
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 6 June 2016, Page No. 16846-16854

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16846

Test Path Generation Using Cellular Automata
Vandana

1
, Neha Sewal

2
, Shailja Gupta

3

1M.Tech Scholar, NGF College of Engineering and Technology,

Department of Computer Science and Engineering, Palwal

saivandana4@gmail.com
2Assistant Professor, NGF College of Engineering and Technology,

Department of Computer Science and Engineering, Palwal

neha.sawal@gmail.com
3Assistant Professor, Manav Rachna University,

Department of Computer Science and Engineering, Faridabad

shailjaguptaymca@gmail.com

Abstract: The growth of software engineering can justifiably be attributed to the advancement in Software Testing. The quality of the

test cases to be used in Software Testing determines the quality of software testing. This is the reason why test cases are primarily crafted

manually. However, generating test cases manually is an intense, complex and time consuming task. There is, therefore, an immediate need

for an automated test data generator which accomplishes the task with the same effectiveness as manual crafting of test cases. The work

presented intends to automate the process of Test Path Generation with a goal of attaining maximum coverage. The work presents a

technique using Cellular Automata (CA) for generating test paths. The work opens the window of Cellular Automata to Software Testing.

The approach has been verified on programs selected in accordance with their Lines of Code and utility. The results obtained have been

verified.

Keywords: Test Path Generation, Cellular Automata, Software Testing, Path Coverage.

1. Introduction

Manual test data generation is tedious and it accounts for a

considerable percentage of time and cost. So, there is a need to

make Automatic Test Data Generation (ATDG) more efficient,

both in terms of time and coverage. This will enhance the

reliability of testing and the quality of the product being tested.

As per the literature, the best test case suite is the one that

maximizes the coverage of code and at the same time

minimizes the Oracle cost. Oracle cost is the combination of

the cost of executing the entire test suite and the cost of

checking the system behavior as the whole [1]. The coverage is

maximum when there is at least one test case in the suite for

each independent path of the Program under Test (PUT). To

minimize the Oracle cost, the number of test cases to be

executed must be reduced.

 The work being carried out takes into account the coverage

criteria and minimization of the oracle cost. These bi-objective

optimization criteria can be achieved by taking the best

possible test case, from amongst the set of test cases generated,

for each individual path. In order to do so, just one test case

would be considered for a path, so the need of minimizing the

oracle cost is eliminated. The task of generating paths is

accomplished using the concept of Cellular Automata (CA).

The procedure also considers programs having many modules

and thus paves the way for its applicability to component based

programming as well. This is necessary as most of the existing

test data generators fail to consider the interaction between

modules.

 The rest of the paper is organized as follows. Section 2

presents the literature Review. Section 3 presents the proposed

architecture. Section 4 demonstrates the result, followed by the

conclusion and future scope in section 5.

2. Literature Review

Today, the main challenge in front of software engineering is

crafting of automated test cases. An extensive review has been

conducted to study the existing techniques to craft the test

cases. The work done so far is classified into various categories

depending on the technique applied by various researchers,

which are as follows.

 Techniques based on Genetic Algorithms

 Pairwise Testing approach for Test Data generation

 Random Technique

 Other Techniques

 Hybrid Approach

 Multi-Objective Approach

Various Techniques have been proposed to automate the

process of Test Data Generation in which many techniques are

based on Evolutionary Algorithms. A systematic survey was

conducted by McMinn in 2004, on Search based software Test

Data Generation [2]. Various papers related to these techniques

have been studied and thoroughly analyzed. Most of the

researchers used Genetic Algorithms (GAs) to solve the

problem of ATDG. Various tools were generated using GAs

such as GADGET [3], TDGen [4], TGen [5], KMGA [6], et.

al.

Pairwise testing is a significant approach for software testing

as it provides efficient error detection at a very low cost. It

shows a good balance by linking the magnitude and

effectiveness of combinations. It requires, combination of any

two parameter values that has to be covered by at least one test

case [7, 8]. From the point of pairwise there are some pre-

defined rules to calculate the test cases directly from the

mathematical functions, which are known as algebraic strategy

[9]. On the other side, computational approaches are based on

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16847

the calculation of coverage of generated pairs, followed by an

iterative or random search technique to create test cases.

Random testing selects arbitrarily test data from the input

domain and then these test data are applied to the program

under test. The automatic production of random test data,

drawn from a uniform distribution, should be the default

method by which other systems should be judged [10].

Statistical testing is a test case design technique in which the

tests are derived according to the expected usage distribution

profile. [11], [12] and [13] suggested that the distribution of

selected input data should have the same probability

distribution of inputs which will occur in actual use

(operational profile or distribution which occurs during the real

use of the software) in order to estimate the operational

reliability.

 Besides GAs, other techniques have also been proposed

such as Tabu Search [14], Differential Evolution Technique

[15], Scatter Search approach [16], Iterative Relaxation method

[17], Combinatorial Interaction testing technique [18],

Constraint based technique [19], Generalized Extremal

Optimization [20], etc.

Some of the researchers use the combination of two

techniques to solve the problem of automatic test data

generation. Liu et al. proposed a relation-based test method that

combines the specification-based and the implementation-based

testing approaches [21]. K. Dahal and A. Hossain focused on

generating software test data using UML based software

specifications and genetic algorithm [22]. X. Shen, Q. Wang,

P. Wang, Bo Zhou proposed the hybrid scheme of genetic

algorithm and tabu search that came to known as GATS

algorithm [23]. Singla et al. presents an automatic test data

generation technique that uses a new Algorithm called CGPSA

(Combined Genetic-Particle Swarm Algorithm) that is based on

a combination of Genetic Algorithms (GAs) and Particle

Swarm Optimization (PSO) [24]. Perumal et al. introduced a

novel approach to automated test data generation for software

programs using a combination of heuristics involving Cuckoo

and Tabu Search [25].

Evolutionary Algorithms are also used in multi-objective test

data generation. In these algorithms minimizing oracle cost and

maximizing the coverage are the two objectives. Lakhotia et al.

reformulated the problem of ATDG into MOTDGP (Multi-

Objective Test Data Generation Problem) for the first time [26]

and then modified by Harman et al. in 2010 [27]. Various

Multi-Objective algorithms have been proposed such as

NSGA-II, MOCell, SPEA2, PEAS, etc. K. Deb et al. proposed

an algorithm named NSGA-II based on GAs [28]. The MOCell

(Multi-Objective Cellular Genetic Algorithm) technique was

proposed by Nebro et al. It is an algorithm which is a

combination of Cellular approach and Genetic Algorithms [29].

It takes the concept of neighborhood from Cellular Automata

and amalgamates it with GAs. SPEA2 (Strength Pareto

Evolutionary Algorithm) is an algorithm proposed by Zitler et

al. [30]. Knowles and Corne proposed a metaheuristic

approach PAES that found the diverse solutions in the Pareto

Optimal set [31]. The algorithm does not make use of crossover

operator, but instead finds the solution by just modifying the

current solution.

3. Proposed Architecture

Cellular Test Path Generator (CTPG) generates test cases for a

Program Under Test (PUT) by using its Control Flow Graph

(CFG). The CFG is used to generate paths. From the paths

generated redundant paths are removed. This minimizes the test

cases and hence the cost. It may be noted that a test case is to

be defined for each path. The main aim of the path generation

algorithm is to maximize the path coverage.

 The use of exact algorithms for generating independent path

is a costly process. Therefore, a randomized technique is used

for generating the paths. It may be noted that this technique

does not guarantees complete path coverage. However, the

plausibility of maximizing the coverage is very high. The

proposed technique amalgamates Genetic Algorithms (GAs)

and Cellular Automata (CA) in order to generate paths.

 The proposed architecture consists of three phases.

 Control Flow Graph Generation Phase

 Rule Selection Phase

 Paths and Test Case Generation phase

 The first two phases may execute in parallel. After the

completion of first two phases, third phase is executed, that

provides the desired results.

 In the system, user provides two inputs, first one is the

Program for which test data is to be generated, and the second

one is the value of „N‟, number of test cases. The value of „N‟

is decided in such a way that, it is larger than the number of

distinct paths required. This is because, the technique used to

generate the test cases is random in nature. Due to randomness,

paths may be repeated.

 The architecture for the proposed system is shown in Fig. 1.

 The Control Flow Graph Generation Phase takes program

as input, and generates corresponding CFG as the output. Rule

Selection Phase generates the patterns of CA, and gives an

array of 22 × 50 × 10 as its output. The outputs obtained from

Control Flow Graph Generation Phase and Rule Selection

Phase, along with the value of „N‟, acts as the input for Paths

and Test Case Generation Phase. This Phase produces

independent paths. Test cases are crafted for each independent

path which acts as the output for this Phase as well as the whole

system.

3.1 Control Flow Graph Generation Phase

This phase takes program as input and generates its

corresponding CFG. This phase constitute of two components:-

 CFG Generator

 CFG Minimizer

3.1.1 CFG Generator Component

CFG Generator component takes program as input and gives its

corresponding CFG as its output.

3.1.2 CFG Minimizer Component

CFG Minimizer component of Control Flow Graph Generation

Phase takes the above generated CFG as its input, and

generates the corresponding minimized CFG. This component

performs two functions. First one is to minimize the CFG and

the second one is to rename the nodes of CFG. The minimized

CFG may always have less number of nodes. This can be done

by grouping the sequential statements into one node.

3.2 Rule Selection Phase

This module selects the rules of CA, which helps us to generate

test paths. Following are the three components of this module:-

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16848

 Pattern Generator Component

 Pattern Minimizer Component

 Rule Selector Component

3.2.1 Pattern Generator Component

This module generates the patterns for all the rules. There are

total 256 rules of CA. Corresponding to each rule, a pattern of

100 × 100 is generated. Each pattern is stored in a 100 × 100

matrix. Thus, a 3D matrix of 256 × 100 × 100 is obtained.

Figure 1: Architecture of Cellular Test Data Generator

3.2.2 Pattern Minimizer Component

This component takes a matrix of 100 × 100 as input, and gives

a matrix of 50 × 10 as its output. This step is repeated for all

the 256 rules. So, a 3D matrix of 256 × 50 × 10 is obtained.

The matrix is minimized in the following way.

Each row of the matrix is divided into 10 equal parts having

10 bits each. These parts are converted into a single bit

depending on the majority of 0‟s or 1‟s in each part. If number

of 1‟s is greater than or equal to number of zeroes, then, that

part is replaced by 1; else it is replaced by 0. This step would

Program

Minimized CFG

256 × 100× 100

256 × 50 × 10

22 × 50 × 10

N,

Number

of Test

Cases

„N‟ Paths

Independent Paths

Test Cases

CFG

CFG Generator

CFG Minimizer

Pattern

Generator

Pattern

Minimizer

Rule Selector

Path

Generator

Phase 1

Phase 2

Path

Updater

Test case

Generator

Phase 3

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16849

result in a matrix of order 100 × 10. This step is followed by

removal of the first 50 rows from the resultant matrixes, thus

resulting in the matrices of order 50 × 10.

3.2.3 Rule Selector Component

This component analyzes the 256 matrices of order 50 × 10, on

the basis of randomness. To check the randomness of the

pattern, coefficient of autocorrelation metric is used. The value

is calculated as follows:

Where, value of k is assumed as 1,

r = value of autocorrelation for the particular region.

N = 50, as there are 50 rows in the region which represents the

state of cells at 50 discrete time steps.

Yi = Value of i
th

 row, which is calculated by multiplying the

individual values in the respective row by 2
-5

to 2
4
.

 = mean of all the Yi values obtained.

Where, j varies from 1 to 50.

 The value of autocorrelation lies between 1 and -1. Regions

having value near to 0, are considered to be more randomly

distributed than the other regions. After a detailed analysis,

regions having coefficient of autocorrelation between -0.2 and

0.2 are considered. Rest of the regions are discarded. 22 such

matrices corresponding to 22 rules are selected. The above

matrices are stored in a 3D matrix [][][]. The first index of

the 3D matrix depicts the index of the rule, and next two

indices depict the rows and column of corresponding pattern.

3.3 Paths and Test Case Generation Phase

This phase takes CFG of the program under test, an array of 22

× 50 × 10, and number of paths to be generated as input, and

produces independent paths, and for each independent path a

test case is crafted which are the output for this phase. The

architecture for this phase is shown in Fig. 2.

The Path and Test case Generation Phase consists of six

components:-

 Branch Count Component

 Gen Pop Component

 Bit Extractor Component

 Next Node Evaluator Component

 Path Updater Component

 Test Case Generator Component

3.3.1 Branch Count Component

This component takes CFG and Current Node of the path as

input and generates a number „m‟ and „n‟ as output. „m‟ depicts

the number of bits to be extracted. For the first time, current

node is the starting node of the CFG. This component performs

three functions.

 First function is to calculate the number of branches of the

current node using the CFG. Let „n‟ be the number of branches

of the node.

 Second function is to calculate a number „m‟ which satisfies

the following condition.

Third function is to send a signal to Gen Pop Component, to

randomly select „M‟ chromosomes from the population of 50

chromosomes and send the chromosomes to the Bit Extractor

component.

3.3.2 Gen Pop Component

This component generates an initial population of size 50 × 15.

The population is generated only once for each path. This

function also randomly selects „m‟ chromosomes, when receive

signal from Branch Count Component and send them to the Bit

Extractor Component.

3.3.3 Bit Extractor Component

This This component takes „m‟, „n‟, „m‟ chromosomes, and a

3D array of order 22 × 50 × 10, say pattern[][][], as input and

gives branch number as the output.

 The component makes use of 3 methods.

 ExtractRuleBits

 ExtractRowBits

 ExtractColumnBits

 The three functions work as follows.

 The chromosome of the GAs has 15 cells each, in which the

first 5 bits depict the rule number, the next 6 bits depict the row

of that particular rule and next 4 bits depict the column

number.

 ExtractRuleBits method extracts the first 5 bits from the

chromosome. The 5 extracted bits gives a binary number which

is converted into a decimal number. The modulus of that

number with 22gives the rule number.

 ExtractRowBits method extracts the next 6 bits from the

chromosome. Decimal number obtained by these 6 bits when

operated with modulus operator with 50, gives the row number

of that particular rule.

 ExtractColumnBits method extracts the last 4 bits from the

chromosome. These 4 bits when converted into a decimal

number and operated on modulus operator with 10, gives the

column number.

 The bit is extracted from the pattern[][][] array, where rule

number, row number, and column number act as the indices.

 The above process has been examplified in Fig. 3.

 The above process is repeated „m‟ times and „m‟ bits are

obtained. These „m‟ bits are converted into a decimal number

which is then moduled with „n‟ to obtain the branch number.

3.3.4 Next Node Evaluator Component

This component takes branch number, current node and CFG

as the input and calculates the next node of the path as the

output. The process has been exemplified in Fig. 4.

The node generated act as the input for Branch count

Component.

The above 4 components are executed again and again, until

the end of CFG is reached, i.e. a complete path is generated

from starting node of CFG to the end node of CFG.

 The whole procedure is repeated „N‟ times, where „N‟ is the

number of paths to be generated. At the end of whole

procedure, a 2D array is generated which consist of the paths.

These „N‟ paths act as the input for Path Updater Component.

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16850

3.3.5 Path Updater Component

This Component takes the above generated paths as input, and

gives the independent paths as output. There may be a case in

which a single path is generated more than once, but, a path is

to be considered only once. Since, there is no point of

considering the path twice, as it will only lead to more number

of test cases, with no increase in quality of testing. Therefore,

redundant paths are removed.

3.3.6 Test Case Generator Component

This component takes the set of independent paths as input, and

generates the test cases for each path which act as the output of

this component as well as the output of the whole document.

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16851

Figure 2: Architecture of Path Generation Module

CFG, Starting Node

Control Flow

Graph Generation

Phase

Rule Selection

Phase

Independent

Paths Data

Base

Number of Paths „N‟ Array of 22 × 50 ×10

„M‟ Chromosomes

m, number

of bits to be

extracted Branch Number

Next Node in a Path

Current Node „N‟ Paths

Independent Paths

Branch

Count
Gen Pop

PATHS AND TEST CASE GENERATION PHASE

Bit

Extractor

Next Node

Evaluator

Path

Updater

Generate „M‟

Test Case

Generator
Test Cases

Independent Paths

Path Buffer

n, number

of branches

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 6 June 2016, Page No. 16846-16854

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16852

1 1 1 1 0 1 0 0 1 1 0 1 1 0 1

 Bits returned by Bits returned by Bits returned by

ExtractRuleBits() method ExtractRowBits() method ExtractColumnBits() method

Decimal Number: 30 Decimal Number: 38 Decimal Number: 13

30 % 22 = 8 38 % 50 = 38 13 % 10 = 3

Bit extracted = pattern[8][38][3] = 1

Decimal Number = 1

Branch Number = Decimal Number % n = 1 % 1 = 1

Figure 3: Examplification of Bit Extractor Component

Figure 4: Examplification of Next Node Evaluator Component

4. Results

The approach mentioned has been implemented. The

implemented system takes CFG of the program as the input.

The CFG acts as the input for the Paths and Test Case

Generation phase, and all of its components are implemented.

The Rule Selection Phase has also been implemented which

results in the selection of 22 rules out of the 256 rules of CA.

Independent paths act as the output for the system.

 To verify the technique proposed, various programs have

been taken and executed. The programs were taken in

accordance with their lines of code, applicability and the

constructs used in them. Programs are taken such that all the

constructs for which the approach is proposed are taken, and

experiments are conducted on them. The details of the

programs taken are given in Table 1. The results obtained are

summarized in Table 2.

Table 1. Programs Description

Sr. No. Program Name Program Code Constructs Nesting

Level

1 Even Number or Not ENN If else 1

2 Income Tax Calculator ITC Else-If Ladder 1

3 Quadratic Equation Solver QES Nested if else 2

4 Vowel or Not VN Switch Case 1

5 Bubble Sort BS Loops 2

6 Matrix Multiplication MM Loops 3

7 Menu Driven Program MDP Break, Continue, Goto 2

3

11 4

0 1

Current Node: 3

Branch Number: 1

Next node Calculated: 11

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16853

Table 2. Percentage of Path Coverage for the selected

programs

Sr.No. Program

Code

Path Coverage

1 ENN 97.4

2 ITC 98.56

3 QES 96.32

4 VN 95

5 BS 91.06

6 MM 85.87

7 MDP 82.23

The average path coverage is calculated for our approach

and is found to be 92.35%

 The proposed technique is also compared with six other

existing techniques also. The techniques used for comparison

are as follows.

 Random Testing Approach (RT)

 Standard Genetic Algorithm (SGA)

 Generalized Extremal Optimization (GEO)

 Variation of Generalized Extremal Optimization

(GEOvar)

 Test Case Generation Using Scatter Search Approach

(TCSS)

 Evolutionary Testing Approach (ET)

Other techniques taken for comparison produced their

experimental results on different set of programs, whose code

is not available with us. So, for the comparison purpose,

average path coverage for the whole set of programs is

calculated for each technique, and then compared with our

approach. The average path coverage for our approach and

other existing approaches has been listed in Table 3.

Table 3: Comparison with other existing techniques

CTPG RT SGA GEO GEOvar TCSS ET

92.35 85 93.80 93.41 93.64 88.30 99.8

5. Conclusion and Future Scope

The proposed work uses CA to generate test cases in a novel

way, which is statistically sound and uses autocorrelation as its

base, thus making sure that requisite patterns are selected from

CA. Most of the procedural constructs like nested condition

statements, switch cases, loops has been handled. Test case

generation follows path coverage hence a time tested technique

instills confidence in the proposed architecture. 7 programs

were selected for testing and the results show that the test cases

are as good as manual test cases.

 In the work an assumption was made regarding the

randomization of patterns. It was assumed that after 50

generations of a pattern, the randomization will be more than

earlier generations. The fact was proved using the Pearson‟s

Coefficient of Autocorrelation. In future, this process can be

automated to find out the point from where randomization

starts.

 In the automation of path generation procedure, most of the

constructs have already been handled. But, Function calling has

not been handled yet. A modification in above technique can be

made to handle functions in a software.

 The process of path generation has been automated in C#.

The process of test case generation can also be automated with

the help of software specifications.

References

[1] Ferrer, J., Chicano, F. and Alba, E. 2012. Evolutionary

algorithms for the multi-objective test data generation

problem. Softw: Pract. Exper. 42, 1331–1362.

[2] McMinn, P. 2004. Search-based software test data

generation: a survey. Research Articles, Software Testing,

Verification & Reliability. 14, 2, 105-156.

[3] Michael, C.C., McGraw, G.E., Schatz, M.A. 2001.

Generating software test data by evolution. IEEE

Transactions on Software Engineering. 27, 12, 1085–1110.

[4] Miller, J., Reformat, M., Zhang, H., 2006. Automatic test

data generation using genetic algorithm and program

dependence graphs. Information and Software Technology

48 (7), 586–605.

[5] Pargas, R.P., Harrold, M.J., Peck, R.R., 1999. Test data

generation using genetic algorithms. Journal of Software

Testing, Verification and Reliability 9 (4), 263–282.

[6] Roya Alavi and Shahriar Lofti. IPCSIT vol. 14 (2011)

IACSIT Press, Singapore The New Approach for Software

Testing Using a Genetic Algorithm Based on Clustering

Initial Test Instances 2011 International Conference on

Computer and Software Modelling.

[7] Jangbok Kim, Kyunghee Choi, Daniel M. Hoffman, Gihyun

Jung, “White Box Pairwise Test Case Generation”, in

proceedings of the IEEE Seventh International Conference

on Quality Software, Oregon, USA, 2007.

[8] Zainal Hisham Che Soh, Syahrul Afzal Che Abdullah, Kamal

Zuhari Zamli, “A Parallelization Strategies of Test Suites

Generation for t-way Combinatorial Interaction Testing”, in

DOI: 10.18535/ijecs/v5i6.21

Vandana, IJECS Volume 5 Issue 6 June 2016 Page No.16846-16854 Page 16854

proceedings of the IEEE International conference on

Information Technology, International Symposium , Kuala

Lumpur, Malaysia, 2008.

[9] M. I. Younis, K. Z. Zamli, N. A. Mat Isa, “Algebraic Strategy

to Generate Pairwise Test Set for Prime Number Parameters

and Variables”, in proceedings of the IEEE international

conference on computer and information technology, Kuala

Lumpur, Malaysia, 2008.

[10] Ince, D. C.: 'The automatic generation of test data', The

Computer Journal, Vol. 30, No. 1, pp. 63-69, 1987

[11] Taylor R.: 'An example of large scale random testing', Proc.

7th annual Pacific North West Software Quality

Conference, Portland, OR, pp. 339-48, 1989

[12] Ould, M. A.: 'Testing - a challenge to method and tool

developers', Software Engineering Journal, pp. 59-64,

March 1991

[13] Duran, J. W. and Ntafos S., 'A report on random testing',

Proceedings 5th Int. Conf. on Software Engineering held in

San Diego C.A., pp. 179-83, March 1981

[14] Eugenia Díaz , Javier Tuya , Raquel Blanco , José Javier

Dolado, A tabu search algorithm for structural software

testing, Computers and Operations Research, v.35 n.10,

p.3052-3072, October,

2008 [doi>10.1016/j.cor.2007.01.009]

[15] Ricardo Landa Becerra, Ramón Sagarna, Xin Yao: An

evaluation of Differential Evolution in software test data

generation. IEEE Congress on Evolutionary Computation

2009: 2850-2857.

[16] Raquel Blanco , Javier Tuya , Belarmino Adenso-Díaz,

Automated test data generation using a scatter search

approach, Information and Software Technology, v.51 n.4,

p.708-720, April, 2009

[17] Neelam Gupta , Aditya P. Mathur , Mary Lou Soffa,

Automated test data generation using an iterative relaxation

method, Proceedings of the 6th ACM SIGSOFT

international symposium on Foundations of software

engineering, p.231-244, November 01-05, 1998, Lake

Buena Vista, Florida, United

States [doi>10.1145/288195.288321]

[18] Ferrer, J., Kruse, P., Chicano, F., Alba, E.

2012. Evolutionary algorithm for prioritized pairwise test

data generation. GECCO 2012. 1213-1220.

[19] Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, Xinjun

Wang, An Approach on Automatic Test Data Generation

with Predicate Constraint Solving Technique, International

Journal of Information Technology, Vol.12, No.3, 2006, pp.

132-141.

[20] Bruno Teixeira de Abreu, Eliane Martins, Fabiano Luis de

Sousa: Generalized extremal optimization: an attractive

alternative for test data generation. GECCO 2007: 1138

[21] Shaoying Liu , Yuting Chen, A relation-based method

combining functional and structural testing for test case

generation, Journal of Systems and Software, v.81 n.2,

p.234-248, February,

2008 [doi>10.1016/j.jss.2007.05.036]

[22] K. Dahal, A. Hossain, “Test Data Generation from UML

State Machine Diagrams using GAs”, International

Conference on Software Engineering Advances, 0-7695-

2937-2/07 © 2007 IEEE. pp:834-840.

[23] X. Shen, Q. Wang, P. Wang, Bo Zhou, “Automatic

Generation of Test Case based on GATS Algorithm”,

2007AA04Z148, supported by Nation 863 Project.

[24] Sanjay Singla, H. M. Rai, Priti Singla, Automatic Test data

Generation Approach using Combination of GA and PSO

with Dominance Concepts, International Journal of

Electronics Engineering, Vol. 3, No. 1, 2011, pp. 95-98.

[25] Krish Perumal, Jagan Mohan Ungati, Gaurav Kumar, Nitish

Jain, Raj Gaurav, Praveen Ranjan Srivastava, Test data

generation: a hybrid approach using cuckoo and tabu

search, Proceedings of the Second international conference

on Swarm, Evolutionary, and Memetic Computing

(SEMCCO‟11), PP. 46-54.

[26] Harman, M., Lakhotia, K., McMinn, P. 2007. A multi-

objective approach to search-based test data generation.

GECCO ‟07: Proceedings of the 9th annual conference on

Genetic and evolutionary computation, ACM: New York,

NY, USA. 1098–1105.

[27] Harman, M., Kim, S. G., Lakhotia, K., McMinn, P., Yoo, S.

2010. Optimizing for the number of tests generated in

search based test data generation with an application to the

oracle cost problem. Proceedings of the 3rd International

Workshop on Search-Based Software Testing (SBST) in

conjunction with ICST 2010, IEEE: Paris, France. 182–191.

[28] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. 2002. A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation. 6, 2, 182–191

[29] Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., Alba,

E. 2009. MOCell: A cellular genetic algorithm for

multiobjective optimization. Int. J. Intell. Syst. 24, 7, 726–

746.

[30] Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2:

Improving the strength pareto evolutionary algorithm.

Technical Report 103, Gloriastrasse 35, CH-8092 Zurich,

Switzerland.

[31] Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X.,

Zalzala A. 1999. The Pareto Archived Evolution Strategy:

A New Baseline Algorithm for Pareto Multiobjective

Optimisation, IEEE Press: Mayflower Hotel, Washington

D.C., USA. Vol.1.

