
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 6 June 2016, Page No. 16990-16995

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16990

Protecting Data in Modern Computing Devices

M. Suganiya
1
 , Dr. A. Pravin

2

Student, CSE Department,

Sathyabama University,

Chennai, India

suganiya11@gmail.com

Assistant Professor, CSE Department,

Sathyabama University,

Chennai, India

pravin_ane@rediffmail.com

ABSTRACT

The modern era is moving towards computing devices that have a high degree of mobility. The drawbacks

from the security features that has to be handled is that mobile devices need to be power conscious and it can also be

easily stolen due to less weight and small form factor. Due to limited power availability the amount of cryptographic

computation should be minimized as these consume more power. The other major drawback from the security angle

on physically missing the compute device, the data stored in both dynamic and static storage of the device can be

retrieved by unauthorized persons leading to breach of privacy and confidentiality. This paper explains the modern

compute device mechanisms using which the privacy and confidentiality concerns be addressed with limited amount

of usage of cryptographic functions. The limited usage of cryptographic functions also has an advantage of low battery

consumed.

The multi-board design with CPU module and carrier board is developed at RISE LAB, Department of CSE,

IIT Madras.

Keywords: Modern Computing Devices, Tamper Detection, High Assurance Boot, Digital signature, Root File

System Data, Freescale iMX6 ARM platform.

1. Introduction

The computing devices are stolen more easily

nowadays. This leads to misuse of file system data by

the unauthorized users. The data can be of personal

contacts, images, videos and other secure files. These

data can be protected from others by the cryptographic

encryption techniques. When the data is residing on

the storage media, the data will be in encrypted form.

If the data has to be accessed, the private key is

required for decrypting the data and then subsequently

mounted. This secret private key is only known to the

owner of the computing device. In case of phone lost,

an attacker cannot retrieve the data without knowing

the secret key.

Usually in the context of data security, one

actually refers to programming in a very secure

manner alone. What we are attempting

to do here is the complete product security –Hardware

from being physically attacked, the verification of OS

image to be that of the known factory-shipped image

instead of any corruptions, and the root file system

data also encrypted when it is stored.

2. Related Work

2.1 On Chip AES Scheme

The past activities have carried out the idea of

putting away AES keys in CPU registers. In AES-for-

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16991

x86-particular, most of these past arrangements have

failed to guard access-secured state and liable to the

transport monitoring attacks. Also it is not clear how to

augment these answers for protecting the voluminous

access-secured state.

AESSE [2], Muller et al. AES implementation

for x86 processors is done by leveraging the SSE

functionality of Pentium III and to store both encoding

and decoding keys to perform the AES computation.

The initial implementation, on FIPS documentation

[4], performs all the calculations sequentially on the

information data, by creating a moderate

implementation. The final implementation utilizes the

table lookup optimization, to improve performance

from a 100 log jam to a 6 log jam over regular AES.

For this implementation, all the AES lookup tables are

secured in DRAM.

The further work, TRESOR [3] proceeds on

the AESSE functionality to bolster 64-bit CPUs with

backing for Intel's encoding guidelines (AES-NI). This

interpretation is adaptable to memory attacks because

all AES's state in CPU is secured in AES-NI. On the

other hand, this approach is not extensible past

ensuring minimal AES implementations.

Simmon [10] stores a solitary 128-bit AES

key. This key decodes different keys and performs

encoding in DRAM. This increase the performance to

2 stoppage over formal AES. Thus the implementation

portrayal indicates that no short-term data is put away

in DRAM, although the paper does not give clear

explanation on how large round tables are being

secured in model-particular registers

2.2 Different models of Resistance

Encrypted scheme aims at securing data

encoded in DRAM. The two main contrasts between

encrypted RAM and our approach are: (1) performance

overhead of encrypted RAM is usually high and (2)

needs further investigation on encrypted DRAM that it

can ensure over DMA attacks. DMA transfers ought to

be automatically decoded. DMA does the quick

memory access.

Cryptkeeper [5] extends the conventional

memory ranking by suggesting and scrambling a huge

divide of DRAM. Their implementation keeps

DRAM's encryption keys in the secure parcel of RAM.

Chen [6] suggested the memory’s encoding

idea for techniques when removed from the cache.

They use cache locking to guarantee those tricky data

leaving the SoC is encoded. On the other hand, this

past work varies from Sentry in four features. To start

with, it just depicts a preparatory layout without

execution. Second, the estimation is done in simulation

on top of a Pentium-based architecture while

artificially infusing is based on costs. Third, it is

targeted at embedded systems and does not meet the

Smartphone needs. There is an alternate arrangement

of acceptance are made. Finally, the cache-locking

technique talked about is hypothetical, and in this

manner it is not clear how the cache bolts its

substance.

Different process has been suggested to store

encryption keys in a mystery place. ZIA [7] and

Transient Authentication [8] utilize client take away,

small hardware tokens, and CleanOS [9] utilizes cloud

servers for securing encryption keys. Dissimilar to

Sentry, those schemes rely on additional outer

infrastructure as a Web association [9] or short-range

remote interfaces [7, 8]. Transient Authentication also

not bolsters running background application safely

when the telephone is bolted. A further distinction

remains in the sort of concept used. CleanOS gives

APIs that allow execution characterize as delicate data

with assurance. Instead, Sentry by encoding

applications' state diminishes the programmer's weight.

Keypad [11] maintains record of system

document accesses. This approach is not unequivocally

safeguard over memory attacks; and it enables the

victim to control what bit of data has been

compromised when the mobile is lost.

2.3 Supportive Threat Models

A huge collection of work targets at

guaranteeing the respectability and confidentiality of

trusted applications' code and data [13, 14, 15]. These

works safeguard over a compromised OS or a

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16992

compromised favored VM, and Sentry relies upon the

OS to shield over DRAM attacks.

3. Proposed Work

We propose to implement the following

features. They are tamper detection, high assurance

boot and encrypted root file system data. We design

the carrier board with tamper functionality. We

propose to provide end-to-end secure computing

device from the hardware to application suites at

multiple levels of protection.

At hardware level, tamper detection

mechanism is inbuilt in processor. On detecting

physical tamper, an appropriate action is programmed

inside the processor. If the device is secure, then

tamper is detected immediately and all confidential

data is erased automatically or made inaccessible.

Fig 1. Secure Boot Sequence

Booting is made secure by comparing OS

image with the OEM signed image. If any image

modification occurred then booting is not allowed and

device will be hanged. Fig 1 illustrates the verification

of OS loaded image with the OEM signed image to

perform secure booting.

Memory data is protected and verified by hash

algorithm. The entire file system is encrypted with

OTPMK (One-Time Programmable Master Key) to

avoid possibility of modified rootkits. This key cannot

be modified and only known to the authenticated user.

Any attempt for modification or corruption, data will

be erased as tamper is programmed. Decryption also

requires the same private key.

4. Methodology

This paper deals with the following

methodology to achieve the better performance.

4.1 Tamper Detection

In order to ensure that the physical device is

not tampered, there is a tamper detection mechanism

inbuilt as part of the processor itself. On detection of a

physical tamper, appropriate action can be

programmed inside the processor. Typically for a very

secure device, the default action for the detection of a

tamper event would be that all private confidential

information are automatically erased or made

inaccessible. This mechanism available in the

processor is used as one means of protection of critical

data stored in the mobile compute device when it is

lost.

4.2 High Assurance Boot

The Operating System in computing device for

booting is to be protected from unauthorized

modifications. The OS image that is attempting to get

booted should not have been modified as compared to

the original image that was shipped out from factory. If

there have been any modifications to the image, the

device would not be booting up. This kind of

protection to the device is referred as High Assurance

Boot.

4.3 Root File System Data

The next level of protection to be handled is

stored data in the memory card. This protection level is

highly required as most confidential data will be

present here.

For example, when an owner of the device is

using a compromised application in the device, might

lose critical information from the device sent through

this compromised application to some remote location.

In order to avoid the possibility of modified rootkits,

the entire root file system is encrypted and stored. This

area gets decrypted only after the private key is entered

at the time of mounting the root file system. Through

this mechanism, the data in Root File System is

protected from getting compromised.

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16993

5. Attacks Handled

The computing devices are facing several

memory attacks. Some of the memory attacks

discussed in our paper are cold Boot, Bus monitoring

and DMA attacks.

5.1 Cold Boot Attack

Cold Boot attack is a physical attack where

even after removing the memory from device on

switch off, the data in it will not be erased

immediately. So the attacker can both mount this

memory to another device and retrieve the data or by

resetting the system and rebooting with the attacker-

controlled OS can read and output the memory. But on

encrypting the memory the data read out cannot be

understood.

5.2 Bus Monitoring Attack

Data is carried within CPU, memory and other

peripherals by the bus mechanism. The attacker can

track this bus to snoop the data. On encrypting and

decrypting the entire CPU the attack is not possible to

occur. This is one way of securing the data from

attacker.

5.3 DMA Attack

Direct Memory Access (DMA) Attack is

called Firewire attacks that changes DMA locations to

read arbitrary memory locations containing sensitive

data. ARM Trust zone is the system security for wide

area of client and server computing. ARM Trusted

Zone will deny access to DMA and classify the

memory as normal world and secure world. Normal

world contains user readable files and secure world

contains files that can be only read by secure OS.

Mostly confidential data are stored in secure world.

6. System Setup

Freescale iMX6 ARM processor

The IITM System on a Module (SOM) is

Freescale’s IMX6Q based platform. This module

houses a low cost Quad-Core ARM® Cortex A9

processor at 1GHz with 1 MB of L2 cache, and on

board 64-bit DDR3.The SOM has a small factor,

roughly measuring around 6.76 cm x 5.7 mm. The

SOM is always used with a carrier board. The carrier

board also houses standard communication interfaces

like GSM WIFI/Blue tooth, USB2.0 high-speed serial

interface. Support options for integrated market

specific I/O like HDMI, SD3.0, GigE, SATA-II with

integrated PHY,PCI Express ® with integrated PHY

are also present. The carrier board has two MIPI front

and back cameras, a 7x11 touch screen, an audio

module, fuel gauge for battery life indication, NFC

support and SD card slots. IITM SOM and the Carrier

board are together housed in an ergonomic enclosure.

They are together referred as IITM Tablet. The IITM

tablet has a tamper detection mechanism, high

assurance secure boot, encrypted file system support.

This makes it as a perfect lab platform for developing

secure systems.

The following are some of the processor

specific features that our system is leveraging on for

providing the secure functionalities:

i. ARM TrustZone including the TZ structural

planning.

ii. SJC-System JTAG Controller. Regulating so

as to shield JTAG from investigate port

assaults or obstructing the entrance to the

framework troubleshoot highlights

iii. CAAM - Cryptographic Acceleration and

Assurance Module, fusing 16KB protected

RAM

iv. SNVS - Secure Non-Volatile Storage,

including Secure Real Time Clock

v. CSU - Central Security Unit. Arranged amid

boot and by e-combines, and will focus the

security level operation mode and also the TZ

approach

vi. A-HAB-Advanced High Assurance Boot -

HABv4 with the following implanted

upgrades: SHA-256, 2048 bit RSA key,

variant control instrument and warm boot.

Security is upheld by:

i. High Assurance Boot (HAB4) System

ii. ARM TrustZone (TZ) Trusted Execution

environment

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16994

iii. DDR Memory secure area assurance by

TrustZone Address Space Controller

iv. On-chip RAM (OCRAM) single area

TrustZone assurance

v. Peripheral access arrangement control,

utilizing Central Security Unit (CSU)

vi. One-Time Programmable (OTP) electrical

circuit exhibit (Total of 3840-bit e-wires) by

means of the On-chip electrical wire controller

(OCOTP_CTRL)

vii. CAAM and SNVS security construction

modeling, giving:

viii. 16KB Secure RAM

ix. Secure Real Time Counters

x. Security State Controller

xi. Encryption and Hashing capacities, Random

Number Generator (RNG)

xii. Security Violation/Tamper Detection &

Reporting

xiii. System JTAG controller (SJC)

xiv. Secure Real Time Clock

7. Implementation

 This section deals with the implementation of

secure U-boot. The structure of signed secure U-boot

image is shown in Fig 2. The three main parts of

implementation are:

Fig 2. Secure U-Boot Image

7.1 Secure U-boot creation

 The steps for creation of secure U-boot are

i. Initially, U-boot repository source code has to

be extracted from Freescale.

ii. To support cross compilation on to ARM

platform, corresponding variables have to be

exported.

iii. Next, base address should be fixed for loading

the image into the memory.

iv. U-boot.lds file is changed for adding HAB

related enhancements.

v. One more file is added to U-boot main code

for enabling hab_status command.

vi. This command will study HAB events and

perform secure boot debugging.

7.2 Installation of CST tool

 The Code Signing Tool (CST) of version CST

2.0 is installed. CST contains executables for signing

the image, generation of certificates and for key

generation like fuse values.

7.3 Image Signing

 The unsigned U-boot images are placed in a

folder along with the U-boot.bin for signing. Keys are

selected for CSF signing. A script file

habimagegene.sh is generated and executed for

producing the padded and signed U-boot file.

8. Conclusion

This paper is handling the security of the entire

system with several secure features like tamper

detection, high assurance boot and encrypted file

system against the memory attacks. From the above

preliminary discussion of the features, it is clear that

the only way for us to implement a high end secure

system would be to make use of processor internal

features and this is precisely what the system proposed

by us is leveraging on.

9. Future Work

As part of this work, we have secured the device from

the hardware enclosure to the boot loader to the OS

image as well as the root file system completely. The

next layer that is required to be done is the applications

on the Android layer that needs to be protected and

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16995

made secure. For this, the security framework provided

by Android has to be studied and adopted to make the

Application SW layer also to be very secure. The next

step is to secure the execution environment and the

critical programs need to execute securely.

References

[1] Freescale IMX 6 Dual/6 Quad ARM Cortex- A9

core processor Reference Manual

http://cache.freescale.com/files/32bit/doc/ref_manual/I

MX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20

Manuals&WT_VENDOR=FREESCALE&WT_FILE_

FORMAT=pdf&WT_ASSET=Documentation&fileEx

t=.pdf

[2] T.Muller, A. Dewald, and F. C. Freiling. AESSE: a

cold-boot resistant implementation of AES. In Proc. of

the 3rd European Workshop on System Security

(EUROSEC), 2010.

[3] T. Muller, A. Dewald, and F. Freiling. TRESOR

runs encryption securely outside RAM. In Proc. of the

20th USENIX Security Symposium, 2011.

[4] NIST. Pub. 197 – advanced encryption standard

(AES).

http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf, 2001.

[5] P. A. Peterson. Cryptkeeper: Improving security

with encrypted RAM. In Proc. of IEEE International

Conference on Technologies for Homeland Security,

2010.

[6] X. Chen, R. P. Dick, and A. Choudhary. Operating

system controlled processor-memory bus encryption.

In Proceedings of the conference on Design,

automation and test in Europe, 2008.

[7] M. D. Corner and B. D. Noble. Zero-interaction

authentication. In Proc. of the 8th Annual International

conference on Mobile computing and networking

(Mobicom), 2002.

[8] M. D. Corner and B. D. Noble. Protecting

applications with transient authentication. In Proc. of

the 1st International Conference on Mobile systems,

applications and services (MobiSys), 2003.

[9] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R.

Geambasu, and N. Sarda. CleanOS: Limiting mobile

data exposure with idle eviction. In Proc. of the 10th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2012.

[10] P. Simmons. Security through amnesia: A

software-based solution to the cold boot attack on disk

encryption. In Proc. of the 27th Annual

Computer Security Applications Conference

(ACSAC), 2011.

[11] R. Geambas¸u, J. P. John, S. D. Gribble, T.

Kohno, and H. M. Levy.Keypad: An Auditing File

System for Theft-prone Devices. In Proc.of the

European Conference on Computer Systems

(EuroSys), 2011.

[12] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil

Suneja, Eyal de Lara, Himanshu Raj, Stefan Saroiu,

Alec Wolman: Protecting Data on Smartphones and

Tablets from Memory Attacks.In Proc. of the

conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’15),

2015.

[13] X. Chen, T. Garfinkel, E. C. Lewis, P.

Subrahmanyam, C. A. Waldspurger, D. Boneh, J.

Dwoskin, and D. R. K. Ports. Overshadow: A

Virtualization-Based Approach to Retrofitting

Protection in Commodity Operating Systems. In Proc.

of 13th International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), Seattle, WA, 2008.

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual

ghost: Protecting applications from hostile operating

systems. In Proc. of 19th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2014.

[15] O. H. A. Dunn, S. Kim, M. Lee, and E. Witchel

Inktag: Secure applications on an untrusted operating

system. In Proc. of 18th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2013.

[16] High Assurance Boot on iMX6, by IIT, Madras,

available in Freescale Support community portal

http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/IMX6DQRM.pdf?fpsp=1&WT_TYPE=Reference%20Manuals&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

DOI: 10.18535/ijecs/v5i6.33

M. Suganiya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16990-16995 Page 16996

