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ABSTRACT 

 In distributed applications data centers process high volume of data in order to process user request. Using SQL 

analyzer to process user queries is centralized and it is difficult to manage large data sets. Retrieving data from the storage is 

also difficult. Finally we can’t execute the system in a parallel fashion by distributing data across a large number of machines. 

Systems that compute SQL analytics over geographically distributed data operate by pulling all data to a central location. This 

is problematic at large data scales due to expensive transoceanic links. So implement Continuous Hive (CHIVE) that facilitates 

querying and managing large datasets residing in distributed storage. Hive provides a mechanism to structure the data and 

query the data using a SQL-like language called HiveQL and it optimizes query plans to minimize their overall bandwidth 

consumption. The proposed system optimizes query execution plans and data replication to minimize bandwidth cost.  
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1 .INTRODUCTION 

In big data the solution for big data analytics operates 

on large clusters of nodes, located in the same data center. 

Transporting high velocity data or huge size event consumes 

higher available bandwidth which makes the cost of data 

transfer is high. 

CHIVE (Continuous HIVE) facilitates the execution 

of SQL queries to process large dataset. CHIVE executes 

continuous queries on data collected in online fashion. The 

fundamental concept of CHIVE is that it minimizes overall 

bandwidth consumption by optimizing query plan when it is 

used in distributed cloud. CHIVE rewrites query plans in such 

a way that event can be processed as close to their source. It 

limits the amount of data that needs to be sent through the 

network. It provides higher bandwidth reduction in distributed 

cloud. CHIVE executes queries in parallel manner in order to 

minimize bandwidth consumption and to increase execution 

speed.  

Event Stream Processing (ESP) is developed for the 

construction of event-driven information systems. It includes 

event visualization, event-driven middleware, and event 

processing languages. ESP processes event stream data for 

identifying meaningful patterns in the streams. It provides 

techniques for detection of relationship between multiple 

events, event hierarchies, event correlation and event timing. 

Event Stream processing stores event processing workflows 

instead of storing data. The arrival of new data events triggers 

the execution of the workflows. ESP systems facilitate the 

creation and deployment of distributed event stream 

processing. ESP enables applications such as RFID event 

processing applications, fraud detection, process monitoring 

and location based services.  

Event-driven architecture (EDA) is a framework for 

creation, detection, consumption of event and the responses to 

the event. Event-driven architecture consists of event creator, 

event consumer and event manager. The creator is the source 

of the event which only knows about that the event has 

occurred. Event consumers are the entities that process the 

event or they may be affected by the event. Event manager 

receives event notification from the event creator and forwards 

the events to registered consumers. 

 

2. RELATED RESEARCH WORK 

 

 In batch processing user specifies the map function 

which process key value pairs. The reduce function merges all 

values with the same intermediate key. In this method 

programs are parallelized and executed on large cluster of 

machines. Query optimization technique is used in HIVE to 
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relieve the data analyst from optimizing queries before 

processing them. Chive is at the same level as Hive in the data 

processing, but it uses Event Stream Processing instead of 

batch processing. Chive avoids back-haul all event data to a 

single DC before processing. Chive stores raw events which 

are close to event source which requires transferring only 

minimal information in the network. 

Complex Event Processing (CEP) technique analyzes 

continuous event streams. Complex Event Processing tools 

such as Esper can operate as a standalone application or can be 

embedded as a library in java applications. Esper has no out-of 

–the-box support for executing continuous queries distributed 

over multiple JVMs. Complex Event Processing supports 

scalability by running multiple instances in parallel. 

 

3. DESIGN AND IMPLEMENTATION 
 

Chive uses high level query language for event 

stream processing. Chive includes various client APIs such as 

Command Line Interface (CLI), web interface and java API. 

THE client submits Chive query expressions, network 

topology information, event type and the source of events. 

Query plan compiler creates distributed Chive query to be 

used in the network topology. It needs valid Chive query 

expression as an input to generate Chive query plan. Query 

execution library provides the functionality to execute Chive 

query plan. It uses windowing support and Query primitive 

library for running query plans. Query Deployment engine is 

responsible for deploying generated Optimized Query Plan 

(OQP) onto the processing nodes in the network topology. 

 
Figure 1: System Architecture 
 

3.1 Distributed cloud framework: 

The distributed systems are based on object-oriented 

programming (OOP) paradigm. While OOP is an intuitive way 

to model complex systems, it has been marginalized by the 

popular service-oriented architecture (SOA). However, at the 

system level, developers have to think in terms of loosely-

coupled partitioned services, which often do not match the 

application’s conceptual objects. This has contributed to the 

difficulty of building distributed systems by mainstream 

developers. The actor model brings OOP back to the system 

level with actors appearing to developers very much like the 

familiar model of interacting objects. Distributed cloud 

framework contains cloud owners, cloud provider and cloud 

users. Cloud owner is responsible for upload their data in 

cloud storage. Cloud provider is responsible for maintain the 

data and cloud users’ access data from cloud storage. Then this 

framework also called as multi cloud system. 

 

 

 
Figure 2: Distributed Cloud Framework 

 

  3.2 Event Stream Processing 

 

Stream processing is mostly used application, even 

among big data users.  Complex Event Processing, sometimes 

called Event Stream Processing, deals with discrete events 

where true Streaming engines deal with an ongoing flow of 

diverse sets of information (or at least they should). Event 

processing is a method of tracking and analyzing (processing) 

streams of information (data) about things that happen 

(events), and deriving a conclusion from them. Complex event 

processing, or CEP, is event processing that combines data 

from multiple sources to events or patterns that suggest more 

complicated circumstances. The goal of complex event 

processing is to identify meaningful events and respond to 

them as quickly as possible. The same logic that resulted in the 

creation of cloud-based data centers can be applied to cellular 

backhaul networks, according to the startup Parallel Wireless. 

In this we can get the cloud data as event streams and stored as 

CSV format. 
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Figure 3: Event streaming 

 

3.3 Map Reduce Clusters 

 

Map-Reduce have been facilitated by big data as a 

programming framework to analyze massive amounts of data. 

It uses for distributed data processing on large datasets across 

a cluster of machines. Since the input data is too large, the 

computation needs to be distributed across thousands of 

machines within a cluster in order to finish each part of 

computation in a reasonable amount of time. Map-Reduce 

programming model using two components: a Job Tracker 

(master node) and many Task Trackers (slave nodes). The Job 

Tracker is responsible for accepting job requests, for splitting 

the data input, for defining the tasks required for the job, for 

assigning those tasks to be executed in parallel across the 

slaves, for monitoring the progress and finally for handling 

occurring failures.  

 

 

 
Figure 4: Map Reduced clusters 

 

3.4 Data retrieval: 

 

Traditionally adding new data into Hive requires 

gathering a large amount of data onto HDFS and then 

periodically adding a new partition. But in this module, we can 

implement continuous hive query. This is essentially a “stream 

insertion”. Insertion of new data into an existing partition is 

not permitted in hive query. So using C-Hive Streaming API 

allows data to be pumped continuously into Hive. The 

incoming data can be continuously committed in small batches 

of records into an existing Hive partition or table. Once data is 

committed it becomes immediately visible to all Hive queries 

initiated subsequently. This API is intended for streaming 

clients such as Storm, which continuously generate data. 

Streaming support is built on top of cloud based insert/update 

support in Hive. So using C-HIVE query approach in Hadoop 

Framework. It can be constructed as NO SQL query. Query 

Plan Compiler and Query Execution Library are implemented. 

The data are retrieved efficiently. 

 

 
 

Figure 5: Data Retrieval Flow Chart 

 

3.5 Evaluation criteria: 

Many cloud computing service providers consider 

quality of service in terms of guaranteed bandwidth, dedicated 

hardware, system availability, and/or fault tolerance. QoS is 

generally considered in terms of guaranteed resource 

allocation (e.g., bandwidth, CPU utilization, memory, storage, 

etc.). In this module, minimize the communication cost of the 

query evaluation since the amounts of available bandwidth 

between different data centers varies over time and the 

communication cost is expensive due to large quantities of 

data transfers during the query evaluation. The query 

evaluation for big data analytics usually is both compute and 

bandwidth intensive, the computing resource in data centers 

and the communication bandwidth resource on links between 

inter-data centers must meet the query resource demands. 

 

4. EXPERIMENTAL RESULTS 

 

In distributed environment the maximum bandwidth 

reduction depends on the query and the properties of event 

streams. Chive produces maximum bandwidth reduction when 

compared to other query languages. Performance of the query 
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execution library is based on the amount of historical data 

stored during continuous query processing. Chive provides 

automatic parallelization for increasing the performance of 

query execution engine based on the hints provided in the 

query. By executing queries in parallel manner it reduces 

bandwidth consumption and increase the throughput in 

distributed environment.  

5. CONCLUSION 

Distributed cloud computing, also known as on-

demand computing, is a kind of Internet-based computing, 

where shared resources, data and information are provided to 

computers and other devices on-demand. It is a model for 

enabling ubiquitous, on-demand access to a shared pool of 

configurable computing resources. Event stream processing is 

very difficult to analyze continuous streams of data. 

Continuous streams need NOSQL database. And ordered 

evaluation of continuous queries over data streams is crucial in 

stream processing systems. In this project, we studied the 

problem of providing continuous execution of window joins 

over asynchronous data streams. We showed that the C-HIVE 

approach that enforces ordered processing of input tuples to 

guarantee ordered output can result in increased response time 

and reduce the bandwidth.  We can use the CHIVE query 

planner and compiler to minimize the bandwidth. 
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