Conf. Theory and Application

of Cryptology and Information Security: Advances in

Cryptology (ASIACRYPT ’08), pp. 90-107, 2008.

[5] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of

Retrievability: Theory and Implementation,” Report 2008/175,

Cryptology ePrint Archive, 2008.

[6] M. Naor and G.N. Rothblum, “The Complexity of Online

Memory Checking,” Proc. 46th Ann. IEEE Symp. Foundations

of Computer Science (FOCS ’05), pp. 573-584, 2005.

[7] E.-C. Chang and J. Xu, “Remote Integrity Check with

Dishonest Storage Server,” Proc. 13th European Symp.

Research in Computer Security (ESORICS ’08), pp. 223-237,

2008.

[8] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-

Preserving Audit and Extraction of Digital Contents,” Report

2008/186, Cryptology ePrint Archive, 2008.

[9] A. Oprea, M.K. Reiter, and K. Yang, “Space-Efficient

Block Storage Integrity,” Proc. 12th Ann. Network and

Distributed System Security

Symp. (NDSS ’05), 2005.

[10] T. Schwarz and E.L. Miller, “Store, Forget, and Check:

Using Algebraic Signatures to Check Remotely Administered

Storage,” Proc. 26th IEEE Int’l Conf. Distributed Computing

Systems (ICDCS ’06), p. 12, 2006.

[11] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable

and Secure Sensor Data Storage with Dynamic Integrity

Assurance,” Proc. IEEE INFOCOM, pp. 954-962, Apr. 2009.

[12] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc.

Fourth Int’l Conf. Security and Privacy in Comm. Networks

(SecureComm ’08), pp. 1-10, 2008.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data

StorageSecurity in Cloud Computing,” Proc. 17th Int’l

Workshop Quality of Service (IWQoS ’09), 2009.

[14] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia,

“Dynamic Provable Data Possession,” Proc. 16th ACM Conf.

Computer and Comm. Security (CCS ’09), 2009.

Prof.Santosh Kumar, IJECS Volume 2 Issue10 October,2013 Page No.2936-2043 Page 2943

[15] K.D. Bowers, A. Juels, and A. Oprea, “Hail: A High-

Availability and Integrity Layer for Cloud Storage,” Proc. 16th

ACM Conf. Computer and Comm. Security (CCS ’09), pp.

187-198, 2009.

	PointTmp

