
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issues 6 June 2016, Page No. 16860-16866

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16860

Integration Of Big Data And Cloud Computing To Detect Black Money
Check Rotation With Range Aggregate Queries

K.Nithiya
1
,S.Balaji

2

1
M.E. Student, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India
2
Asst. Professor, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India

1
nithyak045@gmail.com,

2
balagicse@gmail.com

Abstract— A Cloud is expanding from application aggregation and sharing to data aggregation and utilization. To make

use of data tens of terabytes and tens of beta bytes of data to be handled. These massive amounts of data are called as a

big data. Range-aggregate queries are to apply a certain aggregate function on all tuples within given query ranges. Fast

RAQ first divides big data into independent partitions with a balanced partitioning algorithm, and then generates a

local estimation sketch for each partition. When a range-aggregate query request arrives, Fast RAQ obtains the result

directly by summarizing local estimates from all partitions & Collective Results are provided. Data Mining can process

only Structured Data only. Big Data Approach is spoken all over the Paper. They insist of Three Tier Architecture, 1.

Big Data implementation in Multi System Approach, 2. Application Deployment - Banking / Insurance. 3. Extraction of

Useful information from Unstructured Data. We implement this Project for Banking Domain. There will be Two Major

Departments. 1. Bank Server for Adding New Clients and maintaining their Accounts. Every User while Registration

has to provide their aadhar card as a ID Proof to create Account in any Bank. 2. Accounts Monitoring Sever will

monitor every users and their Account Status in different Banks. This Server will retrieve users who maintain &

Transact more than Rs. 50,000 / Annum in all 3 Accounts in different Banks using the same ID Proof. Map & Reduce is

achieved.
Keywords:Balanced partition, big data, multidimensional histogram, range-aggregate query.

I.INTRODUCTION

The Internet and in various news media, can we

summarize all types of opinions in different media in a

real-time fashion, including updated, cross-referenced

discussions by critics? This type of summarization

program is an excellent example for Big Data processing,

as the information comes from multiple, heterogeneous,

autonomous sources and the
evolving relationships, and keeps growing. Along with the

above example, the era of Big Data has arrived Every day,

2.5 quintillion bytes of data are created and 90 percent of

the data in the world today were produced within the past

two years Our capability for data generation has never

been so powerful and enormous ever since the invention of

the information technology in the early 19th century. As

another example, on 4 October 2012, the first presidential

debate between President Barack Obama and Governor

Mitt Romney triggered more than 10 million tweets within

2 hours Among all these tweets, the specific moments that

generated the most discussions actually revealed the public

interests, such as the discussions about medicare and

vouchers. Such online discussions provide a new means to

sense the public interests and generate feedback in real

time, and are mostly appealing compared to generic media,

such as radio or TV broadcasting. Another example is

Flickr, a public picture sharing site, which received 1.8

million photos per day, on average, from February to

March 2012 assuming the size of each photo is 2

megabytes (MB), this requires 3.6 terabytes (TB) storage

every single day. Indeed, as an old saying states: ―a

picture is worth a thousand words,‖ the billions of pictures

on Flicker are a treasure tank for us to explore the human

society, social events, public affairs, disasters, and so on,

only if we have the power to harness the enormous amount

of data. The above examples demonstrate the rise of Big

Data applications where data collection has grown

tremendously and is beyond the ability of commonly used

software tools to capture, manage, and process within a

―tolerable elapsed time.‖ The most fundamental challenge

for Big Data applications is to explore the large volumes of

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16861

data and extract useful information or knowledge for future

actions. In many situations, the knowledge extraction

process has to be very efficient and close to real time

because storing all observed data is nearly infeasible. For

example, the square kilometer array (SKA) in radio

astronomy consists of 1,000 to 1,500 15-meter dishes in a

central 5-km area. It provides 100 times more sensitive

vision than any existing radio telescopes, answering

fundamental questions about the Universe. However, with

a 40 gigabytes (GB)/second data volume, the data

generated from the SKA are exceptionally large. Although

researchers have confirmed that interesting patterns, such

as transient radio anomalies can be discovered from the

SKA data, existing methods can only work in an offline

fashion and are incapable of handling this Big Data

scenario in real time. As a result, the unprecedented data

volumes require an effective data analysis and prediction

platform to achieve fast response and real-time

classification for such Big Data.

1.1. CHARACTERISTICS OF BIG DATA

Volume – The quantity of data that is generated is very

important in this context. It is the size of the data which

determines the value and potential of the data under

consideration and whether it can actually be considered as

Big

Data or not. The name ‗Big Data‗ itself contains a term
which is related to size and hence the characteristic.

Variety - The next aspect of Big Data is its variety. This

means that the category to which Big Data belongs to is

also a very essential fact that needs to be known by the

data analysts. This helps the people, who are closely

analysing the data and are associated with it, to effectively

use the data to their advantage and thus upholding the

importance of the Big Data.

Velocity - The term ‗velocity‗ in the context refers to the
speed

of generation of data or how fast the data is generated and

processed to meet the demands and the challenges which
lie ahead in the path of growth and development.

Variability - This is a factor which can be a problem for

those who analyse the data. This refers to the inconsistency

which can be shown by the data at times, thus hampering

the process of being able to handle and manage the data

effectively.

Veracity - The quality of the data being captured
can vary greatly. Accuracy of analysis depends on the
veracity of the source data.

Complexity - Data management can become a

very complex process, especially when large volumes of

data come from multiple sources. These data need to be

linked, connected and correlated in order to be able to

grasp the information that is supposed to be conveyed by

these data. This situation is therefore, termed as the

‗complexity‗ of Big Data.

1.2 OUR CONTRIBUTIONS

In this paper, we propose FastRAQ—a new

approximate answering approach that acquires accurate

estimations quickly for range-aggregate queries in big data

environments.

FastRAQ first divides big data into independent partitions

with a balanced partitioning algorithm, and then generates

a local estimation sketch for each partition. When a range-

aggregate query request arrives, FastRAQ obtains the

result directly by summarizing local estimates from all

partitions.

The balanced partitioning algorithm works with a

strati-fied sampling model. It divides all data into different

groups with regard to their attribute values of interest, and

further separates each group into multiple partitions

according to the current data distributions and the number

of available servers. The algorithm can bound the sample

errors in each partition, and can balance the number of

records adaptively among servers when the data

distribution and/or the num-ber of servers changes.
II OVERVIEW OF THE FAST RAQ APPROACH
PROBLEM STATEMENT

We consider the range-aggregate problem in big data

environments, where data sets are stored in distributed

servers. An aggregate function operates on selected ranges,

which are contiguous on multiple domains of the attribute

values.InFastRAQ; the attribute values can be numeric or

alphabetic. One example of the range-aggregate problem is

shown as follows:
Select exp(AggColumn), other ColName where

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16862

li<ColNamei<li opr

lj<ColNamej<ljopr

In the above query, exp is an aggregate function such as

SUM or COUNT; Agg Column is the dimension of the

aggregate operation; li <ColNamei<li and lj<ColNamej<lj are

the dimensions of ranges queries; opr is a logical operator
including AND and OR logical operations. In the following

6.Counti hðCEmergedÞ; ==h is a function of cardinality
discussion, AggColumn is called Aggregation-
estimation.
Column,ColNamei and ColNamej are called Index-
Columns.The cost of distributed range-aggregate queries
primarily includes two parts. i.e., the cost of network
communication and the cost of local files scanning. The first
cost is produced by data transmission and synchronization for
aggregate operations when the selected files are stored in
different servers.

The second cost is produced by scanning local files to

search the selected tuples.When the size of a data set increases

continuously, the two types of cost will also increase

dramatically. Only when the two types of cost are minimized,

can we obtain faster final range-aggregate queries results in big

data environments. Range-aggregate query statement is In

FastRAQ, we divide numerical value space of an aggregation-

column into different groups, and maintain an estimation

sketch in each group to limit relative estimated errors of range-

aggregate paradigm.

When a new record is coming, it is first sent onto a

partition in the light of current data distributions and the

number of available servers. In each partition, the sample and

the histogram are updated respectively by the attribute values

of the incoming record. When a query request arrives, it is

delivered into each partition.We first build cardinality

estimator (CE) for the queried range from the histogram in

each partition. Then we calculate the estimate value in each

partition, which is the product of the sample and the estimated

cardinality from the estimator.

Algorithm 1. FastRAQuering(Q)

1.Input: Q; Q: select sum(AggColumn)

2.otherColname where li1<ColNamei<ColNamej< ColNamei
< li2 from the local histogram

3. let CEi be the estimator of the ith dimensions;

4: Compute the cardinality estimator of range lj1 < ColNamej
< lj2 from the local histogram, and let CEj be the estimator of
the jth dimensions;

5: Merge the estimators CEi and CEj by the logical operator

Opr, and compute the merged cardinality estimator CEmerged;
counterPID þ 1;

is the number of record;
sumPID þ N;

//N is value of aggregation attribute from R;
SamplePID sumk;l;m;r=counterPID; 6: RID

HashðPID; counterPIDÞ;
//RID is the unique record identifier for R;

7: Send R to partition PID;
8: return PID.

III SYSTEM ANALYSIS

PARTITIONING TECHNIQUES

Partitioning is a process of assigning each record in a
largetable to a smaller table based on the value of a particular

field in a record. It has been used in data center networks to

improve manageability and availability of big data .The

partitioning step has become a key determinant in dataanalysis

to boost the query processing performance .All of these works

enable each partition to be processed independently and more

efficiently. Stratified sampling is a method of sampling from
independent groups of a population, and selecting sample in

each group to improve the representativeness of the sample by

reducing sampling error. We build our partitioning algorithm

based on the idea of stratified sampling to make the maximum

relative error under a threshold in each partition. At the same

time, the sum of the local result from each partition can also

achieve satisfied accuracy for any ad-hoc range-aggregate

queries. We first divide the value of numerical space into

different groups and subdivide each group into different

partitions according to the number of available servers.

The partition algorithm can be expressed as follows for

data sets R:Partitioning (R)=(g; p)=(Ve; random ;[Vr])

where the number of a partition p in a group g, is a random

number in ;Vr , and Ve is a group identifier (GID) for the

group g. The stratified sampling is a method to subdivide the

numerical value space into independent intervals with a batch

of alogarithm functions, and each interval stands for a group.

When the number of logarithm functions is fixed, an arbitrary

natural integer N can be mapped into a unique group g.

PROPOSED SYSTEM

Fast RAQ first divides big data into independent

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16863

partitions with a balanced partitioning algorithm, and then

generates a local estimation sketch for each partition. When a

range-aggregate query request arrives, Fast RAQ obtains the

result directly by summarizing local estimates from all

partitions & Collective Results are provided. We deploy Big

data for Banking Domain in this Project. User‗s banking data

is partitioned into multiple Tuples and stored in different sets

of Database. We have designed an Application to track

multiple accounts maintained in different banks of the same

user and their Transaction details. This process helps in finding

out Black money Holders so that Government can track them

IV.EXPERIMENTAL RESULTS

The range-aggregate query problem has been studied by

Sharathkumar and Gupta [20] and Malensek [21] in

computational geometry and geographic information systems

(GIS). Our work is primary focused on the approximated

rangeaggregate query for real-time data analysis in OLAP. Ho

et al. was the first to present Prefix-Sum Cube approach to

solving the numeric data cube aggregation [4] problems in

OLAP. The essential idea of PC is to pre-compute prefix sums

of cells in the data cube, which then can be used to answer

range-aggregate queries at run-time. However, the updates to

the prefix sums are proportional to the size of the data cube.

Liang et al. [6] proposed a dynamic data cube for range-

aggregate queries to improve the update cost, and it still costs

OðNd 3Þ time for each update, where d is the number of

dimensions of the data cube and n is the number of distinct

tuples at each dimension. The prefix sum approaches are

suitable for the data which is static or rarely updated. For big

data environments, new data sets arrive continuously, and the

up-to-date information is what the analysts need. The PC and

other heuristic pre-computing approaches are not applicable in

such applications. An important approximate answering

approach called Online Aggregation was proposed to speed

range-aggregate queries on larger data sets [7].

OLA has been widely studied in relational databases [8] and

the current cloud and streaming systems [9], [10]. Some

studies about OLA have also been conducted on Hadoop and

MapReduce [10], [11], [12]. The OLA is a class of methods to

provide early returns with estimated confidence intervals

continuously.
Evaluation Methodology

The framework of FastRAQ includes four types of servers:
learning server, load server, query server, and storage serv-ers.
The learning server fetches a certain amount of data set

\

Fig. 1. The relative errors in different queried ranges.

Fig.2. Performance comparisons for count queries with eight
days log files.
to learn data distributions, builds histogram and partition

vectors for all partitions, and then dispatches them to other

servers. The load servers receive online data sets, and deliver

them to specified storage servers. The query server receives

user‗s query request, and sends it to all storage servers. The

storage servers keep RC-Tree for each partition, and respond

the request independently.

In the experiments, we analyze the pagecount traffic sta-
tistics files of Wikipedia [19]. We construct a table contain-ing
four columns. We set projectcode and pagename columns as
index columns, bytes field as aggregation-col-umn. The
FastRAQ stores four months of the traffic files which includes
960 GB of uncompressed data.

We first analyze the relative error in different queried
examples. We use the traffic log files from Wikipedia in eight
days. We set random variables in the queried examples and
calculate the relative errors of different examples. The query
example is ―select sumðbytesÞ from pagecounts where

projectcode 2 ð
0

aa
0

;
0 0

Þ ‖, where ‗*‗ is a random variable
string changed from ‗aa‗ to ‗zz‗. The relative errors in different
que-ried examples are shown in Fig. 5. We just present the values
of ‗*‗ on the X axis. When the ‗*‗ equals to ‗aa‗ and ‗ab‗, the
rel-ative errors are equal to zero. The results are calculated by
scanning the log files of the two edge-buckets. When the ‗*‗
grows larger, the relative error increases slightly. The rela-tive
errors are nearly constant when the ‗*‗ equals to ‗cu‗, ‗dd‗ and
‗ex‗. In our experiment,
we use ð

0
aa

0
;
0

 dd
0

Þ as our queried examples in following
evaluations.

The examples of range-aggregate queries include count and
sum queries, and aggregate functions on union queries. The
queried examples are shown below:

Count query: Select countð Þ from pagecounts where

projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ;
Sum query: Select sumðbytesÞ from pagecounts

where projectcode 2 ð
0

aa
0

;
0

 dd
0

Þ.

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16864

Fig. 3. Performance comparisons for sum queries with eight

days log files.

Fig. 4. Performance comparisons for count queries with eight
weeks log files.

PERFORMANCE OF UNION OF SET QUERY

Due to the fact that it needs to scan and merge massive
duplicated tuples in union of set queries, we primarily focus
our testings in union of set range-aggregate queries. The
performance comparisons of union query in the two sys-tems
are presented.

Hive predicts if the values of the two index-columns sat-
isfy the union statement in memory. It occupies most of time to
fetch tuples from disk files to memory, thus the query time
does not change much from single index-column statement to
union of two index-columns statements. In Fas-tRAQ, different
index-columns of queried ranges can be searched in parallel in
the RC-Tree. The overhead of union statements is to merge
estimators from different index-col-umns. The merging
overhead is negligible. Thus the query times of the two
approaches are nearly the same .

RELATIVE ERRORS

Hive obtains exact query result, and its relative error of
que-ried result is 0. As discussed in Algorithm 7, it does not

lead to extra errors into the estimate when we merge
estimators of different queried dimensions. Thus the estimated
relative errors of the union queries in multiple index-columns
are the same as the errors in single index-column queries. We
discuss the detailed relative errors of the range-aggregate
queries.

V RELATED WORK

The range-aggregate query problem has been studied by

Sharathkumar and Gupta [20] and Malensek [21] in compu-

tational geometry and geographic information systems (GIS).

Our work is primary focused on the approximated range-

aggregate query for real-time data analysis in OLAP. Ho et al.

was the first to present Prefix-Sum Cube approach to solving

the numeric data cube aggregation [4] problems in OLAP. The

essential idea of PC is to pre-compute prefix sums of cells in

the data cube, which then can be used to answer range-

aggregate queries at run-time. However, the updates to the

prefix sums are proportional to the size of the data cube. Liang

et al. [6] proposed a dynamic data cube for range-aggregate

queries to improve the update cost, and time for each update,

where d is the number of dimensions of the data cube and n is

the number of distinct tuples at each dimension. The prefix

sum approaches are suitable for the data which is static or

rarely updated. For big data environments, new data sets arrive

continuously, and the up-to-date information is what the

analysts need. The PC and other heuristic pre-computing

approaches are not applicable in such applications.

An important approximate answering approach called
Online Aggregation was proposed to speed range-aggregate
queries on larger data sets [7]. OLA has been widely studied in
relational databases [8] and the current cloud and stream-ing
systems [9], [10]. Some studies about OLA have also been
conducted on Hadoop and MapReduce [10], [11], [12]. The
estimated confidence intervals continuously. As more data is
processed, the estimate is progressively refined and the
confidence interval is narrowed until the satisfied accuracy is
obtained. But OLA can not respond with acceptable accu-racy
within desired time period, which is significantly important on
the analysis of trend for ad-hoc queries.

Our work is related to two approximate answering meth-
ods: sampling and histogram. Sampling is an important

TABLE 5
Storage Overhead of RC-Tree Index with 1-4 Months
Log Files

 log files of 1-4 months 1 M 2 M 3 M 4 M

 RC-Trees data volume (GB) 7.2 8.1 8.6 8.9
 0.00
 the volume ratio 0.031 0.017 0.012 9

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16865

technique for processing of aggregate queries at run time. The

sampling for massive data sets includes two types: row-level

sampling and block-level sampling [22]. The work in [22]

analyzed the impact of block-level sampling on statistic esti-

mation for histogram, and proposed the corresponding esti-

mators with block-level samplings. Haas and K€onig€ [23]

proposed a new sampling scheme, which combines the row-

level and page-level samplings in the field of relational

DBMS. Data sampling is also well used in the field of distrib-

uted and streaming environments [24], [25]. Histogram is

another important technique for selectivity estimation. A series

of alterative techniques were presented in other articles to

provide better selectivity estimation than the original equi-

width method. The multi-dimensional histograms were also

widely studied by researchers. The problem is more challeng-

ing since it was shown that optimal splitting even in two

dimensions is NP-hard [26]. The hTree [27] and mHist [28]

are the typical works to support multi-dimensional selectivity

estimation. While the current works are shown that it is quite

expensive to generate a multi-dimensional histogram. Fas-

tRAQ combines sampling, histogram and data partition

approaches together to generate satisfied estimations in big

data environments. All of the above techniques are designed

for distributed range-aggregate queries paradigm, and it

achieves better performance on both query and update proc-

essing in big data environments.

VI CONCLUSIONS AND FUTURE WORK

In this paper, we propose FastRAQ—a new approximate
answering approach that acquires accurate estimations quickly
for range-aggregate queries in big data environ-ments.
FastRAQ has Oð1Þ time complexity for data updates and
OðP

N
_BÞ time complexity for ad-hoc range-aggregate

queries. If the ratio of edge-bucket cardinality (h0) is small
enough, FastRAQ even has Oð1Þ time complexity for range-
aggregate queries.

We believe that FastRAQ provides a good starting point for
developing real-time answering methods for big data analysis.

There are also some interesting directions for our future work.

First, FastRAQ can solve the 1:n format range-aggregate
queries problem, i.e., there is one aggregation col-umn and n

index columns in a record. We plan to investigate how our
solution can be extended to the case of m:n format problem,

i.e., there are m aggregation columns and n index columns in a

same record. Second, FastRAQ is now running in
homogeneous environments. We will further explore how

FastRAQ can be applied in heterogeneous context or even as a

tool to boost the performance of data analysis in DBaas.

REFERENCES

[1] P. Mika and G. Tummarello, ―Web semantics in the clouds,‖ IEEE

Intell. Syst., vol. 23, no. 5, pp. 82–87, Sep./Oct. 2008.

[2] T. Preis, H. S. Moat, and E. H. Stanley, ―Quantifying trading behavior

in financial markets using Google trends,‖ Sci. Rep., vol. 3, p. 1684,

2013.
[3] H. Choi and H. Varian, ―Predicting the present with Google

trends,‖ Econ. Rec., vol. 88, no. s1, pp. 2–9, 2012.
[4] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant,, ―Range queries in

OLAP data cubes,‖ ACM SIGMOD Rec., vol. 26, no. 2,
pp. 73–88, 1997.

[5] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, ―Fast data in the era

of big data: Twitter‗s real-time related query suggestion architecture,‖ in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp. 1147– 1158.

[6] W. Liang, H. Wang, and M. E. Orlowska, ―Range queries in dynamic

OLAP data cubes,‖ Data Knowl. Eng., vol. 34, no. 1,
pp. 21–38, Jul. 2000.

[7] J. M. Hellerstein, P. J. Haas, and H. J. Wang, ―Online aggregation,‖
ACM SIGMOD Rec., vol. 26, no. 2, 1997, pp. 171–182.

[8] P. J. Haas and J. M. Hellerstein, ―Ripple joins for online aggrega-

tion,‖ in ACM SIGMOD Rec., vol. 28, no. 2, pp. 287–298, 1999.

[9] E. Zeitler and T. Risch, ―Massive scale-out of expensive continu-ous

queries,‖ Proc. VLDB Endowment, vol. 4, no. 11, pp. 1181–1188, 2011.

[10] N. Pansare, V. Borkar, C. Jermaine, and T. Condie, ―Online aggre-

gation for large MapReduce jobs,‖ Proc. VLDB Endowment, vol. 4, no.
11, pp. 1135–1145, 2011.

[11] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Tal-bot,
K. Elmeleegy, and R. Sears, ―Online aggregation and continu-ous
query support in MapReduce,‖ in Proc. ACM SIGMOD Int. Conf.
Manage.
Data, 2010, pp. 1115–1118.

[12] Y. Shi, X. Meng, F. Wang, and Y. Gan, ―You can stop early with cola:

Online processing of aggregate queries in the cloud,‖ in Proc. 21st
ACM Int. Conf. Inf. Know. Manage., 2012, pp. 1223–1232.

[13] K. Bilal, M. Manzano, S. Khan, E. Calle, K. Li, and A. Zomaya, ―On

the characterization of the structural robustness of data center networks,‖
IEEE Trans. Cloud Comput., vol. 1, no. 1, pp. 64–77, Jan.– Jun. 2013.

[14] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and

P. Samarati, ―Integrity for join queries in the cloud,‖ IEEE Trans.
Cloud Comput., vol. 1, no. 2, pp. 187–200, Jul.–Dec. 2013.

[15] S. Heule, M. Nunkesser, and A. Hall, ―Hyperloglog in practice: algorithmic engineering of a

state of the art cardinality estimation
_

[16] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, ―Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,‖ in Proc.
Int. Conf. Anal. Algorithms, 2008, pp. 127–146.

[17] [Online]. Available: http://research.neustar.biz/2012/12/17/hll-
intersections-2/, 2012.

[18] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.

Antony, H. Liu, and R. Murthy, ―Hive—a petabyte scale data
warehouse using Hadoop,‖ in Proc. IEEE 26th Int. Conf. Data Eng.,
2010, pp. 996–1005.

[19] D. Mituzas. Page view statistics for wikimedia projects. (2013).

[Online]. Available: http://dumps.wikimedia.org/other/page-counts-raw/

[20] R. Sharathkumar and P. Gupta, ―Range-aggregate proximity quer-ies,‖

IIIT Hyderabad, Telangana 500032, India, Tech. Rep. IIIT/ TR/2007/80,
2007.

[21] M. Malensek, S. Pallickara, and S. Pallickara, ―Polygon-based query

evaluation over geospatial data using distributed hash tables,‖ in Proc.
IEEE/ACM 6th Int. Conf. Utility Cloud Comput., 2013, pp. 219–226.

[22] S. Chaudhuri, G. Das, and U. Srivastava, ―Effective use of block-level

sampling in statistics estimation,‖ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2004, pp. 287–298.

[23] P. J. Haas and C. Konig,€ ―A bi-level bernoulli scheme for database
sampling,‖ in Proc. ACM SIGMOD Int. Conf. Manage. Data, ACM,
2004, pp. 275–286.

[24] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, ―Distributed online
aggregations,‖ Proc. VLDB Endowment, vol. 2, no. 1, pp. 443–454,
Aug. 2009.

[25] E. Cohen, G. Cormode, and N. Duffield, ―Structure-aware sam-pling:
Flexible and accurate summarization,‖ Proc. VLDB Endow-ment, vol.
4, no. 11, pp. 819–830, 2011.

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page No.16860-16866 Page 16866

[26] S. Muthukrishnan, V. Poosala, and T. Suel, ―On rectangular par-
titionings in two dimensions: Algorithms, complexity and applications,‖
in Proc. 7th Int. Conf. Database Theory, 1999,
pp. 236–256.

[27] M. Muralikrishna and D. J. DeWitt, ―Equi-depth multidimen-sional
histograms,‖ ACM SIGMOD Rec., vol. 17, no. 3, 1988,
pp. 28–36.

[28] V. Poosala and Y. E. Ioannidis, ―Selectivity estimation without the
attribute value independence assumption,‖ in Proc. 23rd Int. Conf. Very
Large Data Bases, 1997, vol. 97, pp. 486–495.

DOI: 10.18535/ijecs/v5i6.23

K.Nithiya, IJECS Volume 5 Issue 6 June 2016 Page
No.16860-16866 Page 16867

