

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October, 2014 Page No.8854-8858

G. S. L. Alekhya, IJECS Volume 3 Issue 10, October, 2014 Page No.8854-8858

 Page 8854

Efficient Data Transmission by Introducing Stuffing Bits in

HUFFMAN Coding Technique

G. S. L. Alekhya, M. S. S. Bhargav, A. Narayana Kiran

Electronics and Communication Engineering Department

Shri Vishnu Engineering College for Women, India

alekhya.gsl76@gmail.com

Electronics and Communication Engineering Department

Vishnu Institute of Technology, India

medicharla.bhargav1@gmail.com

Electronics and Communication Engineering Department

Shri Vishnu Engineering College for Women, India

narayanakiran.akondi@gmail.com

Abstract— In recent years, image and video encoding has become more popular in network access. The rapid development

in wired and wireless digital communication has made the extensive use of the text data. However, there are few

researches focusing on encoding data and memory usage. The basic characteristics of text data like transmission rate,

bandwidth, redundancy, bulk capacity and co-relation among text data makes basic compression algorithms mandatory.

Therefore this paper considers the problem of memory usage and encoding scheme to provide low bit rate transmission

based on HUFFMAN coding. As for n bit being transmitted it requires 2n memory stack for further increase in the data

bits it requires 2n+1 memory stack which is wide waste of memory if there presents redundancy bits. Image transmission

has large repeated sequences at some places which can be considered as redundant. The proposed method uses stuffing

bits in order to provide high speed and low cost transmission

.

Keywords— Decoding, HUFFMAN coding, Image encoding,

Redundancy, Stuffing bits etc.

I. Introduction
In recent years, compressing an image before transmitting

has gained a lot of interest with a rapid growth of multimedia
and presence of wide network access, as uses of this
compressing of data ranges from mobiles, laptops to high
quality satellite communication. Compressed data is the art of
presenting data in its compact form which is decompressed
i.e., the original form of data is observed. Compression
techniques are used to reduce the amount of data that would
otherwise be needed to store, handle, and/or transmit the
represented content. Using compression technique provides
high bandwidth rate, as HUFFMAN coding is a variable
length coding, it provides an advantage of increased
compression rate. Hence it is widely used as compression
technique during transmission of images and videos. In this
STUFFING bits are used during compression of data which
are observed and removed during decompression [1][6]. Here
using of stuffing bits provides advantage of decreasing the
memory size which thereby reduces the cost [2].

Without using stuffing bits the memory required should
change dynamically. As the sequence of same value bits
increases the count value which there by increases the
memory width and size. The memory width is the count of the
largest sequence of the incoming data, it is waste of memory
as rest of the sequence count may not require that much width.
The overall cost of the encoder and decoder increases.

To avoid such disadvantages the concept called bit stuffing
is introduced to the encoding technique. As stuffing an
opposite bit after the largest allowing sequence allow the
available memory to be used efficiently thereby decreasing the
overall cost.

II. HUFFMAN CODING TECHNIQUE
The technique works constructing a binary tree of nodes.

The size of the tree depends on the number of symbols [8].

The simplest construction algorithm uses a priority queue
where the node with lowest probability is given highest
priority [3][7]:

1. Create a node called the leaf for each symbol and
add it to the priority queue.

2. If there is more than one node in the queue:

http://www.ijecs.in/

G. S. L. Alekhya, IJECS Volume 3 Issue 10, October, 2014 Page No.8854-8858

 Page 8855

a. The nodes having the highest priority are
to be removed (lowest probability) from
the queue

b. Create a new internal node with these
two nodes as children and with
probability equal to the sum of these two
nodes' probabilities.

c. Add the new node to the queue.

3. The remaining node is the root node and the tree
is complete.

In figure 1 as shown Huffman coding is a variable length
coding. In a variable-length code the code words may have
different lengths. Here are examples of fixed and variable
length codes for our problem (note that a fixed- length code
must have at least 3 bits per code word).

No. bits for fixed length coding is 150*3=450 and for
variable length coding is 60*3+5*3+30*3+5*3+50*1=350

 10% memory is saved.

 Fig 1: Huffman tree.

Table 1: Huffman coding example.

III. Bit Stuffing
Stuffing bits are mainly used to limit the occurrence of

consecutive bits having the same value. To limit this
occurrence, a bit of opposite value is inserted after allowing
maximum number of consecutive bits [4]. Bit stuffing is
mainly used to limit the width of memory and decrease the
cost. As memory cannot be changed dynamically and is also a
cost issue, increased occurrence of same value consecutively
which exceeds the existing memory width may cause loss of
data which cannot be renewed during decoding and increasing
the width of the memory also increases the memory size which
there by increases the cost. To avoid this problem and for
efficiently using the already existing memory bit stuffing plays
a prominent role.

25 consecutive ones are represented by 5 bit width
memory.

 1111111111111111111111111

 11001, 1

By Bit Stuffing 4 bit width memory is sufficient to represent

the given pattern

 11111111111111101111111111

 1111, 1 stuffed bit 1010,1

At the receiver end this stuffing bit is removed and original

data is obtained. Here stuffed bit should not confuse with the

overhead bits. Receiver should have the information of the

value of maximum number of consecutive bits that is being

sent.
Therefore, increased speed of transmission, reduced cost of

memory and efficient usage of available memory are achieved
by bit stuffing.

IV. HDL Implementation of Encoder
and Decoder.

In this paper VHDL implementation of the module which
is used for data transmission is observed. This module is again
divided into two sub modules they are i) Encoder ii) Decoder.

Fig2: Block diagram of encoder.

 The Encoder block again contains sub modules
such as a) FIFO b) Encoding module c) Controller. In
Encoder, the incoming binary data is stored in FIFO module
(First in First out) which is given to the encoder module as
shown in Fig2. In encoder module the counter is present which
counts the repeated binary value and when another binary
value appears next it stores the previous value and the count

 a b c d e

Frequency 60 5 30 5 10

Fixed length 000 001 110 101 111

Variable length 000 001 010 011 1

G. S. L. Alekhya, IJECS Volume 3 Issue 10, October, 2014 Page No.8854-8858

 Page 8856

[5]. This continues as per the input data. If the count increases
the width of the FIFO stack, stuffing bit is inserted so that the
remaining repeated binary values are stored at next address
after the stuffing bit .Here the controller gives the signals to
the encoder such as FIFO full, FIFO empty, FIFO read, FIFO
write etc.

 Fig3: Block diagram of decoder.

At the receiver, the FIFO which has the stored data and the

count is being decoded simultaneously. Here the data is

decoded and the binary value is given out as much as the count

value. Stuffing bit is observed and removed as it is identified

at the decoder as the appearance of opposite binary after the

repeated number of binary bits of same value. So, the original

data is obtained and is given to the output FIFO.
The controller gives the control signals to the encoder and

decoder such as when to write, read, FIFO is full, where to
insert stuffing bit etc as shown in fig3.

Start

Read from FIFO

CountReg=1

Read Data2

If

DataReg1=DataReg2

Dataout=DataReg1

CountReg

Increment

Countout=CountReg

Swap Data1 and Data2

YES

NO

Fig 4: Flow chart of the encoder.

The incoming data which is to be transmitted is stored in

FIFO which is read from when data is being encoded during

transmission. first data is read and stored in register1 and

second data is read and stored in register2. These two

information bits ie, binary data are compared if the two binary

bits are same then count register is incremented and again the

next data is fetched and compared, if not equal send the data to

the data out and count to count out. Now the two data register

values are swapped and again fetch the data to the second

register.

Start

Read from FIFO

Count=1

Read CountReg

If Countreg=Count

Increment Count

Dataout=Data1

YES

NO

Dataout=Data1

Fig 5: Flow chart of the Decoder.

The above flow chart describes the functioning of the decoder.

The count value which stored in count register represents the

repeated binary values is read and the data bit being repeated

is also read. Initially the count is made 1 and it is compared

with the value in the count register. If the values are equal then

data is given to the output ie, to the targeted point. If they are

not equal then count is incremented and it checks until count is

equal and gives it to output.

A. FIFO Stack

FIFO is used to store the incoming data and send to

any other module when necessary and to maintain same

frequency between transmitter and the compressor. As

there may be some frequency difference between

transmitter and the compressor unit which may lead to in

appropriate working of the unit.

B. Encoder Algorithm

Step1: Read data from the input FIFO and assign it to

Datareg1, again read next data from FIFO and assign it to

Datareg2.

Step2: Compare the data present in datareg1 and datareg2.

Step3: If the binary bits are equal increment the countreg

value.

Step4: If count reg value reaches the maximum value, send the

data to the output FIFO and also send the count value to output

FIFO.

Step5: Now insert a opposite value bit to the one present in

data out, which is called the stuffing bit.

Step6: Assign the value of the bit present in datareg2 to

datareg1 and fetch next binary value from the input FIFO to

datareg2.

Step7:Again compare the binary values present in datareg1

and datareg2 and go to step3.

Step8:If the binary values present in the datareg1 and datareg2

are not equal then send the data present in datareg1 to output

FIFO and countreg value to output FIFO and go to step6.

C. Decoder Algorithm:

Step1: Read the data from the output FIFO of the encoder.

Step2: Assign data bit to datareg1 and count to datareg2.

Step3: Initialize count to 0 and compare count and datareg2.

Step4: If the binary values are equal then go to step2.

Step5: If the binary values are not equal then send the data

present in the datareg1 to data out.

G. S. L. Alekhya, IJECS Volume 3 Issue 10, October, 2014 Page No.8854-8858

 Page 8857

V. Experimental Results
The data which is to be transmitted is first collected through

transmitter or analog sensor. This analog data is sent through

analog to digital converter as the data being transmitted is sent

in digital format. Converted digital data is stored in FIFO

which is encoded for speed transmission. The encoded data is

again stored in FIFO for decoding. Working of encoder and

queues that are used to store the data can be explained by

seeing the simulation results.

Fig 6:simulation results of compressor without stuffing bits.

Incoming serial data is stored in FIFO which is encoded and

stored in another FIFO. This encoded data is given to another

FIFO to extract the original data ie, decoding the encoded data.

Fig 7:Simulation results of Decoder without stuffing bits.

The data coming from the compressor is sent to decoder by

first storing the compressed data in FIFO. Stored data is

passed through the decoder module which decodes the data

and abstracts the original data.

 Fig 8: Simulation results of Encoder using Stuffing bits.

Using stuffing bits, as we can see it avoids the repeating of

consecutive binary digit of same value.

 Fig 9: Simulation results of decoder using stuffing bits.

The original data is extracted from the encoded data and is

given to the targeted device.

VI. Conclusions
The encoding and decoding technique used is highly

reliable and Huffman technique used here makes the data

uniquely decodable. Using Stuffing bits provides efficient use

of memory and increase in speed factor as it helps in breaking

the long sequence of same binary value. With this proposed

method of adding stuffing bits there is a small burden on

memory because of the extra stuffing bits but the effect of

stuffing bits is very much high while reducing the memory

required and also cost of the integrated circuit. Overall

memory required to store the complete data sequence reduces.

In the case of communication systems, the transmission rate

can be increased with the introduction of stuffing bits. The

overall cost is also reduced. By adopting some other

compression techniques the transmission rate can be further

improved.

References

[1] Dr. Muhammad Younus Javed and Mr. Abid Nadeem,"Data
Compression Through Adaptive Huffman Coding Scheme" , IEEE-2000,
Vol. II, pp.187-190.

[2] D.A.Huffman,A method for the constraction of Minimum Redundancy
Codes , Proceedings of the IRE, 1952 ,pp. 1098-1101.

[3] Hirschberg , D.S. and Lelewer,D.A. ,Efficient Decoding of prefix codes
,Communication of the ACM, pp.449-458, 1990.

[4] J. Feng and G. Li, " A Test Data Compression Method for System-on-a-
Chip" 4th IEEE International Symposium on Electronic Design, Test and
Applications, 2008.

G. S. L. Alekhya, IJECS Volume 3 Issue 10, October, 2014 Page No.8854-8858

 Page 8858

[5] Nadeem , A. ,Design and Implementation of Data Compression System ,
College of Electrical and Mechanical Engineering ,Rawalpindi ,Thesis,
1995.

[6] P. Bender and J. K. Wolf "A universal algorithm for generating optimal
and nearly optimal run-length-limited, charge constrained binary
sequences", Proc. IEEE Int. Symp. Information Theory, 1993

[7] Shukla, P.K. ; Rusiya, P. ; Agrawal, D. ; Chhablani, L. ; Raghuwanshi,
B.S. “Multiple Subgroup Data Compression Technique Based on
Huffman Coding” International conference on Computational
Intelligence, Communication Systems and Networks, pp. 397- 402,
2009.

[8] Vitter, S. V.,Design and analysis of dynamic Huffman codes ,Journal of
the Assocition for Computing Machinery ,Vol. 34, No. 4, pp. 825-845,
1987.

