

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3, Issue 10 October, 2014 Page No. 8920-8925

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8920

Design Recovery of Student Information Legacy

System
1
Bello AlhajiBuhari,

2
Abba Almu

1Usmanu Danfodiyo University/Department of Mathematics, Sokoto, 234, Nigeria

Email: buhari.bello@udusok.edu.ng

2Usmanu Danfodiyo University/Department of Mathematics, Sokoto, 234, Nigeria

Email: almu.abba@udusok.edu.ng

Abstract: Reverse engineering for software is the process of analyzing a program in an effort to create a representation of the program at a

higher level of abstraction than source code. Reverse engineering is a process of design recovery. Reverse engineering tools extract data,

architectural, and procedural design information from an existing program. This paper explores the application of reverse engineering in

recovering the design of a legacy student information system developed using Dbase V atUsmanuDanfodiyo University Sokoto using UML

based approach. Use case model is used in recovering the design specifications (i.e., functionalities)of the student information system. In

addition,object oriented design model for the system is proposed using class diagramso that the system can be implemented using object

oriented programming.

Keywords:reverse engineering, software engineering, design recovery, use case diagram, class diagram, student information system, legacy

system.

1 Introduction
“Reverse engineering” has its origins in the analysis of

hardware for commercial or militaryadvantage [1].A

company takes to pieces a competitive hardware product in

an effort to recognize its competitor's design and

manufacturing "secrets." These secrets could be easily

understood if the competitor's design and manufacturing

specifications were found. But these documents are exclusive

and unavailable to the company doing the reverse

engineering. In essence, successful reverse engineering

develops one or more design and manufacturing

specifications for a product by examining actual specimens

of the product.

Reverse engineering for software is quite similar. In

most cases, however, the program to be reverse engineered is

not a competitor's. Rather, it is the company's possess work

(often done many years earlier). The "secrets" to be

understood are unclear because no specification was ever

developed.

Therefore, reverse engineering for software is the

process of analyzing a program in an effort to create a

representation of the program at a higher level of abstraction

than source code. Reverse engineering is a process of design

recovery.

The Unified Modeling Language (UML) [2]

hasestablished itself in software industry for

describingsoftware models. UML-based software design

process relying on two subprocesses: reverse engineering

and model analysis.

Reverse engineering combines a top-down reverse

engineeringtechnique with traditional bottom-up reverse

engineeringactivities.

In this paper, a reverse engineering method called

design recovery is employed to recover the design

specification of Student Information legacy system of

UsmanuDanfodiyo University, Sokoto. UML based approach

is used as the basis for the recovery of the design. Use case

model is the UML model used to represents the design

graphically. After the use case model also a class diagram

model is also used to represent the design using object

oriented paradigm. Hence, the class diagram can be used to

implement the system using object oriented programming.

2 Related Works
Reverse engineering should produce, first in an

automatic way, documents that help software engineers in

understanding the system. Over the last ten years, reverse

engineering research has produced a number of abilities for

analyzing code, including subsystem decomposition[3],

concept synthesis [4], design, program and change pattern

matching [5][6], analysis of static and dynamic dependencies

[7], object-oriented metrics [8], documentation, maintenance,

http://www.ijecs.in/
mailto:buhari.bello@udusok.edu.ng
mailto:almu.abba@udusok.edu.n

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8921

and re-engineering [9], analysis (not modification) of an

existing (software) system [10]and others. In general, these

methodologies have been successful in treating the software

at the syntactic level to address specific information needs

and to span relatively narrow information gaps.

3 Methodology
Reverse engineering is the process of identifying software

components, their interrelationships,and representing these

entities at a higher level of abstraction. Reverseengineering

by itself involves only analysis, not change [10]. Program

comprehension and program understanding are terms often

used interchangeably with reverse engineering. Four

specializations of reverse engineering are offered, in

increasing level of impact [11]:

 Redocumentation: Perhaps the weakest form of reverse

engineering, this involves merely the creation (if none

existed) or revision of system documentation at the same

level of abstraction.

 Design Rediscovery: Redocuments, but uses domain

knowledge and other externalinformation where possible

to create a model of the system at a higher level

ofabstraction.

 Restructuring: Lateral transformation of the system

within the same level ofabstraction. Also maintains same

level of functionality and semantics.

 Reengineering: The most radical and far reaching

extension. Generallyinvolves a combination of reverse

engineering for comprehension, and areapplication of

forward engineering to reexamine which functionalities

needto be retained, deleted or added.

This paper is using design rediscovery which both

recover the design and redocments the system.

A variety of approaches for automated assistance are

available for the reverse engineer in programcomprehension.

A full list of reverse engineering approaches is available in

[12]. Some of the more prominent approaches include:

 Textual, lexical and syntactic analysis - these

approaches focus on the source code itself and its

representations. These include the use of UNIX’s lex,

lexical metrics (counting assignments, identifiers, etc.)

outlined in [13], and even automated parsing of the code

searching for cliches [14]. Cliches are standard

approaches to problem solving that can extracted from

the source code to give hints about design decisions. The

unit of examination is the program source itself.

 Graphing methods - there are many graphing approaches

for programunderstanding. These include, in increasing

order of complexity and richness: graphingthe control

flow of the program [15], the data flow of the program

[15], and programdependence graphs [16]. The unit of

examination is a graphical representation of theprogram

source.

 Execution and testing - there are a variety of methods for

profiling, testing, andobserving program behavior,

including actual execution and inspection

walkthroughs.Dynamic testing and debugging is well

known and there are several tools availablefor this

function. For large systems, a technique called “partial

evaluation” is availableto identify and test isolate

components of a system [17]. “Abstract interpretation”

isa method for using denotational semantics to perform

static testing through simulatingthe behavior of the

actual system [18]. The unit of examination is a full,

partial, orsimulated execution of the program.

In this paper graphical method is used in form of UML.

The UML used are use case diagram and class diagram.

4 Recovering the System Design
The first real reverse engineering activity begins with

an attempt to understand and then extract procedural

abstractions represented by the source code. To understand

procedural abstractions, the code is analyzed at varying

levels of abstraction: system, program, component, pattern,

and statement

The overall functionality of the entire application

system must be understood before more detailed reverse

engineering work occurs. This establishes a context for

further analysis and provides insight into interoperability

issues among applications within the system. Each of the

programs that make up the application system represents a

functional abstraction at a high level of detail.

4.1 Creating Use Case Diagram
A use case, a concept invented by IvarJocbson[19], is

asequence of transactions performed by a system that yields

an outwardly visible, measurable result of value for a

particular actor. A use case typically represents a major piece

of functionality that is complete from beginning to end [20].

In UML, a use case is represented as an ellipse, as

shown in Figure 4.1. In a student information system, some

use cases are: Register Student, Register Course, add exam

result, Create Course Report, Create Grade Sheet, Create

Senate Format Report, Create Transcript, etc.

An actor represents whoever or whatever (person,

machine, or other) interacts with thesystem. The actor is not

part of the system itself and represents anyone or anything

that must interact with the system.

The total set of actors in a use case model reflects

everything that needs to exchangeinformation with the

system [21]. In UML, an actor isrepresented as a stickman,

shown below in Figure 4.1. In the student information

system, actorsare the admin and staff.

There are several different kinds of relationships

between actors and use cases. The default relationship is the

«communicates» relationship. The«communicates»

relationship indicates that one of these entities initiated

invoked a request of the other. An actor communicates with

use cases because actors want measurable results.

There are two other kinds of relationships between use

cases (not between actors and usecases) that you might find

useful. These are «include» and «extend». You use the

«include» relationship when a chunk of behavior is similar

across more than one use case, and you don’t want to keep

copying the description of that behavior [21]. This is similar

to breaking out re-used functionality in a program into its

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8922

own methods that other methods invoke for the functionality.

For example, since many actions of a system require the user

to login to the system before the functionalitycan be

performed. These use cases would include the login use case.

The admin use case diagram is shown in figure 4.1 and the

staff use case diagram is shown in figure 4.2.

Figure 4.1: Use case diagram (admin actor) for the student information system.

System

Admin

Manage Staff

Manage Courses

Add Staff

Edit Staff

Delete Staff

Create Staff reports

Add Course

Edit Course

Delete Course

Create Courses Reports

Login

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

System

Staff

Manage Student

Manage Course Reg.

Manage Exam

Register Student

Edit Student

Delete Student

Create Student Report

Register Stud. Course

Edit Student Course

Delete Stud. Course

Create Stud. Course Report

Add xam result

Edit Exam Resukt

Delete Exam Result

Create Grade Sheet Report

Create Senate Format

Create Transcript

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Login

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8923

Figure 4.2: Use case diagram (staffactor) for the student information system.

The admin here is the Director MIS or Deputy

Director MIS. He/she creates staff to use the system. Each

staff is going to handle one faculty. In addition, admin is in

charge of adding the entire courses in each department. This

involves course code, course title, course unit, semester, etc.

Staffs are the MIS staff. Each staff manage students

from his/her faculty, register course offered by each student

per session, and enter and process their results.

5 Proposed Design
In addition to recovering the design of the legacy

system, object oriented design specification is also proposed

so that the system can be implemented using object oriented

programming. Class diagram is used in the new design.

5.1 Creating Class Diagram
Class diagrams are used in both the analysis and the

design phases. During the analysisphase, a very high-level

conceptual design is created. At this time, a class diagram

might be created with only the class names shown or

possibly some pseudo code-like phrases may be added to

describe the responsibilities of the class. The class diagram

created during the analysis phase is used to describe the

classes and relationships in the problem domain, but it does

not suggest how the system is implemented. By the end of

the design phase, class diagrams that describe how the

system to be implemented should be developed. The class

diagram created after the design phase has detailed

implementation information, including the class names, the

methods and attributes of the classes, and the relationships

among classes.

 The class diagram describes the types of objects in a

system and the various kinds ofstatic relationships that exist

among them [20]. In UML, a class is represented by a

rectangle with one or more horizontal compartments. The

upper compartment holds the name of the class. The name of

the class is the only required field in a class diagram. By

convention, the class name starts with a capital letter. The

(optional) center compartment of the class rectangle holds

the list of the class attributes/data members, and the

(optional) lower compartment holds the list of

operations/methods.

 There are two principle types of static relationships

between classes: inheritance andassociation. The

relationships between classes are drawn on class diagram by

various lines and arrows.

 Inheritance (termed “generalization” for class

diagrams) is represented with an emptyarrow, pointing from

the subclass to the superclass, as shown in Figure 4.3. In this

figure, StudCourse inherits from Cell (i.eStudCourse “is-a”

specialized version of a Student). The subclass (StudCourse)

inherits all the methods and attributes of the superclass

(Student) and may override inherited methods.

 An association represents a relationship between

two instances of classes. An associationbetween two classes

is shown by a line joining the two classes. Association

indicates that one class utilizes an attribute or methods of

another class. If there is no arrow on the line, the association

is taken to be bi-directional, that is, both classes hold

information about the other class. A unidirectional

association is indicated by an arrow pointing from theobject

which holds to the object that is held. There are two different

specialized types ofassociation relationships: aggregation,

and composition.

If the association conveys the information that one

object is part of another object, buttheir lifetimes are

independent (they could exist independently), this

relationship is called aggregation. For example, we may say

that “a Course contains a set of ExamResult.” Where

generalization can be though of as an “is-a” relationship,

aggregation is often thought of as a “has-a” relationship – “a

Course ’has-a’ ExamResult.” Aggregation is implemented by

means of one class having an attribute whose type is in

included class (the ExamResult class has an attribute whose

type is Course).

Aggregation is stronger than association due to the

special nature of the “has-a”relationship. Aggregation is

unidirectional: there is a container and one or more contained

objects. An aggregation relationship is indicated by placing a

white diamond at the end of the association next to the

aggregate class, as shown between StudCourse and

ExamResult in Figure 4.3.

Even stronger than aggregation is composition.

There is composition when an object is contained in another

object, and it can exist only as long as the container exists

and it only exists for the benefit of the container. Examples

of composition are the relationship StudCourse, and

ExamResult. An exam result can exist only for student

course. Any deletion of the whole (student course) is

considered to cascade to all the parts (the exam results are

deleted). Composition is shown by a black diamond on the

end of association next to the composite class, as shown

between Student and ExamResultin Figure 4.3.

Associations have a cardinality that indicates how

manyobjects of each class can legitimately be involved in a

given relationship. Cardinality is expressed by the “n..m”

symbol put near to the association line, close to the class

whose cardinality in the association we want to show. Here

“n” refers to the minimum number of class instances that

may be involved in the association, and “m” to the maximum

number of such instances. If n = m, only an “n” is shown. An

optional relationship is expressed by writing “0” as the

minimum number.

6 Conclusion and Future Work
Reverse engineering for software is the process of

analyzing a program in an effort to create a representation of

the program at a higher level of abstraction than source code.

Reverse engineering is a process of design recovery.

Reverse engineering method called design recovery was

employed to recover the design specification of Student

Information legacy system of UsmanuDanfodiyo University,

Sokoto using UML based approach. Use case model is the

UML model used to represents the design graphically. In

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8924

addition to design recovery an objected object oriented

design was proposed using class diagram. Hence, the class

diagram can be used to implement the system using object

oriented programming.

We also intended to model this student information

systemusingother UML models like sequence diagram,

Figure 4.2: Class diagram for the proposed student information system design.

activity diagram, state chart diagram, etc to recover the

design in order to have in-depth documentation of the

system. Also in this system the students does not directly

interact with system so another design can be made such that

student did both student registration and course registration

them selves. That the system to be an online system.

References

[1] E. J. Chikofsky and J. H. Cross, II, “Reverse

Engineering and Design Recovery: A Taxonomy,” IEEE

Software,vol. 7, no. 1, pp. 13-17, January 1990.

[2] The Object Management Group, Unified

ModelingLanguage Specification (Action Semantics) –

UML 1.4 withAction Semantics, Final Adopted

Specification, January 2002.On-line at

http://www.omg.org/uml.

[3] Umar, A.: “Application (Re) Engineering: Building

Web-Based Applications and Dealing with Legacies”.

Prentice Hall, Upper Saddle River,NJ, 1997.

[4] Biggerstaff, T. J. et al.: “Program understanding and the

concept assignment problem”. In: Proceedings of

the15nd International Conference on Software

Engineering (ICSE), pp. 482-498.ACM Press, 1993.

[5] Gamma, E. et al.: “Design Patterns - Elements of

Reusable Object Oriented Software”. Addison

WesleyProfessional Computing Series.Addison-Wesley,

1995.

[6] Stevens, P. and Pooley, R.: “Systems reengineering

patterns”. In: Proceedings of the ACM SIGSOFT 6th

International Symposium on the Foundations of

Software Engineering (FSE), Vol. 23, No. 06, Software

Engineering Notes, pp. 17–23, November, 1998.

[7] Systa, T.: “The relationships between static and dynamic

models in reverse engineering java software”. In:

Proceedings of the 6th WorkingConference on Reverse

Student

+admno: Integer

+surname: String

+otherNames: String

+sex: String

+dateOfBirth: String

+placeOfBirth: String

+nationality: String

+state: String

+localGovt: String

+faculty: String

+dept: String

+courseOfStudy: String

+homeAddress: String

+corrAddress: String

+phoneNumber: Integer

+email: String

-addStudent()

-editStudent()

-deleteStudent()

+getStudInfo()

Course

+courseCode: String

+courseTitle: String

+courseUnit: Integer

+semester: String

-addCourse()

-editCourse()

-deleteCourse()

+getCourseInfo()

StudCourse

+admno: Integer

+courseCode: String

+session: String

+level: String

+carryOverStatus: String

-addStudCourse()

-editStudCourse()

-deleteStudCourse()

+getStudCourseInfo()

ExamResult

+admno: Integer

+courseCode: String

+session: String

+grade: char

-addExamResult()

-editExamResult()

-deleteExamResult()

+getStudResult()

+getGradeSheetReport()

+getSenateFormatResult()

+getTranscript()

+course

+grade

1

*

+admno

+grade

1

*

http://www.omg.org/uml

1
Bello AlhajiBuhari, IJECS Volume 3 Issue 10, Oct, 2014 Page No.8920-8925 Page 8925

Engineering (WCRE). IEEE Computer Society

Press,October 1999.

[8] Chidamber, S. R. and Kemerer, C. F.: “A metrics suite

for object Oriented design”. In: IEEE Transaction on

Software Engineering, Vol.20, No. 06, June, 1994, pp.

476–493.

[9] E. Stroulia, M. El-ramly, P. I. & Sorenson, P.: User

interface reverse engineering in support of interface

migration to the web, Automated Software Engineering.

2003

[10] Müller, H. A. &Kienle, H. M.: Encyclopedia of Software

Engineering, Taylor &Francis, chapter Reverse

Engineering, pp. 1016–

1030.http://www.tandfonline.com/doi/abs/10.1081/E-

ESE-120044308.2010

[11] Michael L. Nelson, “A Survey of Reverse Engineering

and Program Comprehension”, 1996. (re-issued in 2005

as arxiv.org technical report cs/0503068).

[12] S. Rugaber, “Program Comprehension,” Encyclopedia of

Computer Science and Technology, Draft -- to

appear,April, 1995.

[13] Maurice H. Halstead, “Elements of Software Science,”

Elsevier, 1977.

[14] Linda M. Wills, “Using Attributed Flow Graph Parsing

to Recognize Programs,” Workshop on Graph

Grammarsand Their Application to Computer Science,

Williamsburg, Virginia, November 1994.

[15] M. S. Hecht, “Flow Analysis of Computer Programs,”

North Holland, 1977.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The

Program Dependence Graph and its Use in

Optimization,”ACM Transactions on Programming

Languages and Systems, vol. 9, no. 3, July 1987, pp.

319-349.

[17] F. G. Pagan, “Partial Computation and the Construction

of Language Processors,” Prentice Hall, 1991.

[18] P. Cousot and R. Cousot, “Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs

byConstruction of Appropximation of Fixpoints,” Fourth

Annual ACM Symposium on Principles of Programming

Languages,Los Angeles, CA, January, 1977, pp. 238-

252.

[19] Jacobson, I., M. Christerson, et al. (1992). Object-

Oriented Software Engineering: A UseCase Driven

Approach. Wokingham, England, Addison-Wesley.

[20] Bruegge, B. and A. H. Dutoit (2000). Object-Oriented

Software Engineering:Conquering Complex and

Changing Systems. Upper Saddle River, NJ,

PrenticeHall.

[21] Rosenberg, D. and K. Scott (1999). Use Case Driven

Object Modeling with UML: APractical Approach.

Reading, Massachusetts, Addison-Wesley.

[22]

http://www.tandfonline.com/doi/abs/10.1081/E-ESE-120044308
http://www.tandfonline.com/doi/abs/10.1081/E-ESE-120044308

