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ABSTRACT 

The modern era is moving towards computing devices that have a high degree of mobility. The drawbacks 

from the security features that has to be handled is that mobile devices need to be power conscious and it can also be 

easily stolen due to less weight and small form factor. Due to limited power availability the amount of cryptographic 

computation should be minimized as these consume more power. The other major drawback from the security angle 

on physically missing the compute device, the data stored in both dynamic and static storage of the device can be 

retrieved by unauthorized persons leading to breach of privacy and confidentiality. This paper explains the modern 

compute device mechanisms using which the privacy and confidentiality concerns be addressed with limited amount 

of usage of cryptographic functions. The limited usage of cryptographic functions also has an advantage of low battery 

consumed. 

 

The multi-board design with CPU module and carrier board is developed at RISE LAB, Department of CSE, 

IIT Madras. 

 

Keywords: Modern Computing Devices, Tamper Detection, High Assurance Boot, Digital signature, Root File 

System Data, Freescale iMX6 ARM platform. 

 

1. Introduction 

 

The computing devices are stolen more easily 

nowadays. This leads to misuse of file system data by 

the unauthorized users. The data can be of personal 

contacts, images, videos and other secure files. These 

data can be protected from others by the cryptographic 

encryption techniques. When the data is residing on 

the storage media, the data will be in encrypted form. 

If the data has to be accessed, the private key is 

required for decrypting the data and then subsequently 

mounted. This secret private key is only known to the 

owner of the computing device. In case of phone lost, 

an attacker cannot retrieve the data without knowing 

the secret key.  

Usually in the context of data security, one 

actually refers to programming in a very secure 

manner alone. What we are attempting  

to do here is the complete product security –Hardware 

from being physically attacked, the verification of OS 

image to be that of the known factory-shipped image 

instead of any corruptions, and the root file system 

data also encrypted when it is stored. 

 

2. Related Work 

 

2.1 On Chip AES Scheme 

 

The past activities have carried out the idea of 

putting away AES keys in CPU registers. In AES-for-
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x86-particular, most of these past arrangements have 

failed to guard access-secured state and liable to the 

transport monitoring attacks. Also it is not clear how to 

augment these answers for protecting the voluminous 

access-secured state.  

 

AESSE [2], Muller et al. AES implementation 

for x86 processors is done by leveraging the SSE 

functionality of Pentium III and to store both encoding 

and decoding keys to perform the AES computation. 

The initial implementation, on FIPS documentation 

[4], performs all the calculations sequentially on the 

information data, by creating a moderate 

implementation. The final implementation utilizes the 

table lookup optimization, to improve performance 

from a 100 log jam to a 6 log jam over regular AES. 

For this implementation, all the AES lookup tables are 

secured in DRAM.  

 

The further work, TRESOR [3] proceeds on 

the AESSE functionality to bolster 64-bit CPUs with 

backing for Intel's encoding guidelines (AES-NI). This 

interpretation is adaptable to memory attacks because 

all AES's state in CPU is secured in AES-NI. On the 

other hand, this approach is not extensible past 

ensuring minimal AES implementations. 

 

Simmon [10] stores a solitary 128-bit AES 

key. This key decodes different keys and performs 

encoding in DRAM. This increase the performance to 

2 stoppage over formal AES. Thus the implementation 

portrayal indicates that no short-term data is put away 

in DRAM, although the paper does not give clear 

explanation on how large round tables are being 

secured in model-particular registers 

 

2.2 Different models of Resistance 

 

Encrypted scheme aims at securing data 

encoded in DRAM. The two main contrasts between 

encrypted RAM and our approach are: (1) performance 

overhead of encrypted RAM is usually high and (2) 

needs further investigation on encrypted DRAM that it 

can ensure over DMA attacks. DMA transfers ought to 

be automatically decoded. DMA does the quick 

memory access.  

 

Cryptkeeper [5] extends the conventional 

memory ranking by suggesting and scrambling a huge 

divide of DRAM. Their implementation keeps 

DRAM's encryption keys in the secure parcel of RAM.  

 

Chen [6] suggested the memory’s encoding 

idea for techniques when removed from the cache. 

They use cache locking to guarantee those tricky data 

leaving the SoC is encoded. On the other hand, this 

past work varies from Sentry in four features. To start 

with, it just depicts a preparatory layout without 

execution. Second, the estimation is done in simulation 

on top of a Pentium-based architecture while 

artificially infusing is based on costs. Third, it is 

targeted at embedded systems and does not meet the 

Smartphone needs. There is an alternate arrangement 

of acceptance are made. Finally, the cache-locking 

technique talked about is hypothetical, and in this 

manner it is not clear how the cache bolts its 

substance.  

 

Different process has been suggested to store 

encryption keys in a mystery place. ZIA [7] and 

Transient Authentication [8] utilize client take away, 

small hardware tokens, and CleanOS [9] utilizes cloud 

servers for securing encryption keys. Dissimilar to 

Sentry, those schemes rely on additional outer 

infrastructure as a Web association [9] or short-range 

remote interfaces [7, 8]. Transient Authentication also 

not bolsters running background application safely 

when the telephone is bolted. A further distinction 

remains in the sort of concept used. CleanOS gives 

APIs that allow execution characterize as delicate data 

with assurance. Instead, Sentry by encoding 

applications' state diminishes the programmer's weight.  

 

Keypad [11] maintains record of system 

document accesses. This approach is not unequivocally 

safeguard over memory attacks; and it enables the 

victim to control what bit of data has been 

compromised when the mobile is lost. 

 

2.3 Supportive Threat Models 

 

A huge collection of work targets at 

guaranteeing the respectability and confidentiality of 

trusted applications' code and data [13, 14, 15]. These 

works safeguard over a compromised OS or a 



DOI: 10.18535/ijecs/v5i6.33 

 

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16992 

compromised favored VM, and Sentry relies upon the 

OS to shield over DRAM attacks. 

 

3. Proposed Work 

 

We propose to implement the following 

features. They are tamper detection, high assurance 

boot and encrypted root file system data. We design 

the carrier board with tamper functionality. We 

propose to provide end-to-end secure computing 

device from the hardware to application suites at 

multiple levels of protection. 

 

At hardware level, tamper detection 

mechanism is inbuilt in processor. On detecting 

physical tamper, an appropriate action is programmed 

inside the processor. If the device is secure, then 

tamper is detected immediately and all confidential 

data is erased automatically or made inaccessible. 

 

 
 

Fig 1. Secure Boot Sequence 

 

Booting is made secure by comparing OS 

image with the OEM signed image. If any image 

modification occurred then booting is not allowed and 

device will be hanged. Fig 1 illustrates the verification 

of OS loaded image with the OEM signed image to 

perform secure booting. 

 

Memory data is protected and verified by hash 

algorithm. The entire file system is encrypted with 

OTPMK (One-Time Programmable Master Key) to 

avoid possibility of modified rootkits. This key cannot 

be modified and only known to the authenticated user. 

Any attempt for modification or corruption, data will 

be erased as tamper is programmed. Decryption also 

requires the same private key. 

 

4. Methodology 

 

This paper deals with the following 

methodology to achieve the better performance. 

 

4.1 Tamper Detection 

 

In order to ensure that the physical device is 

not tampered, there is a tamper detection mechanism 

inbuilt as part of the processor itself. On detection of a 

physical tamper, appropriate action can be 

programmed inside the processor. Typically for a very 

secure device, the default action for the detection of a 

tamper event would be that all private confidential 

information are automatically erased or made 

inaccessible. This mechanism available in the 

processor is used as one means of protection of critical 

data stored in the mobile compute device when it is 

lost. 

 

4.2 High Assurance Boot 

 

The Operating System in computing device for 

booting is to be protected from unauthorized 

modifications. The OS image that is attempting to get 

booted should not have been modified as compared to 

the original image that was shipped out from factory. If 

there have been any modifications to the image, the 

device would not be booting up. This kind of 

protection to the device is referred as High Assurance 

Boot. 

 

4.3 Root File System Data 

 

The next level of protection to be handled is 

stored data in the memory card. This protection level is 

highly required as most confidential data will be 

present here.  

 

For example, when an owner of the device is 

using a compromised application in the device, might 

lose critical information from the device sent through 

this compromised application to some remote location. 

In order to avoid the possibility of modified rootkits, 

the entire root file system is encrypted and stored. This 

area gets decrypted only after the private key is entered 

at the time of mounting the root file system. Through 

this mechanism, the data in Root File System is 

protected from getting compromised.  
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5. Attacks Handled 

 

The computing devices are facing several 

memory attacks. Some of the memory attacks 

discussed in our paper are cold Boot, Bus monitoring 

and DMA attacks. 

 

5.1 Cold Boot Attack  

 

Cold Boot attack is a physical attack where 

even after removing the memory from device on 

switch off, the data in it will not be erased 

immediately. So the attacker can both mount this 

memory to another device and retrieve the data or by 

resetting the system and rebooting with the attacker-

controlled OS can read and output the memory. But on 

encrypting the memory the data read out cannot be 

understood. 

5.2 Bus Monitoring Attack  

 

Data is carried within CPU, memory and other 

peripherals by the bus mechanism. The attacker can 

track this bus to snoop the data. On encrypting and 

decrypting the entire CPU the attack is not possible to 

occur. This is one way of securing the data from 

attacker. 

 

5.3 DMA Attack 

 

Direct Memory Access (DMA) Attack is 

called Firewire attacks that changes DMA locations to 

read arbitrary memory locations containing sensitive 

data. ARM Trust zone is the system security for wide 

area of client and server computing. ARM Trusted 

Zone will deny access to DMA and classify the 

memory as normal world and secure world. Normal 

world contains user readable files and secure world 

contains files that can be only read by secure OS. 

Mostly confidential data are stored in secure world. 

 

6. System  Setup  

 

Freescale iMX6 ARM processor 

 

The IITM System on a Module (SOM) is 

Freescale’s IMX6Q based platform. This module 

houses a low cost Quad-Core ARM® Cortex A9 

processor at 1GHz with 1 MB of L2 cache, and on 

board 64-bit DDR3.The SOM has a small factor, 

roughly measuring around 6.76 cm x 5.7 mm. The 

SOM is always used with a carrier board. The carrier 

board also houses standard communication interfaces 

like GSM WIFI/Blue tooth, USB2.0 high-speed serial 

interface. Support options for integrated market 

specific I/O like HDMI, SD3.0, GigE, SATA-II with 

integrated PHY,PCI Express ® with integrated PHY 

are also present. The carrier board has two MIPI front 

and back cameras, a 7x11 touch screen, an audio 

module, fuel gauge for battery life indication, NFC 

support and SD card slots. IITM SOM and the Carrier 

board are together housed in an ergonomic enclosure. 

They are together referred as IITM Tablet. The IITM 

tablet has a tamper detection mechanism, high 

assurance secure boot, encrypted file system support. 

This makes it as a perfect lab platform for developing 

secure systems.   

The following are some of the processor 

specific features that our system is leveraging on for 

providing the secure functionalities: 

i. ARM TrustZone including the TZ structural 

planning. 

ii. SJC-System JTAG Controller. Regulating so 

as to shield JTAG from investigate port 

assaults or obstructing the entrance to the 

framework troubleshoot highlights  

iii. CAAM - Cryptographic Acceleration and 

Assurance Module, fusing 16KB protected 

RAM  

iv. SNVS - Secure Non-Volatile Storage, 

including Secure Real Time Clock  

v. CSU - Central Security Unit. Arranged amid 

boot and by e-combines, and will focus the 

security level operation mode and also the TZ 

approach  

vi. A-HAB-Advanced High Assurance Boot - 

HABv4 with the following implanted 

upgrades: SHA-256, 2048 bit RSA key, 

variant control instrument and warm boot. 

Security is upheld by:  

i. High Assurance Boot (HAB4) System  

ii. ARM TrustZone (TZ) Trusted Execution 

environment  
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iii. DDR Memory secure area assurance by 

TrustZone Address Space Controller  

iv. On-chip RAM (OCRAM) single area 

TrustZone assurance  

v. Peripheral access arrangement control, 

utilizing Central Security Unit (CSU)  

vi. One-Time Programmable (OTP) electrical 

circuit exhibit (Total of 3840-bit e-wires) by 

means of the On-chip electrical wire controller 

(OCOTP_CTRL)  

vii. CAAM and SNVS security construction 

modeling, giving:  

viii. 16KB Secure RAM  

ix. Secure Real Time Counters  

x. Security State Controller  

xi. Encryption and Hashing capacities, Random 

Number Generator (RNG)  

xii. Security Violation/Tamper Detection & 

Reporting  

xiii. System JTAG controller (SJC)  

xiv. Secure Real Time Clock 

 

7. Implementation 

 

 This section deals with the implementation of 

secure U-boot. The structure of signed secure U-boot 

image is shown in Fig 2. The three main parts of 

implementation are: 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Secure U-Boot Image 

 

7.1 Secure U-boot creation 

 

 The steps for creation of secure U-boot are 

 

i. Initially, U-boot repository source code has to 

be extracted from Freescale.  

ii. To support cross compilation on to ARM 

platform, corresponding variables have to be 

exported.  

iii. Next, base address should be fixed for loading 

the image into the memory.  

iv. U-boot.lds file is changed for adding HAB 

related enhancements.  

v. One more file is added to U-boot main code 

for enabling hab_status command.  

vi. This command will study HAB events and 

perform secure boot debugging.  

 

7.2 Installation of CST tool 

 

 The Code Signing Tool (CST) of version CST 

2.0 is installed. CST contains executables for signing 

the image, generation of certificates and for key 

generation like fuse values. 

 

7.3 Image Signing  

 

 The unsigned U-boot images are placed in a 

folder along with the U-boot.bin for signing. Keys are 

selected for CSF signing. A script file 

habimagegene.sh is generated and executed for 

producing the padded and signed U-boot file.  

 

8. Conclusion 

 

This paper is handling the security of the entire 

system with several secure features like tamper 

detection, high assurance boot and encrypted file 

system against the memory attacks. From the above 

preliminary discussion of the features, it is clear that 

the only way for us to implement a high end secure 

system would be to make use of processor internal 

features and this is precisely what the system proposed 

by us is leveraging on.  

 

9. Future Work 

 

As part of this work, we have secured the device from 

the hardware enclosure to the boot loader to the OS 

image as well as the root file system completely. The 

next layer that is required to be done is the applications 

on the Android layer that needs to be protected and 
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made secure. For this, the security framework provided 

by Android has to be studied and adopted to make the 

Application SW layer also to be very secure. The next 

step is to secure the execution environment and the 

critical programs need to execute securely. 
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