
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issues 6 June 2016, Page No. 16842-16845

S.Surendran
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16842-16845 Page 16842

Bandwidth Optimization In Data Retrieval From Cloud Using Continuous

Hive Language
S.Surendran

1
 Teaching Fellow, K.Prema

2
PG Student

1Department of Computer Science and Engineering, BIT Campus, Anna University,

Tiruchirappalli 620024
Email:surendran.infotech@@gmail.com

2
M.E Computer Science and Engineering, BIT Campus, Anna University,

Tiruchirappalli 620024
 Email:prema012@gmail.com

ABSTRACT

 In distributed applications data centers process high volume of data in order to process user request. Using SQL

analyzer to process user queries is centralized and it is difficult to manage large data sets. Retrieving data from the storage is

also difficult. Finally we can’t execute the system in a parallel fashion by distributing data across a large number of machines.

Systems that compute SQL analytics over geographically distributed data operate by pulling all data to a central location. This

is problematic at large data scales due to expensive transoceanic links. So implement Continuous Hive (CHIVE) that facilitates

querying and managing large datasets residing in distributed storage. Hive provides a mechanism to structure the data and

query the data using a SQL-like language called HiveQL and it optimizes query plans to minimize their overall bandwidth

consumption. The proposed system optimizes query execution plans and data replication to minimize bandwidth cost.

Key words - Cloud computing, Event Stream Processing, Bandwidth optimization, Query processing.

1 .INTRODUCTION

In big data the solution for big data analytics operates

on large clusters of nodes, located in the same data center.

Transporting high velocity data or huge size event consumes

higher available bandwidth which makes the cost of data

transfer is high.

CHIVE (Continuous HIVE) facilitates the execution

of SQL queries to process large dataset. CHIVE executes

continuous queries on data collected in online fashion. The

fundamental concept of CHIVE is that it minimizes overall

bandwidth consumption by optimizing query plan when it is

used in distributed cloud. CHIVE rewrites query plans in such

a way that event can be processed as close to their source. It

limits the amount of data that needs to be sent through the

network. It provides higher bandwidth reduction in distributed

cloud. CHIVE executes queries in parallel manner in order to

minimize bandwidth consumption and to increase execution

speed.

Event Stream Processing (ESP) is developed for the

construction of event-driven information systems. It includes

event visualization, event-driven middleware, and event

processing languages. ESP processes event stream data for

identifying meaningful patterns in the streams. It provides

techniques for detection of relationship between multiple

events, event hierarchies, event correlation and event timing.

Event Stream processing stores event processing workflows

instead of storing data. The arrival of new data events triggers

the execution of the workflows. ESP systems facilitate the

creation and deployment of distributed event stream

processing. ESP enables applications such as RFID event

processing applications, fraud detection, process monitoring

and location based services.

Event-driven architecture (EDA) is a framework for

creation, detection, consumption of event and the responses to

the event. Event-driven architecture consists of event creator,

event consumer and event manager. The creator is the source

of the event which only knows about that the event has

occurred. Event consumers are the entities that process the

event or they may be affected by the event. Event manager

receives event notification from the event creator and forwards

the events to registered consumers.

2. RELATED RESEARCH WORK

 In batch processing user specifies the map function

which process key value pairs. The reduce function merges all

values with the same intermediate key. In this method

programs are parallelized and executed on large cluster of

machines. Query optimization technique is used in HIVE to

DOI: 10.18535/ijecs/v5i6.20

S.Surendran
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16842-16845 Page 16843

relieve the data analyst from optimizing queries before

processing them. Chive is at the same level as Hive in the data

processing, but it uses Event Stream Processing instead of

batch processing. Chive avoids back-haul all event data to a

single DC before processing. Chive stores raw events which

are close to event source which requires transferring only

minimal information in the network.

Complex Event Processing (CEP) technique analyzes

continuous event streams. Complex Event Processing tools

such as Esper can operate as a standalone application or can be

embedded as a library in java applications. Esper has no out-of

–the-box support for executing continuous queries distributed

over multiple JVMs. Complex Event Processing supports

scalability by running multiple instances in parallel.

3. DESIGN AND IMPLEMENTATION

Chive uses high level query language for event

stream processing. Chive includes various client APIs such as

Command Line Interface (CLI), web interface and java API.

THE client submits Chive query expressions, network

topology information, event type and the source of events.

Query plan compiler creates distributed Chive query to be

used in the network topology. It needs valid Chive query

expression as an input to generate Chive query plan. Query

execution library provides the functionality to execute Chive

query plan. It uses windowing support and Query primitive

library for running query plans. Query Deployment engine is

responsible for deploying generated Optimized Query Plan

(OQP) onto the processing nodes in the network topology.

Figure 1: System Architecture

3.1 Distributed cloud framework:

The distributed systems are based on object-oriented

programming (OOP) paradigm. While OOP is an intuitive way

to model complex systems, it has been marginalized by the

popular service-oriented architecture (SOA). However, at the

system level, developers have to think in terms of loosely-

coupled partitioned services, which often do not match the

application’s conceptual objects. This has contributed to the

difficulty of building distributed systems by mainstream

developers. The actor model brings OOP back to the system

level with actors appearing to developers very much like the

familiar model of interacting objects. Distributed cloud

framework contains cloud owners, cloud provider and cloud

users. Cloud owner is responsible for upload their data in

cloud storage. Cloud provider is responsible for maintain the

data and cloud users’ access data from cloud storage. Then this

framework also called as multi cloud system.

Figure 2: Distributed Cloud Framework

 3.2 Event Stream Processing

Stream processing is mostly used application, even

among big data users. Complex Event Processing, sometimes

called Event Stream Processing, deals with discrete events

where true Streaming engines deal with an ongoing flow of

diverse sets of information (or at least they should). Event

processing is a method of tracking and analyzing (processing)

streams of information (data) about things that happen

(events), and deriving a conclusion from them. Complex event

processing, or CEP, is event processing that combines data

from multiple sources to events or patterns that suggest more

complicated circumstances. The goal of complex event

processing is to identify meaningful events and respond to

them as quickly as possible. The same logic that resulted in the

creation of cloud-based data centers can be applied to cellular

backhaul networks, according to the startup Parallel Wireless.

In this we can get the cloud data as event streams and stored as

CSV format.

Event

streams of

data

Map reduce

clusters

Data

Retrieval

request

C-HIVE

query

Retrieving

data sets

Users

Clustered

data

Distributed cloud

system

Stream data

center

Back end

data

center

Bandwidth

estimation

Cloud owner

registration
Authentication

Stored in

cloud

Access

permission

Secret

key issue

Retrieving

from cloud

Data

owner

Provider

Users

Request

data

Check

authentication

DOI: 10.18535/ijecs/v5i6.20

S.Surendran
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16842-16845 Page 16844

 event result

 event

 event event result

 event event

Processing result

Figure 3: Event streaming

3.3 Map Reduce Clusters

Map-Reduce have been facilitated by big data as a

programming framework to analyze massive amounts of data.

It uses for distributed data processing on large datasets across

a cluster of machines. Since the input data is too large, the

computation needs to be distributed across thousands of

machines within a cluster in order to finish each part of

computation in a reasonable amount of time. Map-Reduce

programming model using two components: a Job Tracker

(master node) and many Task Trackers (slave nodes). The Job

Tracker is responsible for accepting job requests, for splitting

the data input, for defining the tasks required for the job, for

assigning those tasks to be executed in parallel across the

slaves, for monitoring the progress and finally for handling

occurring failures.

Figure 4: Map Reduced clusters

3.4 Data retrieval:

Traditionally adding new data into Hive requires

gathering a large amount of data onto HDFS and then

periodically adding a new partition. But in this module, we can

implement continuous hive query. This is essentially a “stream

insertion”. Insertion of new data into an existing partition is

not permitted in hive query. So using C-Hive Streaming API

allows data to be pumped continuously into Hive. The

incoming data can be continuously committed in small batches

of records into an existing Hive partition or table. Once data is

committed it becomes immediately visible to all Hive queries

initiated subsequently. This API is intended for streaming

clients such as Storm, which continuously generate data.

Streaming support is built on top of cloud based insert/update

support in Hive. So using C-HIVE query approach in Hadoop

Framework. It can be constructed as NO SQL query. Query

Plan Compiler and Query Execution Library are implemented.

The data are retrieved efficiently.

Figure 5: Data Retrieval Flow Chart

3.5 Evaluation criteria:

Many cloud computing service providers consider

quality of service in terms of guaranteed bandwidth, dedicated

hardware, system availability, and/or fault tolerance. QoS is

generally considered in terms of guaranteed resource

allocation (e.g., bandwidth, CPU utilization, memory, storage,

etc.). In this module, minimize the communication cost of the

query evaluation since the amounts of available bandwidth

between different data centers varies over time and the

communication cost is expensive due to large quantities of

data transfers during the query evaluation. The query

evaluation for big data analytics usually is both compute and

bandwidth intensive, the computing resource in data centers

and the communication bandwidth resource on links between

inter-data centers must meet the query resource demands.

4. EXPERIMENTAL RESULTS

In distributed environment the maximum bandwidth

reduction depends on the query and the properties of event

streams. Chive produces maximum bandwidth reduction when

compared to other query languages. Performance of the query

Clustered data C-HIVE Query

approach

Query planner Query compiler

Data retrieval

Upload the

event streams
Map Reduce

processors

Mapper 1 Mapper 2 Mapper 3

Reducer 1 Reducer 2

Clustered datasets

Event

stream

Collecting/

processing

Event

stream
Collecting Processing

Event

stream
Collecting

Processing

Persist

(Queue)

DOI: 10.18535/ijecs/v5i6.20

S.Surendran
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16842-16845 Page 16845

execution library is based on the amount of historical data

stored during continuous query processing. Chive provides

automatic parallelization for increasing the performance of

query execution engine based on the hints provided in the

query. By executing queries in parallel manner it reduces

bandwidth consumption and increase the throughput in

distributed environment.

5. CONCLUSION

Distributed cloud computing, also known as on-

demand computing, is a kind of Internet-based computing,

where shared resources, data and information are provided to

computers and other devices on-demand. It is a model for

enabling ubiquitous, on-demand access to a shared pool of

configurable computing resources. Event stream processing is

very difficult to analyze continuous streams of data.

Continuous streams need NOSQL database. And ordered

evaluation of continuous queries over data streams is crucial in

stream processing systems. In this project, we studied the

problem of providing continuous execution of window joins

over asynchronous data streams. We showed that the C-HIVE

approach that enforces ordered processing of input tuples to

guarantee ordered output can result in increased response time

and reduce the bandwidth. We can use the CHIVE query

planner and compiler to minimize the bandwidth.

REFERENCES

[1] D. Peng and F. Dabek, “Large-scale incremental

processing using distributed transactions and notifications,” in

Proceedings of the 9th USENIX Conference on Operating

Systems Design and Implementation. USENIX Association,

2010, pp. 1–15.

[2] F. Frattini, K. S. Trivedi, F. Longo, S. Russo, and R.

Ghosh, “Scalable analytics for iaas cloud availability,” IEEE

Transactions on Cloud Computing, vol. 2, no. 1, pp. 57–70,

2014.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Z.

0002, S. Anthony, H. Liu, and R. Murthy, “Hive - a petabyte

scale data warehouse using hadoop,” in Proceedings of the

26th International Conference on Data Engineering, ICDE

2010, March 1-6, 2010, Long Beach, California, USA. IEEE,

2010, pp. 996–1005.

[4] S. Babu and J. Widom, “Continuous queries over data

streams,” SIGMOD Rec., vol. 30, no. 3, pp. 109–120, Sep.

2001.

[5] L. Mai, L. Rupprecht, P. Costa, M. Migliavacca, P.

Pietzuch, and A. L. Wolf, “Supporting application-specific in-

network processing in data centres,” in Proceedings of the

ACM SIGCOMM 2013 Conference on SIGCOMM, ser.

SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 519–

520.

[6] I. Satoh, “Mapreduce processing on iot clouds,” 2013

IEEE 5
th

 International Conference on Cloud Computing

Technology and Science, vol. 1, pp. 323–330, 2013.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51, no. 1,

pp. 107–113, Jan. 2008.

[8] M. Hayes and S. Shah, “Hourglass: A library for

incremental processing on hadoop,” in Proceedings of the

2013 IEEE International Conference on Big Data, 6-9 October

2013, Santa Clara, CA, USA, 2013, pp. 742–752.

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.

Anthony, H. Liu, P.Wyckoff, and R. Murthy, “Hive: A

warehousing solution over a map-reduce framework,” Proc.

VLDB Endow., vol. 2, no. 2, pp. 1626–1629, Aug. 2009.

[10] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, “Query

optimization for massively parallel data processing,” in

Proceedings of the 2Nd ACM Symposium on Cloud

Computing. ACM, 2011, pp. 12:1–12:13.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J.

hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin, E.

Ryvkina, N. Tatbul,Y. Xing, and S. Zdonik, “The design of the

borealis stream processing engine,” in In CIDR, 2005, pp.277–

289.

[12] N. Marz. Trident tutorial. [Online].

Availablehttps://github.com/nathanmarz/storm/wiki/Trident-

tutorial

[13] P. Nathan, Enterprise Data Workflows with Cascading,

1st ed.O’Reilly Media, Inc., 2013.

[14] Cascading. [Online]. Available:http://www.cascading.org

[15] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K.

Elmeleegy, and R. Sears, “Mapreduce online,” in Proceedings

of the 7thUSENIX Conference on Networked Systems Design

and Implementation,ser. NSDI’10. Berkeley, CA, USA:

USENIX Association, 2010,pp. 21–21.

