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Abstract: The growth of software engineering can justifiably be attributed to the advancement in Software Testing. The quality of the 

test cases to be used in Software Testing determines the quality of software testing. This is the reason why test cases are primarily crafted 

manually. However, generating test cases manually is an intense, complex and time consuming task. There is, therefore, an immediate need 

for an automated test data generator which accomplishes the task with the same effectiveness as manual crafting of test cases. The work 

presented intends to automate the process of Test Path Generation with a goal of attaining maximum coverage. The work presents a 

technique using Cellular Automata (CA) for generating test paths. The work opens the window of Cellular Automata to Software Testing. 

The approach has been verified on programs selected in accordance with their Lines of Code and utility. The results obtained have been 

verified. 
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1. Introduction 

Manual test data generation is tedious and it accounts for a 

considerable percentage of time and cost. So, there is a need to 

make Automatic Test Data Generation (ATDG) more efficient, 

both in terms of time and coverage. This will enhance the 

reliability of testing and the quality of the product being tested. 

As per the literature, the best test case suite is the one that 

maximizes the coverage of code and at the same time 

minimizes the Oracle cost. Oracle cost is the combination of 

the cost of executing the entire test suite and the cost of 

checking the system behavior as the whole [1]. The coverage is 

maximum when there is at least one test case in the suite for 

each independent path of the Program under Test (PUT). To 

minimize the Oracle cost, the number of test cases to be 

executed must be reduced.  

    The work being carried out takes into account the coverage 

criteria and minimization of the oracle cost. These bi-objective 

optimization criteria can be achieved by taking the best 

possible test case, from amongst the set of test cases generated, 

for each individual path. In order to do so, just one test case 

would be considered for a path, so the need of minimizing the 

oracle cost is eliminated. The task of generating paths is 

accomplished using the concept of Cellular Automata (CA). 

The procedure also considers programs having many modules 

and thus paves the way for its applicability to component based 

programming as well. This is necessary as most of the existing 

test data generators fail to consider the interaction between 

modules. 

    The rest of the paper is organized as follows. Section 2 

presents the literature Review. Section 3 presents the proposed 

architecture. Section 4 demonstrates the result, followed by the 

conclusion and future scope in section 5.  

2. Literature Review 

Today, the main challenge in front of software engineering is 

crafting of automated test cases. An extensive review has been 

conducted to study the existing techniques to craft the test 

cases. The work done so far is classified into various categories 

depending on the technique applied by various researchers, 

which are as follows.  

 Techniques based on Genetic Algorithms 

 Pairwise Testing approach for Test Data generation 

 Random Technique 

 Other Techniques 

 Hybrid Approach 

 Multi-Objective Approach 

Various Techniques have been proposed to automate the 

process of Test Data Generation in which many techniques are 

based on Evolutionary Algorithms. A systematic survey was 

conducted by McMinn in 2004, on Search based software Test 

Data Generation [2]. Various papers related to these techniques 

have been studied and thoroughly analyzed. Most of the 

researchers used Genetic Algorithms (GAs) to solve the 

problem of ATDG. Various tools were generated using GAs 

such as GADGET [3], TDGen [4], TGen [5], KMGA [6], et. 

al.  

Pairwise testing is a significant approach for software testing 

as it provides efficient error detection at a very low cost. It 

shows a good balance by linking the magnitude and 

effectiveness of combinations. It requires, combination of any 

two parameter values that has to be covered by at least one test 

case [7, 8]. From the point of pairwise there are some pre-

defined rules to calculate the test cases directly from the 

mathematical functions, which are known as algebraic strategy 

[9]. On the other side, computational approaches are based on 
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the calculation of coverage of generated pairs, followed by an 

iterative or random search technique to create test cases. 

Random testing selects arbitrarily test data from the input 

domain and then these test data are applied to the program 

under test. The automatic production of random test data, 

drawn from a uniform distribution, should be the default 

method by which other systems should be judged [10]. 

Statistical testing is a test case design technique in which the 

tests are derived according to the expected usage distribution 

profile. [11], [12] and [13] suggested that the distribution of 

selected input data should have the same probability 

distribution of inputs which will occur in actual use 

(operational profile or distribution which occurs during the real 

use of the software) in order to estimate the operational 

reliability. 

 Besides GAs, other techniques have also been proposed 

such as Tabu Search [14], Differential Evolution Technique 

[15], Scatter Search approach [16], Iterative Relaxation method 

[17], Combinatorial Interaction testing technique [18], 

Constraint based technique [19], Generalized Extremal 

Optimization [20], etc.  

Some of the researchers use the combination of two 

techniques to solve the problem of automatic test data 

generation. Liu et al. proposed a relation-based test method that 

combines the specification-based and the implementation-based 

testing approaches [21]. K. Dahal and A. Hossain focused on 

generating software test data using UML based software 

specifications and genetic algorithm [22]. X. Shen, Q. Wang, 

P. Wang, Bo Zhou proposed the hybrid scheme of genetic 

algorithm and tabu search that came to known as GATS 

algorithm [23]. Singla et al. presents an automatic test data 

generation technique that uses a new Algorithm called CGPSA 

(Combined Genetic-Particle Swarm Algorithm) that is based on 

a combination of Genetic Algorithms (GAs) and Particle 

Swarm Optimization (PSO) [24]. Perumal et al. introduced a 

novel approach to automated test data generation for software 

programs using a combination of heuristics involving Cuckoo 

and Tabu Search [25]. 

Evolutionary Algorithms are also used in multi-objective test 

data generation. In these algorithms minimizing oracle cost and 

maximizing the coverage are the two objectives. Lakhotia et al. 

reformulated the problem of ATDG into MOTDGP (Multi-

Objective Test Data Generation Problem) for the first time [26] 

and then modified by Harman et al. in 2010 [27]. Various 

Multi-Objective algorithms have been proposed such as 

NSGA-II, MOCell, SPEA2, PEAS, etc. K. Deb et al. proposed 

an algorithm named NSGA-II based on GAs [28]. The MOCell 

(Multi-Objective Cellular Genetic Algorithm) technique was 

proposed by Nebro et al. It is an algorithm which is a 

combination of Cellular approach and Genetic Algorithms [29]. 

It takes the concept of neighborhood from Cellular Automata 

and amalgamates it with GAs. SPEA2 (Strength Pareto 

Evolutionary Algorithm) is an algorithm proposed by Zitler et 

al. [30]. Knowles and Corne proposed a metaheuristic 

approach PAES that found the diverse solutions in the Pareto 

Optimal set [31]. The algorithm does not make use of crossover 

operator, but instead finds the solution by just modifying the 

current solution.  

3. Proposed Architecture 

Cellular Test Path Generator (CTPG) generates test cases for a 

Program Under Test (PUT) by using its Control Flow Graph 

(CFG). The CFG is used to generate paths. From the paths 

generated redundant paths are removed. This minimizes the test 

cases and hence the cost. It may be noted that a test case is to 

be defined for each path. The main aim of the path generation 

algorithm is to maximize the path coverage.  

    The use of exact algorithms for generating independent path 

is a costly process. Therefore, a randomized technique is used 

for generating the paths. It may be noted that this technique 

does not guarantees complete path coverage. However, the 

plausibility of maximizing the coverage is very high. The 

proposed technique amalgamates Genetic Algorithms (GAs) 

and Cellular Automata (CA) in order to generate paths.  

    The proposed architecture consists of three phases.  

 Control Flow Graph Generation Phase 

 Rule Selection Phase 

 Paths and Test Case Generation phase   

    The first two phases may execute in parallel. After the 

completion of first two phases, third phase is executed, that 

provides the desired results. 

    In the system, user provides two inputs, first one is the 

Program for which test data is to be generated, and the second 

one is the value of „N‟, number of test cases. The value of „N‟ 

is decided in such a way that, it is larger than the number of 

distinct paths required. This is because, the technique used to 

generate the test cases is random in nature. Due to randomness, 

paths may be repeated.  

    The architecture for the proposed system is shown in Fig. 1. 

    The Control Flow Graph Generation Phase takes program 

as input, and generates corresponding CFG as the output. Rule 

Selection Phase generates the patterns of CA, and gives an 

array of 22 × 50 × 10 as its output. The outputs obtained from 

Control Flow Graph Generation Phase and Rule Selection 

Phase, along with the value of „N‟, acts as the input for Paths 

and Test Case Generation Phase. This Phase produces 

independent paths. Test cases are crafted for each independent 

path which acts as the output for this Phase as well as the whole 

system. 

3.1 Control Flow Graph Generation Phase 

This phase takes program as input and generates its 

corresponding CFG. This phase constitute of two components:-  

 CFG Generator 

 CFG Minimizer 

 

3.1.1 CFG Generator Component 

CFG Generator component takes program as input and gives its 

corresponding CFG as its output. 

 

3.1.2 CFG Minimizer Component 

CFG Minimizer component of Control Flow Graph Generation 

Phase takes the above generated CFG as its input, and 

generates the corresponding minimized CFG. This component 

performs two functions. First one is to minimize the CFG and 

the second one is to rename the nodes of CFG. The minimized 

CFG may always have less number of nodes. This can be done 

by grouping the sequential statements into one node. 

3.2 Rule Selection Phase 

This module selects the rules of CA, which helps us to generate 

test paths. Following are the three components of this module:- 
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 Pattern Generator Component 

 Pattern Minimizer Component 

 Rule Selector Component 

 

3.2.1 Pattern Generator Component 

This module generates the patterns for all the rules. There are 

total 256 rules of CA. Corresponding to each rule, a pattern of 

100 × 100 is generated. Each pattern is stored in a 100 × 100 

matrix. Thus, a 3D matrix of 256 × 100 × 100 is obtained. 

 

 

 

 

 

Figure 1: Architecture of Cellular Test Data Generator 

 

 

3.2.2 Pattern Minimizer Component 

This component takes a matrix of 100 × 100 as input, and gives 

a matrix of 50 × 10 as its output. This step is repeated for all 

the 256 rules. So, a 3D matrix of 256 × 50 × 10 is obtained. 

The matrix is minimized in the following way.  

Each row of the matrix is divided into 10 equal parts having 

10 bits each. These parts are converted into a single bit 

depending on the majority of 0‟s or 1‟s in each part. If number 

of 1‟s is greater than or equal to number of zeroes, then, that 

part is replaced by 1; else it is replaced by 0. This step would 
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result in a matrix of order 100 × 10. This step is followed by 

removal of the first 50 rows from the resultant matrixes, thus 

resulting in the matrices of order 50 × 10. 

 

3.2.3 Rule Selector Component 

This component analyzes the 256 matrices of order 50 × 10, on 

the basis of randomness. To check the randomness of the 

pattern, coefficient of autocorrelation metric is used. The value 

is calculated as follows: 

 

 
 

Where, value of k is assumed as 1,  

r = value of autocorrelation for the particular region. 

N = 50, as there are 50 rows in the region which represents the 

state of cells at 50 discrete time steps. 

Yi = Value of i
th

 row, which is calculated by multiplying the 

individual values in the respective row by 2
-5 

to 2
4
. 

 = mean of all the Yi values obtained.  

 
Where, j varies from 1 to 50.  

    The value of autocorrelation lies between 1 and -1. Regions 

having value near to 0, are considered to be more randomly 

distributed than the other regions. After a detailed analysis, 

regions having coefficient of autocorrelation between -0.2 and 

0.2 are considered. Rest of the regions are discarded. 22 such 

matrices corresponding to 22 rules are selected. The above 

matrices are stored in a 3D matrix [ ][ ][ ]. The first index of 

the 3D matrix depicts the index of the rule, and next two 

indices depict the rows and column of corresponding pattern. 

 

3.3 Paths and Test Case Generation Phase 

This phase takes CFG of the program under test, an array of 22 

× 50 × 10, and number of paths to be generated as input, and 

produces independent paths, and for each independent path a 

test case is crafted which are the output for this phase. The 

architecture for this phase is shown in Fig. 2. 

The Path and Test case Generation Phase consists of six 

components:-  

 Branch Count Component 

 Gen Pop Component 

 Bit Extractor Component 

 Next Node Evaluator Component 

 Path Updater Component 

 Test Case Generator Component 

 

3.3.1 Branch Count Component 

This component takes CFG and Current Node of the path as 

input and generates a number „m‟ and „n‟ as output. „m‟ depicts 

the number of bits to be extracted. For the first time, current 

node is the starting node of the CFG. This component performs 

three functions.  

    First function is to calculate the number of branches of the 

current node using the CFG. Let „n‟ be the number of branches 

of the node.  

    Second function is to calculate a number „m‟ which satisfies 

the following condition. 

 
Third function is to send a signal to Gen Pop Component, to 

randomly select „M‟ chromosomes from the population of 50 

chromosomes and send the chromosomes to the Bit Extractor 

component. 

 

3.3.2 Gen Pop Component 

This component generates an initial population of size 50 × 15. 

The population is generated only once for each path. This 

function also randomly selects „m‟ chromosomes, when receive 

signal from Branch Count Component and send them to the Bit 

Extractor Component. 

 

3.3.3 Bit Extractor Component 

This This component takes „m‟, „n‟, „m‟ chromosomes, and a 

3D array of order 22 × 50 × 10, say pattern[ ][ ][ ], as input and 

gives branch number as the output.  

    The component makes use of 3 methods.  

 ExtractRuleBits 

 ExtractRowBits 

 ExtractColumnBits 

    The three functions work as follows.  

    The chromosome of the GAs has 15 cells each, in which the 

first 5 bits depict the rule number, the next 6 bits depict the row 

of that particular rule and next 4 bits depict the column 

number.  

    ExtractRuleBits method extracts the first 5 bits from the 

chromosome. The 5 extracted bits gives a binary number which 

is converted into a decimal number. The modulus of that 

number with 22gives the rule number.  

    ExtractRowBits method extracts the next 6 bits from the 

chromosome. Decimal number obtained by these 6 bits when 

operated with modulus operator with 50, gives the row number 

of that particular rule.  

    ExtractColumnBits method extracts the last 4 bits from the 

chromosome. These 4 bits when converted into a decimal 

number and operated on modulus operator with 10, gives the 

column number.  

    The bit is extracted from the pattern[ ][ ][ ] array, where rule 

number, row number, and column number act as the indices.  

    The above process has been examplified in Fig. 3.  

    The above process is repeated „m‟ times and „m‟ bits are 

obtained. These „m‟ bits are converted into a decimal number 

which is then moduled with „n‟ to obtain the branch number. 

 

3.3.4 Next Node Evaluator Component 

This component takes branch number, current node and CFG 

as the input and calculates the next node of the path as the 

output. The process has been exemplified in Fig. 4. 

The node generated act as the input for Branch count 

Component.  

The above 4 components are executed again and again, until 

the end of CFG is reached, i.e. a complete path is generated 

from starting node of CFG to the end node of CFG.  

    The whole procedure is repeated „N‟ times, where „N‟ is the 

number of paths to be generated. At the end of whole 

procedure, a 2D array is generated which consist of the paths. 

These „N‟ paths act as the input for Path Updater Component. 
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3.3.5 Path Updater Component 

This Component takes the above generated paths as input, and 

gives the independent paths as output. There may be a case in 

which a single path is generated more than once, but, a path is 

to be considered only once. Since, there is no point of 

considering the path twice, as it will only lead to more number 

of test cases, with no increase in quality of testing. Therefore, 

redundant paths are removed. 

 

3.3.6 Test Case Generator Component 

This component takes the set of independent paths as input, and 

generates the test cases for each path which act as the output of 

this component as well as the output of the whole document. 

 

 



DOI: 10.18535/ijecs/v5i6.21 
 

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16851 

 
Figure 2: Architecture of Path Generation Module 
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1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 

 

         Bits returned by                                 Bits returned by                           Bits returned by  

ExtractRuleBits( ) method                  ExtractRowBits( ) method      ExtractColumnBits( ) method 

Decimal Number: 30                          Decimal Number: 38               Decimal Number: 13 

30 % 22 = 8                                        38 % 50 = 38                            13 % 10 = 3 

Bit extracted = pattern[8][38][3] = 1 

Decimal Number = 1 

Branch Number = Decimal Number % n = 1 % 1 = 1 

Figure 3: Examplification of Bit Extractor Component 

 

 
Figure 4: Examplification of Next Node Evaluator Component 

4. Results 

The approach mentioned has been implemented. The 

implemented system takes CFG of the program as the input. 

The CFG acts as the input for the Paths and Test Case 

Generation phase, and all of its components are implemented. 

The Rule Selection Phase has also been implemented which 

results in the selection of 22 rules out of the 256 rules of CA. 

Independent paths act as the output for the system. 

    To verify the technique proposed, various programs have 

been taken and executed. The programs were taken in 

accordance with their lines of code, applicability and the 

constructs used in them. Programs are taken such that all the 

constructs for which the approach is proposed are taken, and 

experiments are conducted on them. The details of the 

programs taken are given in Table 1. The results obtained are 

summarized in Table 2. 

 

Table 1. Programs Description 

Sr. No. Program Name Program Code Constructs Nesting 

Level 

1 Even Number or Not ENN If else 1 

2 Income Tax Calculator ITC Else-If Ladder 1 

3 Quadratic Equation Solver  QES Nested if else 2 

4 Vowel or Not  VN Switch Case 1 

5 Bubble Sort  BS Loops 2 

6 Matrix Multiplication MM Loops 3 

7 Menu Driven Program MDP Break, Continue, Goto 2 

 

 

 

 

 

 

3 

11 4 

0 1 

Current Node: 3 

Branch Number: 1 

Next node Calculated: 11 
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Table 2. Percentage of Path Coverage for the selected 

programs 

Sr.No. Program 

Code 

Path Coverage 

1 ENN 97.4 

2 ITC 98.56 

3 QES 96.32 

4 VN 95 

5 BS 91.06 

6 MM 85.87 

7 MDP 82.23 

 

The average path coverage is calculated for our approach 

and is found to be 92.35%  

    The proposed technique is also compared with six other 

existing techniques also. The techniques used for comparison 

are as follows. 

 Random Testing Approach (RT) 

 Standard Genetic Algorithm (SGA) 

 Generalized Extremal Optimization (GEO) 

 Variation of Generalized Extremal Optimization 

(GEOvar) 

 Test Case Generation Using Scatter Search Approach 

(TCSS) 

 Evolutionary Testing Approach (ET) 

Other techniques taken for comparison produced their 

experimental results on different set of programs, whose code 

is not available with us. So, for the comparison purpose, 

average path coverage for the whole set of programs is 

calculated for each technique, and then compared with our 

approach. The average path coverage for our approach and 

other existing approaches has been listed in Table 3. 

 

 

Table 3: Comparison with other existing techniques 

CTPG RT SGA GEO GEOvar TCSS ET 

92.35 85 93.80 93.41 93.64 88.30 99.8 

 

5. Conclusion and Future Scope 

The proposed work uses CA to generate test cases in a novel 

way, which is statistically sound and uses autocorrelation as its 

base, thus making sure that requisite patterns are selected from 

CA. Most of the procedural constructs like nested condition 

statements, switch cases, loops has been handled. Test case 

generation follows path coverage hence a time tested technique 

instills confidence in the proposed architecture. 7 programs 

were selected for testing and the results show that the test cases 

are as good as manual test cases. 

    In the work an assumption was made regarding the 

randomization of patterns. It was assumed that after 50 

generations of a pattern, the randomization will be more than 

earlier generations. The fact was proved using the Pearson‟s 

Coefficient of Autocorrelation. In future, this process can be 

automated to find out the point from where randomization 

starts.  

    In the automation of path generation procedure, most of the 

constructs have already been handled. But, Function calling has 

not been handled yet. A modification in above technique can be 

made to handle functions in a software.  

    The process of path generation has been automated in C#. 

The process of test case generation can also be automated with 

the help of software specifications. 
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