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Abstract— A Cloud is expanding from application aggregation and sharing to data aggregation and utilization. To make 

use of data tens of terabytes and tens of beta bytes of data to be handled. These massive amounts of data are called as a 

big data. Range-aggregate queries are to apply a certain aggregate function on all tuples within given query ranges. Fast 

RAQ first divides big data into independent partitions with a balanced partitioning algorithm, and then generates a 

local estimation sketch for each partition. When a range-aggregate query request arrives, Fast RAQ obtains the result 

directly by summarizing local estimates from all partitions & Collective Results are provided. Data Mining can process 

only Structured Data only. Big Data Approach is spoken all over the Paper. They insist of Three Tier Architecture, 1. 

Big Data implementation in Multi System Approach, 2. Application Deployment - Banking / Insurance. 3. Extraction of 

Useful information from Unstructured Data. We implement this Project for Banking Domain. There will be Two Major 

Departments. 1. Bank Server for Adding New Clients and maintaining their Accounts. Every User while Registration 

has to provide their aadhar card as a ID Proof to create Account in any Bank. 2. Accounts Monitoring Sever will 

monitor every users and their Account Status in different Banks. This Server will retrieve users who maintain & 

Transact more than Rs. 50,000 / Annum in all 3 Accounts in different Banks using the same ID Proof. Map & Reduce is 

achieved. 
Keywords:Balanced partition, big data, multidimensional histogram, range-aggregate query. 

 
I.INTRODUCTION 
 

The Internet and in various news media, can we 

summarize all types of opinions in different media in a 

real-time fashion, including updated, cross-referenced 

discussions by critics? This type of summarization 

program is an excellent example for Big Data processing, 

as the information comes from multiple, heterogeneous, 

autonomous sources and the 
evolving relationships, and keeps growing. Along with the 

above example, the era of Big Data has arrived Every day, 

2.5 quintillion bytes of data are created and 90 percent of 

the data in the world today were produced within the past 

two years Our capability for data generation has never 

been so powerful and enormous ever since the invention of 

the information technology in the early 19th century. As 

another example, on 4 October 2012, the first presidential 

debate between President Barack Obama and Governor 

Mitt Romney triggered more than 10 million tweets within 

2 hours Among all these tweets, the specific moments that 

generated the most discussions actually revealed the public 

interests, such as the discussions about medicare and 

vouchers. Such online discussions provide a new means to 

sense the public interests and generate feedback in real 

time, and are mostly appealing compared to generic media, 

such as radio or TV broadcasting. Another example is 

Flickr, a public picture sharing site, which received 1.8 

million photos per day, on average, from February to 

March 2012 assuming the size of each photo is 2 

megabytes (MB), this requires 3.6 terabytes (TB) storage 

every single day. Indeed, as an old saying states: ―a 

picture is worth a thousand words,‖ the billions of pictures 

on Flicker are a treasure tank for us to explore the human 

society, social events, public affairs, disasters, and so on, 

only if we have the power to harness the enormous amount 

of data. The above examples demonstrate the rise of Big 

Data applications where data collection has grown 

tremendously and is beyond the ability of commonly used 

software tools to capture, manage, and process within a 

―tolerable elapsed time.‖ The most fundamental challenge 

for Big Data applications is to explore the large volumes of 
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data and extract useful information or knowledge for future 

actions. In many situations, the knowledge extraction 

process has to be very efficient and close to real time 

because storing all observed data is nearly infeasible. For 

example, the square kilometer array (SKA) in radio 

astronomy consists of 1,000 to 1,500 15-meter dishes in a 

central 5-km area. It provides 100 times more sensitive 

vision than any existing radio telescopes, answering 

fundamental questions about the Universe. However, with 

a 40 gigabytes (GB)/second data volume, the data 

generated from the SKA are exceptionally large. Although 

researchers have confirmed that interesting patterns, such 

as transient radio anomalies can be discovered from the 

SKA data, existing methods can only work in an offline 

fashion and are incapable of handling this Big Data 

scenario in real time. As a result, the unprecedented data 

volumes require an effective data analysis and prediction 

platform to achieve fast response and real-time 

classification for such Big Data. 

 
1.1. CHARACTERISTICS OF BIG DATA 
 
Volume – The quantity of data that is generated is very 

important in this context. It is the size of the data which 

determines the value and potential of the data under 

consideration and whether it can actually be considered as 

Big 
 
Data or not. The name ‗Big Data‗ itself contains a term 
which is related to size and hence the characteristic. 
 
Variety - The next aspect of Big Data is its variety. This 

means that the category to which Big Data belongs to is 

also a very essential fact that needs to be known by the 

data analysts. This helps the people, who are closely 

analysing the data and are associated with it, to effectively 

use the data to their advantage and thus upholding the 

importance of the Big Data. 
 
Velocity - The term ‗velocity‗ in the context refers to the 
speed 
 
of generation of data or how fast the data is generated and 

processed to meet the demands and the challenges which 
lie ahead in the path of growth and development. 
 
Variability - This is a factor which can be a problem for 

those who analyse the data. This refers to the inconsistency 

which can be shown by the data at times, thus hampering 

the process of being able to handle and manage the data 

effectively. 
 

Veracity - The quality of the data being captured 
can vary greatly. Accuracy of analysis depends on the 
veracity of the source data. 
 

Complexity - Data management can become a 

very complex process, especially when large volumes of 

data come from multiple sources. These data need to be 

linked, connected and correlated in order to be able to 

grasp the information that is supposed to be conveyed by 

these data. This situation is therefore, termed as the 

‗complexity‗ of Big Data. 

 
1.2 OUR CONTRIBUTIONS 
 

In this paper, we propose FastRAQ—a new 

approximate answering approach that acquires accurate 

estimations quickly for range-aggregate queries in big data 

environments. 
 
 
 
 
 
 
 
 
 
 
 

 
FastRAQ first divides big data into independent partitions 

with a balanced partitioning algorithm, and then generates 

a local estimation sketch for each partition. When a range-

aggregate query request arrives, FastRAQ obtains the 

result directly by summarizing local estimates from all 

partitions. 
 

The balanced partitioning algorithm works with a 

strati-fied sampling model. It divides all data into different 

groups with regard to their attribute values of interest, and 

further separates each group into multiple partitions 

according to the current data distributions and the number 

of available servers. The algorithm can bound the sample 

errors in each partition, and can balance the number of 

records adaptively among servers when the data 

distribution and/or the num-ber of servers changes. 
II OVERVIEW OF THE FAST RAQ APPROACH 
PROBLEM STATEMENT 
 

We consider the range-aggregate problem in big data 

environments, where data sets are stored in distributed 

servers. An aggregate function operates on selected ranges, 

which are contiguous on multiple domains of the attribute 

values.InFastRAQ; the attribute values can be numeric or 

alphabetic. One example of the range-aggregate problem is 

shown as follows: 
Select exp(AggColumn), other ColName where  
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li<ColNamei<li opr 
 
lj<ColNamej<ljopr 

 
In the above query, exp is an aggregate function such as 

SUM or COUNT; Agg Column is the dimension of the 

aggregate operation; li <ColNamei<li and lj<ColNamej<lj are 

the dimensions of ranges queries; opr is a logical operator 
including AND and OR logical operations. In the following   

6.Counti  hðCEmergedÞ;  ==h  is  a  function  of  cardinality 
discussion, AggColumn is called Aggregation-   
estimation. 
Column,ColNamei and ColNamej are called Index-
Columns.The cost of distributed range-aggregate queries 
primarily includes two parts. i.e., the cost of network 
communication and the cost of local files scanning. The first 
cost is produced by data transmission and synchronization for 
aggregate operations when the selected files are stored in 
different servers. 

The second cost is produced by scanning local files to 

search the selected tuples.When the size of a data set increases 

continuously, the two types of cost will also increase 

dramatically. Only when the two types of cost are minimized, 

can we obtain faster final range-aggregate queries results in big 

data environments. Range-aggregate query statement is In 

FastRAQ, we divide numerical value space of an aggregation-

column into different groups, and maintain an estimation 

sketch in each group to limit relative estimated errors of range-

aggregate paradigm. 

 
When a new record is coming, it is first sent onto a 

partition in the light of current data distributions and the 

number of available servers. In each partition, the sample and 

the histogram are updated respectively by the attribute values 

of the incoming record. When a query request arrives, it is 

delivered into each partition.We first build cardinality 

estimator (CE) for the queried range from the histogram in 

each partition. Then we calculate the estimate value in each 

partition, which is the product of the sample and the estimated 

cardinality from the estimator. 
 
 

 
Algorithm 1. FastRAQuering(Q) 
 
1.Input: Q; Q: select sum(AggColumn) 

 
2.otherColname where li1<ColNamei<ColNamej< ColNamei 
< li2 from the local histogram 
 
3. let CEi be the estimator of the ith dimensions; 

 

4: Compute the cardinality estimator of range lj1 < ColNamej 
< lj2 from the local histogram, and let CEj be the estimator of 
the jth dimensions;  

 

5: Merge the estimators CEi and CEj by the logical operator 

Opr, and compute the merged cardinality estimator CEmerged;  
counterPID þ 1; 

is the  number of record; 
sumPID þ N; 

//N is value of aggregation attribute from R;  
SamplePID sumk;l;m;r=counterPID; 6: RID 

HashðPID; counterPIDÞ; 
//RID is the unique record identifier for R; 

7: Send R to partition PID;   
8: return PID.  

 
III SYSTEM ANALYSIS 
 
PARTITIONING TECHNIQUES 
 

Partitioning is a process of assigning each record in a 
largetable to a smaller table based on the value of a particular 
 
field in a record. It has been used in data center networks to 

improve manageability and availability of big data .The 

partitioning step has become a key determinant in dataanalysis 

to boost the query processing performance .All of these works 

enable each partition to be processed independently and more 

efficiently. Stratified sampling is a method of sampling from 
independent groups of a population, and selecting sample in 

each group to improve the representativeness of the sample by 

reducing sampling error. We build our partitioning algorithm 

based on the idea of stratified sampling to make the maximum 

relative error under a threshold in each partition. At the same 

time, the sum of the local result from each partition can also 

achieve satisfied accuracy for any ad-hoc range-aggregate 

queries. We first divide the value of numerical space into 

different groups and subdivide each group into different 

partitions according to the number of available servers. 
 

The partition algorithm can be expressed as follows for 

data sets R:Partitioning (R)=( g; p)=( Ve; random ;[Vr ] ) 

where the number of a partition p in a group g, is a random 

number in ;Vr , and Ve is a group identifier (GID) for the 

group g. The stratified sampling is a method to subdivide the 

numerical value space into independent intervals with a batch 

of alogarithm functions, and each interval stands for a group. 

When the number of logarithm functions is fixed, an arbitrary 

natural integer N can be mapped into a unique group g. 

 
PROPOSED SYSTEM 

 
Fast RAQ first divides big data into independent 
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partitions with a balanced partitioning algorithm, and then 

generates a local estimation sketch for each partition. When a 

range-aggregate query request arrives, Fast RAQ obtains the 

result directly by summarizing local estimates from all 

partitions & Collective Results are provided. We deploy Big 

data for Banking Domain in this Project. User‗s banking data 

is partitioned into multiple Tuples and stored in different sets 

of Database. We have designed an Application to track 

multiple accounts maintained in different banks of the same 

user and their Transaction details. This process helps in finding 

out Black money Holders so that Government can track them 
 
IV.EXPERIMENTAL RESULTS 

 
The range-aggregate query problem has been studied by 

Sharathkumar and Gupta [20] and Malensek [21] in 

computational geometry and geographic information systems 

(GIS). Our work is primary focused on the approximated 

rangeaggregate query for real-time data analysis in OLAP. Ho 

et al. was the first to present Prefix-Sum Cube approach to 

solving the numeric data cube aggregation [4] problems in 

OLAP. The essential idea of PC is to pre-compute prefix sums 

of cells in the data cube, which then can be used to answer 

range-aggregate queries at run-time. However, the updates to 

the prefix sums are proportional to the size of the data cube. 

Liang et al. [6] proposed a dynamic data cube for range-

aggregate queries to improve the update cost, and it still costs 

OðNd 3Þ time for each update, where d is the number of 

dimensions of the data cube and n is the number of distinct 

tuples at each dimension. The prefix sum approaches are 

suitable for the data which is static or rarely updated. For big 

data environments, new data sets arrive continuously, and the 

up-to-date information is what the analysts need. The PC and 

other heuristic pre-computing approaches are not applicable in 

such applications. An important approximate answering 

approach called Online Aggregation was proposed to speed 

range-aggregate queries on larger data sets [7]. 
 
OLA has been widely studied in relational databases [8] and 

the current cloud and streaming systems [9], [10]. Some 

studies about OLA have also been conducted on Hadoop and 

MapReduce [10], [11], [12]. The OLA is a class of methods to 

provide early returns with estimated confidence intervals 

continuously.  
Evaluation Methodology 
 
The framework of FastRAQ includes four types of servers: 
learning server, load server, query server, and storage serv-ers. 
The learning server fetches a certain amount of data set 
 
\ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The relative errors in different queried ranges. 
 
Fig.2. Performance comparisons for count queries with eight 
days log files.  
to learn data distributions, builds histogram and partition 

vectors for all partitions, and then dispatches them to other 

servers. The load servers receive online data sets, and deliver 

them to specified storage servers. The query server receives 

user‗s query request, and sends it to all storage servers. The 

storage servers keep RC-Tree for each partition, and respond 

the request independently. 
 

In the experiments, we analyze the pagecount traffic sta-
tistics files of Wikipedia [19]. We construct a table contain-ing 
four columns. We set projectcode and pagename columns as 
index columns, bytes field as aggregation-col-umn. The 
FastRAQ stores four months of the traffic files which includes 
960 GB of uncompressed data.  

We first analyze the relative error in different queried 
examples. We use the traffic log files from Wikipedia in eight 
days. We set random variables in the queried examples and 
calculate the relative errors of different examples. The query 
example is ―select sumðbytesÞ from pagecounts where 

projectcode 2 ð
0

aa
0

;
0 0

Þ ‖, where ‗*‗ is a random variable  
string changed from ‗aa‗ to ‗zz‗. The relative errors in different 
que-ried examples are shown in Fig. 5. We just present the values 
of ‗*‗ on the X axis. When the ‗*‗ equals to ‗aa‗ and ‗ab‗, the 
rel-ative errors are equal to zero. The results are calculated by 
scanning the log files of the two edge-buckets. When the ‗*‗ 
grows larger, the relative error increases slightly. The rela-tive 
errors are nearly constant when the ‗*‗ equals to ‗cu‗, ‗dd‗ and 
‗ex‗. In our experiment,  
we use ð

0
aa

0
;
0

 dd
0

Þ as our queried examples in following 
evaluations. 
 

The examples of range-aggregate queries include count and 
sum queries, and aggregate functions on union queries. The 
queried examples are shown below: 
 

Count query: Select countð Þ from pagecounts where          

projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ;  
Sum query: Select sumðbytesÞ from pagecounts 

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ. 
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Fig. 3. Performance comparisons for sum queries with eight 

days log files. 
 
 
 
 
 
 
 
 
Fig. 4. Performance comparisons for count queries with eight 
weeks log files. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PERFORMANCE OF UNION OF SET QUERY 
 
Due to the fact that it needs to scan and merge massive 
duplicated tuples in union of set queries, we primarily focus 
our testings in union of set range-aggregate queries. The 
performance comparisons of union query in the two sys-tems 
are presented. 
 

Hive predicts if the values of the two index-columns sat-
isfy the union statement in memory. It occupies most of time to 
fetch tuples from disk files to memory, thus the query time 
does not change much from single index-column statement to 
union of two index-columns statements. In Fas-tRAQ, different 
index-columns of queried ranges can be searched in parallel in 
the RC-Tree. The overhead of union statements is to merge 
estimators from different index-col-umns. The merging 
overhead is negligible. Thus the query times of the two 
approaches are nearly the same . 
 
RELATIVE ERRORS 
 

Hive obtains exact query result, and its relative error of 
que-ried result is 0. As discussed in Algorithm 7, it does not 

lead to extra errors into the estimate when we merge 
estimators of different queried dimensions. Thus the estimated 
relative errors of the union queries in multiple index-columns 
are the same as the errors in single index-column queries. We 
discuss the detailed relative errors of the range-aggregate 
queries. 

 
V RELATED WORK 
 

The range-aggregate query problem has been studied by 

Sharathkumar and Gupta [20] and Malensek [21] in compu-

tational geometry and geographic information systems (GIS). 

Our work is primary focused on the approximated range-

aggregate query for real-time data analysis in OLAP. Ho et al. 

was the first to present Prefix-Sum Cube approach to solving 

the numeric data cube aggregation [4] problems in OLAP. The 

essential idea of PC is to pre-compute prefix sums of cells in 

the data cube, which then can be used to answer range-

aggregate queries at run-time. However, the updates to the 

prefix sums are proportional to the size of the data cube. Liang 

et al. [6] proposed a dynamic data cube for range-aggregate 

queries to improve the update cost, and time for each update, 

where d is the number of dimensions of the data cube and n is 

the number of distinct tuples at each dimension. The prefix 

sum approaches are suitable for the data which is static or 

rarely updated. For big data environments, new data sets arrive 

continuously, and the up-to-date information is what the 

analysts need. The PC and other heuristic pre-computing 

approaches are not applicable in such applications. 
 

An important approximate answering approach called 
Online Aggregation was proposed to speed range-aggregate 
queries on larger data sets [7]. OLA has been widely studied in 
relational databases [8] and the current cloud and stream-ing 
systems [9], [10]. Some studies about OLA have also been 
conducted on Hadoop and MapReduce [10], [11], [12]. The 
estimated confidence intervals continuously. As more data is 
processed, the estimate is progressively refined and the 
confidence interval is narrowed until the satisfied accuracy is 
obtained. But OLA can not respond with acceptable accu-racy 
within desired time period, which is significantly important on 
the analysis of trend for ad-hoc queries. 
 

Our work is related to two approximate answering meth-
ods: sampling and histogram. Sampling is an important 

TABLE 5  
Storage Overhead of RC-Tree Index with 1-4 Months 
Log Files 

 
 log files of 1-4 months 1 M 2 M 3 M 4 M 
      

 RC-Trees data volume (GB) 7.2 8.1 8.6 8.9 
     0.00 
 the volume ratio 0.031 0.017 0.012 9 
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technique for processing of aggregate queries at run time. The 

sampling for massive data sets includes two types: row-level 

sampling and block-level sampling [22]. The work in [22] 

analyzed the impact of block-level sampling on statistic esti-

mation for histogram, and proposed the corresponding esti-

mators with block-level samplings. Haas and K€onig€ [23] 

proposed a new sampling scheme, which combines the row-

level and page-level samplings in the field of relational 

DBMS. Data sampling is also well used in the field of distrib-

uted and streaming environments [24], [25]. Histogram is 

another important technique for selectivity estimation. A series 

of alterative techniques were presented in other articles to 

provide better selectivity estimation than the original equi-

width method. The multi-dimensional histograms were also 

widely studied by researchers. The problem is more challeng-

ing since it was shown that optimal splitting even in two 

dimensions is NP-hard [26]. The hTree [27] and mHist [28] 

are the typical works to support multi-dimensional selectivity 

estimation. While the current works are shown that it is quite 

expensive to generate a multi-dimensional histogram. Fas-

tRAQ combines sampling, histogram and data partition 

approaches together to generate satisfied estimations in big 

data environments. All of the above techniques are designed 

for distributed range-aggregate queries paradigm, and it 

achieves better performance on both query and update proc-

essing in big data environments. 
 
VI CONCLUSIONS AND FUTURE WORK 
 
In this paper, we propose FastRAQ—a new approximate 
answering approach that acquires accurate estimations quickly 
for range-aggregate queries in big data environ-ments. 
FastRAQ has Oð1Þ time complexity for data updates and  
OðP

N
_BÞ time complexity for ad-hoc range-aggregate 

queries. If the ratio of edge-bucket cardinality (h0) is small 
enough, FastRAQ even has Oð1Þ time complexity for range-
aggregate queries.  

We believe that FastRAQ provides a good starting point for 
developing real-time answering methods for big data analysis. 

There are also some interesting directions for our future work. 

First, FastRAQ can solve the 1:n format range-aggregate 
queries problem, i.e., there is one aggregation col-umn and n 

index columns in a record. We plan to investigate how our 
solution can be extended to the case of m:n format problem, 

i.e., there are m aggregation columns and n index columns in a 

same record. Second, FastRAQ is now running in 
homogeneous environments. We will further explore how 

FastRAQ can be applied in heterogeneous context or even as a 

tool to boost the performance of data analysis in DBaas. 
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