

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October, 2014 Page No.8812-8820

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8812

UNPRIVILIGED BLACK BOX DETECTION OF USER-SPACE

KEYLOGGERS

R.Suguna
1
, R.Ramya

2

1
Assistant Professor ,Department of Computer Science, PGP College of Arts and Science, Namakkal.

Suguna.jeya@gmail.com
2
MPhil Scholar , Department of Computer Science ,PGP College of Arts and Science, Namakkal.

Ramya8159@gmail.com
Abstract

Software keyloggers are a fast growing class of invasive software often used to harvest confidential information. One of the main

reasons for this rapid growth is the possibility for unprivileged programs running in user space to eavesdrop and record all the

keystrokes typed by the users of a system. The ability to run in unprivileged mode facilitates their implementation and

distribution, but, at the same time, allows one to understand and model their behavior in detail. Leveraging this characteristic, we

propose a new detection technique that simulates carefully crafted keystroke sequences in input and observes the behavior of the

keylogger in output to unambiguously identify it among all the running processes. We have prototyped our technique as an

unprivileged application, hence matching the same ease of deployment of a keylogger executing in unprivileged mode. We have

successfully evaluated the underlying technique against the most common free keyloggers. This confirms the viability of our

approach in practical scenarios. We have also devised potential evasion techniques that may be adopted to circumvent our

approach and proposed a heuristic to strengthen the effectiveness of our solution against more elaborated attacks. Extensive

experimental results confirm that our technique is robust to both false positives and false negatives in realistic settings.

Keywords: Invasive software, keylogger, security,

black-box, PCC

1.INTRODUCTION

KEYLOGGERS are implanted on a machine to intentionally

monitor the user activity by logging keystrokes and

eventually delivering them to a third party [1]. While they

are seldom used for legitimate purposes (e.g.,

surveillance/parental monitoring infrastructures), key

loggers are often maliciously exploited by attackers to steal

confidential information. Many credit card numbers and

pass-words have been stolen using key loggers [2],

[3],which makes them one of the most dangerous types of

spyware known to date.

Key loggers can be implemented as tiny hardware devices or

more conveniently in software. Software-based key-loggers

can be further classified based on the privileges they require

to execute. Keyloggers implemented by a kernel module run

with full privileges in kernel space. Conversely, a fully

unprivileged keylogger can be implemented by a simple

user-space process. It is important to notice that a user-space

key logger can easily rely on documented sets of

unprivileged APIs commonly available on modern operating

systems (OSs). This is not the case for a keylogger

implemented as a kernel module. In kernel space, the

programmer must rely on kernel-level facilities to intercept

all the messages dispatched by the keyboard driver,

undoubtedly requiring a considerable effort and knowledge

for an effective and bug-free implementation. Furthermore,

a keylogger implemented as a user-space process is much

easier to deploy since no special permission is required. A
user can erroneously regard the keylogger as a harmless piece

of software and being deceived in executing it. On the contrary,

kernel-space keyloggers require a user with superuser

privileges to consciously install and execute unsigned code

within the kernel, a practice often forbidden by modern

operating systems such Windows Vista or Windows 7.In light

of these observations, it is no surprise that 95 percent of the

existing keyloggers run in user space [4]. Despite the rapid

growth of keylogger-based frauds (i.e., identity theft, password

leakage, etc.), not many effective and efficient solutions have

been proposed to address this problem. Traditional defense

mechanisms use fingerprinting strategies similar to those used

to detect viruses and worms. Unfortunately, this strategy is

hardly effective against the vast number of new keylogger

variants surfacing every day in the wild.

In this paper, we propose a new approach to detect

keyloggers running as unprivileged user-space processes. To

match the same deployment model, our technique is entirely

implemented in an unprivileged process. As a result, our

solution is portable, unintrusive, easy to install, and yet very

effective. In addition, the proposed detection technique is

completely black-box, i.e., based on behavioral

characteristics common to all keyloggers. In other words,

http://www.ijecs.in/
mailto:Suguna.jeya@gmail.com
mailto:Ramya8159@gmail.com

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8813

our technique does not rely on the internal structure of the

keylogger or the particular set of APIs used. For this reason,

our solution is of general applicability. We have prototyped

our approach and evaluated it against the most common free

keyloggers [5]. Our approach has proven effective in all the

cases. We have also evaluated the impact of false positives

in practical scenarios. In the final part of this paper, we

further validate our approach with a homegrown keylogger

that attempts to thwart our detection technique. Albeit

already robust against the large majority of evasive

behaviors, we also present and evaluate a heuristic against

elaborated evasion strategies.

The structure of the paper is as follows: we start with an in-

depth analysis of modern keyloggers in Section 2. We then

introduce our approach in Section 3, detail its architecture in

Section 4, and evaluate the resulting prototype in Section 5.

Section 6 discusses the robustness against evasion

techniques. We conclude with related work in Section 7 and

final remarks in Section 8.

2. INTERNALS OF MODERN

KEYLOGGERS

Breaching the privacy of an individual by logging his

keystrokes can be perpetrated at many different levels. For

example, an attacker with physical access to the machine

might wiretap the hardware of the keyboard. A dishonest

owner of an Internet cafe´, in turn, may find it more

convenient to purchase a software solution, install it on all

the terminals, and have the logs dropped on his own

machine. Depending on the setting, a keylogger can be

implemented in many different ways. For instance, external

keyloggers rely on some physical property, either the

acoustic emanations produced by the user typing [6], or the

electromagnetic emanations of a wireless keyboard [7].

Hardware keyloggers are still external devices, but are

implemented as dongles placed in between keyboard and

motherboard. All these strategies, however, require physi-

cal access to the target machine.

To overcome this limitation, software approaches are more

commonly used. Hypervisor-based keyloggers (e.g.,

BluePill [8]) are the straightforward software evolution of

hardware-based keyloggers, literally performing a man-in-

the-middle attack between the hardware and the operating

system. Kernel keyloggers come second in the chain and are

often implemented as part of more complex rootkits. In

contrast to hypervisor-based approaches, hooks are directly

used to intercept buffer-processing events or other kernel

messages.

Albeit effective, all these approaches require privileged

access to the machine. Moreover, writing a kernel driver—-

hypervisor-based approaches pose even more challenges—-

requires a considerable effort and knowledge for an

effective and bug-free implementation (even a single bug

may lead to a kernel panic). User-space keyloggers, on the

other hand, do not require any special privilege to be

deployed. They can be installed and executed regardless of

the privileges granted.

Fig.1.The delivery phases of a keystroke, and the

components potentially subverted

This is a feat impossible for kernel keyloggers, since they

require either superuser privileges or a vulnerability that allows

arbitrary kernel code execution. Furthermore, user-space

keylogger writers can safely rely on well-documented sets of

APIs commonly available on modern operating systems, with

no special programming skills required.

User-space keyloggers can be further classified based on the

scope of the hooked message/data structures. Since a system

hosts multiple applications, keystrokes can be intercepted either

globally (i.e., for all the applications) or locally (i.e., within the

application). We term these two classes of user-space

keyloggers type I and type II. Fig. 1 shows the proposed

classification: the left pane shows the process of delivering a

keystroke to the intended application, whereas the right pane

highlights the particular component subverted by each type of

keylogger. Both types can be easily implemented in Windows,

while the facilities available in Unix-like OSes—X11 and GTK

required—allow for a straightforward implementation of the

more invasive type I keyloggers.

Table 1: Presents a list of all the APIs that can be used to

implement a user-space keylogger.

In brief, the SetWin-dowsHookEx() and

gdk_window_add_filter() APIs are used to interpose the key

logging procedure before a

Table 1
If the Scope of the API is Local, the Keylogger Must Inject

Portions of Its Code in Each Application, e.g., Using a

Library keystroke is effectively delivered to the target

process. For SetWindowsHookEx(), this is possible by

setting the last parameter (thread_id) to 0 (which subscribes

to any keyboard event). For gdk_window_add_filter(), it is

sufficient to set the handler of the monitored window to

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8814

NULL. The class of functions Get * State(), XQuer-

yKeymap(), and inb(0x60) query the state of the keyboard

and return a vector with the state of all (one in case of

GetKeyState()) the keystrokes. When using these functions,

the keylogger must continuously poll the keyboard in order

to intercept all the keystrokes. The functions of the last class

apply only to Windows and are typically used to overwrite

the default address of key-stroke-related functions in all the

Win32 graphical applica-tions. We have not found any

example of this particular class of keyloggers in Unix-like

OSes.

Since some of the APIs have just local scope, Type II

keyloggers need to inject part of their code in a shared

portion of the address space to have all the processes

execute the provided callback. The only exception is with a

Type II keylogger that uses either GetKeyState() or GetKey-

boardState(). In these cases, the keylogging process can

attach its input queue (i.e., the queue of events used to

control a graphical user application) to other threads by

using the procedure AttachtreadInput(). As a tentative

counter-measure, Windows Vista recently eliminated the

ability to share the same input queue for processes running

in two different integrity levels. Unfortunately, since higher

integ-rity levels are assigned only to known processes (e.g.,

Internet Explorer), common applications are still vulnerable

to these interception strategies.

We can draw three important conclusions from our analysis.

First, all user-space keyloggers are implemented by either

hook-based or polling mechanisms. Second, all APIs are

legitimate and well-documented. Third, all modern

operating systems offer (a flavor of) these APIs. In

particular, they always provide the ability to intercept

keystrokes regardless of the application on focus. This

design choice is dictated by the necessity to support such

functionalities for legitimate applications. The following are

three simple scenarios in which the ability to intercept

arbitrary key-strokes is a functional requirement: 1)

keyboards with additional special-purpose keys; 2) window

managers with system-defined shortcuts; 3) background user

applications whose execution is triggered by user-defined

shortcuts (for instance, an application handling multiple

virtual work-spaces requires hot keys that must not be

overridden by other applications).

3.OUR APPROACH

Our approach is explicitly focused on designing a detection

technique for unprivileged user-space keyloggers. Unlike

other classes of keyloggers, a user-space keylogger is a

background process which registers operating-system-

supported hooks to surreptitiously eavesdrop (and log) every

keystroke issued by the user into the current foreground

application. Our goal is to prevent user-space keyloggers

from stealing confidential data originally intended for a

(trusted) legitimate foreground application. Malicious fore-

ground applications surreptitiously logging user-issued

keystrokes (e.g., a keylogger spoofing a trusted word

processor application) and application-specific keyloggers

(e.g., browser plugins surreptitiously performing keylogging

activities) are outside our threat model and cannot be

identified using our detection technique.

Our model is based on these observations and explores the

possibility of isolating the keylogger in a controlled

environment, where its behavior is directly exposed to the

detection system. Our technique involves controlling the

keystroke events that the keylogger receives in input, and

constantly monitoring the I/O activity generated by the

keylogger in output. To assert detection, we leverage the

intuition that the relationship between the input and output

of the controlled environment can be modeled for most

keyloggers with very good approximation. When the input

and the output are controlled, we can identify common I/O

patterns and flag detection. Moreover, pre-selecting the

input pattern can better avoid spurious detections and

evasion attempts.

To detect background keylogging behavior our technique

comprises a preprocessing step to forcefully move the focus

to the background. This strategy is also necessary to avoid

flagging foreground applications that legitimately react to

user-issued keystrokes (e.g., word processors) as

keyloggers.

The key advantage of our approach is that it is centered

around a black-box model that completely ignores the

keylogger internals. I/O monitoring is a nonintrusive

procedure and can be performed on multiple processes

simultaneously. As a result, our technique can deal with a

large number of keyloggers transparently and enables a fully

unprivileged detection system able to vet all the processes

running on a particular system in a single run.

 Fig. 2. The different components of our architecture.

Our approach completely ignores the content of the input

and the output data, and focuses exclusively on their

distribution. Limiting the approach to a quantitative analysis

enables the ability to implement the detection technique

with only unprivileged mechanisms, as we will better

illustrate later. The underlying model adopted, however,

presents additional challenges. First, we must carefully deal

with possible data transformations that may introduce

quantitative differences between the input and the output

patterns. Second, the technique should be robust with

respect to quantitative similarities identified in the output

patterns of other legitimate system processes. In the

following, we discuss how our approach deals with these

challenges.

4. ARCHITECTURE

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8815

Our design is based on five different components as

depicted in Fig. 2: injector, monitor, pattern translator,

detector, pattern generator. The operating system at the

bottom deals with the details of I/O and event handling. The

OS Domain does not expose all the details to the upper

levels without using privileged API calls. As a result, the

injector and the monitor operate at another level of

abstraction, the Stream Domain. At this level, keystroke

events and the bytes output by a process appear as a stream

emitted at a particular rate.

The task of the injector is to inject a keystroke stream to

simulate the behavior of a user typing at the keyboard.

Similarly, the monitor records a stream of bytes to

constantly capture the output behavior of a particular

process. A stream representation is only concerned with the

distribution of keystrokes or bytes emitted over a given

window of observation, without entailing any additional

qualitative information. The injector receives the input

stream from the pattern translator, which acts as bridge

between the Stream Domain and the Pattern Domain.

Similarly, the monitor delivers the output stream recorded to

the pattern translator for further analysis. In the Pattern

Domain, the input stream and the output stream are both

represented in a more abstract form, termed Abstract

Keystroke Pattern (AKP). A pattern in the AKP form is a

discretized and normalized representation of a stream.

Adopting a compact and uniform representation is

advantageous for several reasons.

First, this allows the pattern generator to exclusively focus

on generating an input pattern that follows a desired

distribution of values. Details on how to inject a particular

distribution of keystrokes into the system are offloaded to

the pattern translator and the injector. Second, the same

input pattern can be reused to produce and inject several

input streams with different properties but following the

same underlying distribution. Finally, the ability to reason

over abstract representations simplifies the role of the

detector that only receives an input pattern and an output

pattern and makes the final decision on whether detection

should or should not be triggered.

 4.1.Injector

The role of the injector is to inject the input stream into the

system, simulating the behavior of a user at the keyboard.

By design, the injector must satisfy several requirements.

First, it should only rely on unprivileged API calls. Second,

it should be capable of injecting keystrokes at variable rates

to match the distribution of the input stream. Finally, the

resulting series of keystroke events produced should be no

different than those generated by a real user. In other words,

no user-space keylogger should be somehow able to

distinguish the two types of events. To address all these

issues, we leverage the same technique employed in

automated testing. On Windows-based operating systems

this functionality is provided by the API call key-bd_event.

 4.2.Monitor

The monitor is responsible to record the output stream of all

the running processes. As done for the injector, we allow

only unprivileged API calls. In addition, we favor strategies

to perform realtime monitoring with minimal overhead and

the best level of resolution possible. Finally, we are

interested in application-level statistics of I/O activities, to

avoid dealing with filesystemlevel caching or other potential

nuisances. Fortunately, most modern operating systems

provide unprivileged API calls to access performance

counters on a per-process basis. On all the versions of

Windows since Windows NT 4.0, this functionality is

provided by the Windows Management Instrumentation

(WMI). In particular, the performance counters of each

process are made available via the class Win32_Process,

which supports an efficient query-based interface. The

counter WriteTransferCount contains the total number of

bytes written by the process since its creation. Note that

monitoring the network activity is also possible, although it

requires a more recent version of Windows, i.e., at least

Vista. To construct the output stream of a given process, the

monitor queries this piece of information at regular time

intervals, and records the number of bytes written since the

last query every time. The proposed technique is obviously

tailored to Windows-based operating systems. Nonetheless,

we point out that similar strategies can be realized in other

OSes; both Linux and OSX, in fact, support analogous

performance counters which can be accessed in an un-

privileged manner; the reader may refer to the iotop utility

for usage examples.

 4.3.Detector

The success of our detection algorithm lies in the ability to

infer a cause-effect relationship between the keystroke

stream injected in the system and the I/O behavior of a

keylogger process, or, more specifically, between the

respective patterns in AKP form. While one must examine

every candidate process in the system, the detection

algorithm operates on a single process at a time, identifying

whether there is a strong similarity between the input pattern

and the output pattern obtained from the analysis of the I/O

behavior of the target process. Specifically, given a

predefined input pattern and an output pattern of a particular

process, the goal of the detection algorithm is to determine

whether there is a match in the patterns and the target

process can be identified as a keylogger with good

probability.

The first step in the construction of a detection algorithm

comes down to the adoption of a suitable metric to measure

the similarity between two given patterns. In principle, the

AKP representation allows for several possible measures of

dependence that compare two discrete sequences and

quantify their relationship. In practice, we rely on a single

correlation measure motivated by the properties of the two

patterns. The proposed detection algorithm is based on the

Pearson product-moment correlation coefficient (PCC), one

of the most widely used correlation measures [9]. Given two

discrete sequences described by two patterns P and Q with

N samples, the PCC is defined as [9]sample standard

deviations, and P and Q are sample means.The PCC has

been widely used as an index to measure bivariate

association for different distributions in several applications

including pattern recognition, data analysis, and signal

processing [10]. The values given by the PCC are always

symmetric and ranging between _1 and 1, with 0 indicating

no correlation and 1 or _1 indicating complete direct (or

inverse) correlation. To measure the degree of association

between two given patterns we are here only interested in

positive values of correlation. Hereafter, we will always

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8816

refer to its absolute value. Our interest in the PCC lies in its

appealing mathematical properties. In contrast to other

correlation metrics, the PCC measures the strength of a

linear relationship between two series of samples, ignoring

any nonlinear association. In our setting, a linear

dependence well approximates the relationship between the

input pattern and an output pattern produced by a keylogger.

The intuition is that a keylogger can only make local

decisions on a per-keystroke basis with no knowledge about

the global distribution. Thus, in principle, the resulting

behavior will linearly approximate the original input stream

injected into the system.
An interesting application of the location invariance property is

the ability to mitigate the effect of buffering. When the

keylogger uses a fixed-size buffer whose size is comparable to

the number of keystrokes injected at each time interval, it is

easy to show that the PCC is not significantly affected.

4.4 Pattern Generator

Our pattern generator is designed to support several pattern

generation algorithms. More specifically, the pat-tern

generator can leverage any algorithm producing a valid

pattern in AKP form. We now present a number of pattern

generation algorithms and discuss their properties.

The first important issue to consider is the effect of

variability in the input pattern. Experience shows that

correlations tend to be stronger when samples are dis-

tributed over a wider range of values [11]. In other words,

the more the variability in the given distributions, the more

stable and accurate the resulting PCC computed. This

suggests that a robust input pattern should contain samples

spanning the entire target interval ½0; 1&. The level of

variability in the resulting input stream is also similarly

influenced by the range of keystroke rates used in the

pattern translation process. The higher the range delimited

by the minimum keystroke rate and maximum keystroke

rate, the more reliable the results.

A robust pattern generation algorithm should allow for a

minimum number of false positive. When the chosen input

pattern happens to closely resemble the I/O behavior of

some benign process, the PCC may report a high value of

correlation for that process and trigger a false detection. For

this reason, it is important to focus on input patterns that

have little chances of being confused with output patterns

generated by legitimate processes. Fortunately, studies show

that the correlation between realistic I/O workloads for PC

users is generally considerably low over small time

intervals. The results presented in [13] are derived from 14

traces collected over a number of months in realistic

environments used by different categories of users. The

authors show that the value of correlation given by the PCC

over 1 minute of I/O activity is only 0.046 on average and

never exceeds 0.070 for any two given traces. This suggests

that the I/O behavior of one or more processes is in general

very poorly correlated with other I/O distributions.

The problem of designing a pattern generation algorithm

that minimizes false positives under a given known

workload can be modeled as follows: we assume that traces

for the target workload can be collected and converted into a

series of patterns (one for each process running on the

system) of the same length N. All the patterns are generated

to build a valid training set for the algorithm. Under the

assumption that the traces collected are representative of the

real workload available at detection time, our goal is to

design an algorithm that learns the characteristics of the

training data and generates a maximally uncorrelated input

pattern. Concretely, the goal of our algorithm is to produce

an input pattern of length N that minimizes the PCC

measured against all the patterns in the training set. Without

any further constraints on the samples of the target input

pattern, it can be shown that this problem is a nontrivial

nonlinear optimization problem. In practice, we can relax

the original problem by leveraging some of the assumptions

discussed earlier. As motivated before, a robust input pattern

should present samples distributed over a wide range of

values. To assume the widest range possible, we can

arbitrarily constrain the series of samples to be uniformly

distributed over the target interval ½0; 1&. This is

equivalent to consider a set of N samples of the form Prior

research has shown how to transform this particular problem

into an equivalent Quadratic Assignment Problem (QAP)

that can be very efficiently solved with a standard QAP

solver when the global minimum is known in advance [15].

In our solution, we have implemented a similar approach

limiting the approach to a maximum number of iterations to

guarantee convergence since the minimum value of the PCC

is not known in advance. In practice, for a reasonable

number of samples N and a modest training set, we found

that this is rarely a concern. The algorithm can usually

identify the optimal pattern in a bearable amount of time.

To conclude, we now more formally propose two classes of

pattern generation algorithms for our generator. First, we are

interested in workload-aware generation algorithms. For this

class, we focus on the optimization algorithm we have just

introduced—we refer to this pattern generation algorithm

with the term WLD—assuming a number of representative

traces have been made available for the target workload.

Moreover, we are interested in workload-agnostic pattern

generation algorithms. With no assumption made on the

nature of the workload, they are more generic and easier to

implement. In this class, we propose the following

algorithms:

Random (RND). Each sample is generated at random.

Random with fixed range (RFR). The pattern is a random

permutation of a series of samples uniformly distributed

over the interval ½0; 1&. This is to maximize the amount of

variability in the input pattern.

Impulse (IMP). Every sample 2i is assigned the value of 0

and every sample 2i þ 1 is assigned the value of 1.

This algorithm attempts to produce an input pattern with

maximum variance and idle periods at minimum.

Sine wave (SIN). The pattern generated is a discrete sine

wave distribution oscillating between 0 and 1.

The sine wave grows or drops with a fixed step of 0.1. This

algorithm explores the effect of constant increments and

decrements in the input pattern.

5 EVALUATION

To evaluate the proposed detection technique, we

implemented a prototype based on the ideas described in the

paper. Written in C# in 7,000 LoC, it runs as an

unprivileged application for the Windows OS. It also

collects simultaneously all the processes’ I/O patterns, thus

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8817

allowing us to analyze the whole system in a single run.

Although the proposed design can easily be extended to

other OSes, we explicitly focus on Windows for the

significant number of keyloggers available. In the following,

we present several experiments to evaluate our approach.

The ultimate goal is to understand the effectiveness of our

technique and its applicability to realistic settings. For this

purpose, we evaluated our prototype against many publicly

available keyloggers. We also developed our own keylogger

to evaluate the effect of particular conditions more

thoroughly. Finally, we collected traces for different realistic

PC workloads to evaluate the effectiveness of our approach

in real-life scenarios. We ran all of our experiments on PCs

with a 2.53 Ghz Core 2 Duo processor, 4 GB memory, and

7,200 rpm SATA II hard drives. Every test was performed

under Windows 7 Professional SP1, while the workload

traces were gathered from a number of PCs running several

different versions of Windows. Since the performance

counters are part of the default accounting infrastructure,

monitoring the processes’ I/O came at negligible cost: for

reasonable values of T , i.e., > 100 ms, the load imposed on

the CPU by the monitoring phase was less than 2 percent.

On the other hand, injecting high keystroke rates introduced

additional processing overhead throughout the system.

Experimental results showed that the overhead grows

approximately linearly with the number of key-strokes

injected per sample. In particular, the CPU load imposed by

our prototype reaches 25 percent around 15,000 keystrokes

per sample and 75 percent around 47,000. Note that these

values only refer to detection-time overhead. No runtime

overhead is imposed by our technique when no detection is

in progress.

5.1.Keylogger Detection

To evaluate the ability to detect real-world keyloggers, we

experimented with all the keyloggers from the top monitoring

free software list [5], an online repository continuously updated

with reviews and latest develop-ments in the area. To carry out

the experiments,

Table 2: Detection Result

Table 2 shows the keyloggers used in the evaluation and

summarizes the detection results. All the keyloggers were

detected within a few seconds without generating any false

positives; in particular, no legitimate process scored PCC

values _ 0:3. Virtuoza Free Keylogger required a longer

window of observation to be detected; this sample was

indeed the only keylogger to store keystrokes in memory

and flush out to disk at regular time intervals. Nevertheless,

we were still able to collect consistent samples from flush

events and report high PCC values.

In a few other cases, keystrokes were kept in memory but

flushed out to disk as soon as the keylogger detected a

change of focus. This was the case for Actual Keylogger,

Revealer Keylogger Free, and Refog Keylogger Free. To

deal with this common strategy, our detection system

enforces a change of focus every time a sample is injected.

In addition, some of the keyloggers examined included

support for encryption and most of them used variable-

length encoding to store special keys. As Section 5.2

demonstrates, our approach deal with these nuisances

transparently with no effect on the resulting PCC.

5.2.False Negatives

In our approach, false negatives may occur when the output

pattern of a keylogger scores an unexpectedly low PCC value.

To test the robustness of our approach against false negatives,

we made several experiments with our own artificial keylogger.

Our evaluation starts by analyzing the impact of the number of

Fig. 6. Impact of different classes of noise on the PCC

samples N and the time interval T on the final PCC value. For

each pattern generation algorithm, we plot the PCC measured

with our prototype keylogger which we configured so that no

buffering or data transformation was taking place. Figs. 3a and

3b depict our findings with Kmin ¼ 1 and Kmax ¼ 1;000. We

observe that when the keylogger logs each keystroke without

introdu-cing delay or additional noise, the number of samples N

does not affect the PCC value. This behavior should not suggest

that N has no effect on the production of false negatives. When

noise in the output stream is to be expected, higher values of N

are indeed desirable to produce more stable PCC values and

avoid false negatives.

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8818

 Fig. 4. Impact of Kmax and T on the PCC. Fig. 5. Detection of a

keylogger buffering its outpu

Fig. 7. Impact of N and T on the PCC measured with our prototype keylogger

against different workloads.

In a more advanced version of our keylogger, we also

simulated the effect of several possible input-output

transformations. First, we experimented with a keylogger using

a nontrivial fixed-length encoding for keystrokes. Fig. 5a

depicts the results for different values of padding p with N ¼

30, Kmin ¼ 1, and Kmax ¼ 1,024. A value of p ¼ 1,024 simulates

a keylogger writing 1,024 bytes on the disk for each

eavesdropped keystroke. As discussed in Sec-tion 4.4,

the PCC should be unaffected in this case and presumably

exhibit a constant behavior. The figure confirms this intuition,

but shows the PCC decreasing linearly after p _ 10;000 bytes.

This behavior is due to the limited I/O throughput that can be

achieved within a single time interval. We previously

encountered similar problems when choosing suitable values

for Kmax. Note that in this scenario both Kmin and Kmax are

affected by the padding introduced, thus yielding a more

significant impact on the PCC.

The result is that each of these transformations can be always

approximated by a linear transformation with constant scaling.

We conclude our analysis by verifying the impact of a

keylogger buffering the eavesdropped data before leaking it to

the disk. Although we have not found many real-world

examples of this behavior in our evaluation, our technique can

still handle this class of keyloggers correctly for reasonable

buffer sizes. Fig. 6 depicts our detection results against a

keylogger buffering its output through a fixed-size buffer. The

figure shows the impact of several possible choices of the

buffer size on the final PCC value. We can observe the pivotal

role of Kmax in successfully asserting detection. For example,

increasing Kmax to 10,240 is necessary to achieve sufficiently

high PCC values for the largest buffer size proposed. This

experiment demonstrates once again that the key to detection is

inducing the pattern to distinctly emerge in the output

distribution, a feat that can be easily obtained by choosing a

highly variable injection pattern with low values for Kmin and

high values for Kmax. We believe these results are encouraging

to acknowledge the robustness of our detection technique

against false nega-tives, even in presence of complex data

transformations.

5.3.False Positives

In our approach, false positives may occur when the output

pattern of some benign process accidentally scores a significant

PCC value. If the value happens to be greater than the selected

threshold, a false detection is flagged. This section evaluates

our prototype keylogger to investigate the likelihood of this

scenario in practice.

6 .EVASION AND COUNTERMEASURES

In this section, we speculate on the possible evasion techniques

a keylogger may employ once our detection strategy is

deployed on real systems.

6.1.Aggressive Buffering

A keylogger may rely on some forms of aggressive buffering,

for example flushing a very large buffer every time interval t,

with t being possibly hours. While our model can potentially

address this scenario, the extremely large window of

observation required to collect a sufficient number of samples

would make the resulting detection technique impractical. It is

important to point out that such a limitation stems from the

implementation of the technique and not from a design flaw in

our detection model.

 6.2.Trigger-Based Behavior

A keylogger may trigger the keylogging activity only in face of

particular events, for example when the user launches a

particular application. Unfortunately, this trigger-based

behavior may successfully evade our detection technique. This

is not, however, a shortcoming specific to our approach, but

rather a more fundamental limitation common to all the

existing detection techniques based on dynamic analysis [17].

While we believe that the problem of triggering a specific

behavior is orthogonal to our work and already focus of much

ongoing research, we point out that the user can still mitigate

this threat by periodically reissuing detection runs when

necessary (e.g., every time a new particularly sensitive context

is accessed). Since our technique can vet all the processes in a

single detection run, we believe this strategy can be realistically

used in real-world scenarios.

6.3.Discrimination Attacks

Mimicking the user’s behavior may expose our approach to

keyloggers able to tell artificial and real keystrokes apart. A

keylogger may, for instance, ignore any input failing to display

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8819

known statistical propertiese.g., not akin to the English

language. However, since we control the input pattern, we can

carefully generate keystroke scancode sequences displaying the

same statistical properties (e.g., English text) expected by the

keylogger, and therewith perform a separate detection run

thwarting this evasion technique. About the case of a keylogger

ignoring key-strokes when detecting a high (nonhuman)

injection rate. This strategy, however, would make the

keylogger prone to denial of service: a system persistently

generating and exfiltrating bogus keystrokes would induce this

type of keylogger to permanently disable the keylogging

activity. Recent work demonstrates that building such a system

is feasible in practice (with reasonable overhead) using

standard two facilities [18].

6.4.Decorrelation Attacks

Decorrelation attacks attempt at breaking the correlation metric

our approach relies on. Since of all the attacks this is

specifically tailored to thwarting our technique, we hereby

propose a heuristic intended to vet the system in case of

negative detection results. This is the case, for instance, of a

keylogger trying to generate I/O noise in the background and

lowering the correlation that is bound to exist between the

pattern of keystrokes injected I and its own output pattern O. In

the attacker’s ideal case, this translates to PCCðI; OÞ _ 0. To

approximate this result in the general case, however, the

attacker must adapt its disguisement strategy to the pattern

generation algorithm in use, i.e., when switching to a new

injection I
0
 6¼ I, the output pattern should reflect a new

distribution O
0
 6¼ O. The attacker could, for example, enforce

this property by adapting the noise generation to some input

distribution-specific variable (e.g., the current keystroke rate).

Failure to do so will result in random noise uncorrelated with

the injection, a scenario which is already handled by our PCC-

based detection technique. At the same time, we expect any

legitimate process to maintain a sufficiently stable I/O behavior

regardless of the particular injection chosen. The conclusion is

that analyzing a sufficiently large number of samples is crucial to

obtain accurate results when estimating the similarity between

different distributions.

7. RELATED WORK

While ours is the first technique to solely rely on unprivi-leged

mechanisms, several approaches have been recently proposed

to detect privacy-breaching malware, including keyloggers.

Behavior-based spyware detection has been first introduced by

Kirda et al. in [21]. Their approach is tailored to malicious

Internet Explorer loadable modules. In parti-cular, modules

monitoring the user’s activity and disclosing private data to

third parties are flagged as malware. Their analysis models

malicious behavior in terms of API calls invoked in response to

browser events. Those used by keyloggers, however, are also

commonly used by legitimate programs. Their approach is

therefore prone to false positives, which can only be mitigated

with continuously updated whitelists.

Other keylogger-specific approaches have suggested detecting the

use of well-known keystroke interception APIs. Unfortunately, all

these calls are also used by legitimate applications (e.g.,

shortcut managers) and this approach is again prone to false

positives. Xu et al. [23] push this technique further, specifically

targeting Windows-based operating systems. They rely on the

very same hooks used by keyloggers to alter the message type

from WM_KEYDOWN to WM_CHAR. A keylogger aware of

this countermeasure, however, can easily evade detection by

also switching to a new message type or periodically

registering a new hook to obtain the highest priority in the hook

chain.

Closer to our approach is the solution proposed by Al-

Hammadi et al. [24]. Their strategy is to model the keylogging

behavior in terms of the number of API calls issued in the

window of observation. To be more precise, they observe the

frequency of API calls invoked to 1) intercept keystrokes, 2)

writing to a file, and 3) sending bytes over the network. A

keylogger is detected when two of these frequencies are found

to be highly correlated. Since no bogus events are issued to the

system (no injection of crafted input), the correlation may not

be as strong as expected. The resulting value would be even

more impaired in case of any delay introduced by the

keylogger. Moreover, since their analysis is solely focused on a

specific bot, it lacks a proper discussion on both false positives

and false negatives. In contrast to their approach, our

quantitative analysis is performed at the byte granularity and

our correlation metric (PCC) is rigorously linear. As shown

earlier, linearity makes our technique completely resilient to

several common data transformations performed by

keyloggers.

A similar quantitative and privileged technique is sketched by

Han et al. [25]. Unlike the solution presented in [24], their

technique does include an injection phase. Their detection

strategy, however, still models the key-logging behavior in

terms of API calls. In practice, the assumption that a certain

number of keystrokes results in a predictable number of API

calls is fragile and heavily implementation-dependent. In

contrast, our byte-level analysis relies on finer grained

measurements and can identify all the information required for

the detection in a fully unprivileged way. Complementary to

our work, recent approaches have proposed automatic

identification of trigger-based behavior, which can potentially

thwart any detection technique based on dynamic analysis. In

parti-cular, in [17], [26] the authors propose a combination of

concrete and symbolic execution for the task. Their strategy

aims to explore all the possible execution paths that a malware

can possibly exhibit during execution. As the authors in [17]

admit, however, automating the detection of trigger-based

behavior is an extremely challenging task which requires

advanced privileged tools. The problem is also undecidable in

the general case.

 8. CONCLUSIONS

In this paper, we presented an unprivileged black-box approach

for accurate detection of the most common keyloggers, i.e.,

user-space keyloggers. We modeled the behavior of a

keylogger by surgically correlating the input (i.e., the

keystrokes) with the output (i.e., the I/O patterns produced by

the keylogger). In addition, we augmented our model with the

ability to artificially inject carefully crafted keystroke patterns.

We then discussed the problem of choosing the best input

pattern to improve our detection rate. Subsequently, we

presented an implementation of our detection technique on

Windows, arguably the most vulnerable OS to the threat of

keyloggers. To establish an OS-independent architecture, we

R.Suguna
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8812-8820 Page 8820

also gave implementation details for other operating systems.

We successfully eval-uated our prototype system against the

most common free keyloggers [5], with no false positives and

no false negatives reported. Other experimental results with a

homegrown keylogger demonstrated the effectiveness of our

technique in the general case. While attacks to our detection

technique are possible and have been discussed at length in

Section 6, we believe our approach considerably raises the bar

for protecting the user against the threat of keyloggers.

REFERENCES

 T. Holz, M. Engelberth, and F. Freiling, “Learning More About the

Underground Economy: A Case-Study of Keyloggers and Dropzones,” Proc.

14th European Symp. Research in Computer Security, pp. 1-18, 2009.

L. Zhuang, F. Zhou, and J.D. Tygar, “Keyboard Acoustic Emanations

Revisited,” ACM Trans. Information and System Security, vol. 13, no. 1, pp. 1-

26, 2009.

M. Vuagnoux and S. Pasini, “Compromising Electromagnetic Emanations of
Wired and Wireless Keyboards,” Proc. 18th USENIX Security Symp., pp. 1-

16, 2009.

J. Rutkowska, “Subverting Vista Kernel for Fun and Profit,” Black Hat

Briefings, vol. 5, 2007.

J.L. Rodgers and W.A. Nicewander, “Thirteen Ways to Look at the Correlation

Coefficient,” The Am. Statistician, vol. 42, no. 1, pp. 59-66, Feb. 1988.

J. Benesty, J. Chen, and Y. Huang, “On the Importance of the Pearson

Correlation Coefficient in Noise Reduction,” IEEE Trans. Audio, Speech, and
Language Processing, vol. 16, no. 4, pp. 757-765, May 2008.

L. Goodwin and N. Leech, “Understanding Correlation: Factors that Affect the

Size of r,” Experimental Education, vol. 74, no. 3,

249-266, 2006.

J. Aldrich, “Correlations Genuine and Spurious in Pearson and Yule,”

Statistical Science, vol. 10, no. 4, pp. 364-376, 1995.

W. Hsu and A. Smith, “Characteristics of I/O Traffic in Personal Computer and

Server Workloads,” IBM System J., vol. 42, no. 2,
347-372, 2003.

H.W. Kuhn, “The Hungarian Method for the Assignment Problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83-97, 1955.

	page2
	page3
	page4
	page5
	page6
	page7
	page9
	page10
	page12
	page13

