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Abstract 

 

Software keyloggers are a fast growing class of invasive software often used to harvest confidential information. One of the main 

reasons for this rapid growth is the possibility for unprivileged programs running in user space to eavesdrop and record all the 

keystrokes typed by the users of a system. The ability to run in unprivileged mode facilitates their implementation and 

distribution, but, at the same time, allows one to understand and model their behavior in detail. Leveraging this characteristic, we 

propose a new detection technique that simulates carefully crafted keystroke sequences in input and observes the behavior of the 

keylogger in output to unambiguously identify it among all the running processes. We have prototyped our technique as an 

unprivileged application, hence matching the same ease of deployment of a keylogger executing in unprivileged mode. We have 

successfully evaluated the underlying technique against the most common free keyloggers. This confirms the viability of our 

approach in practical scenarios. We have also devised potential evasion techniques that may be adopted to circumvent our 

approach and proposed a heuristic to strengthen the effectiveness of our solution against more elaborated attacks. Extensive 

experimental results confirm that our technique is robust to both false positives and false negatives in realistic settings. 
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1.INTRODUCTION 

 
KEYLOGGERS are implanted on a machine to intentionally 

monitor the user activity by logging keystrokes and 

eventually delivering them to a third party [1]. While they 

are seldom used for legitimate purposes (e.g., 

surveillance/parental monitoring infrastructures), key 

loggers are often maliciously exploited by attackers to steal 

confidential information. Many credit card numbers and 

pass-words have been stolen using key loggers [2], 

[3],which makes them one of the most dangerous types of 

spyware known to date. 

 

Key loggers can be implemented as tiny hardware devices or 

more conveniently in software. Software-based key-loggers 

can be further classified based on the privileges they require 

to execute. Keyloggers implemented by a kernel module run 

with full privileges in kernel space. Conversely, a fully 

unprivileged keylogger can be implemented by a simple 

user-space process. It is important to notice that a user-space 

key logger can easily rely on documented sets of 

unprivileged APIs commonly available on modern operating 

systems (OSs). This is not the case for a keylogger 

implemented as a kernel module. In kernel space, the 

programmer must rely on kernel-level facilities to intercept 

all the messages dispatched by the keyboard driver, 

undoubtedly requiring a considerable effort and knowledge 

for an effective and bug-free implementation. Furthermore, 

a keylogger implemented as a user-space process is much 

easier to deploy since no special permission is required. A 
user can erroneously regard the keylogger as a harmless piece 

of software and being deceived in executing it. On the contrary, 

kernel-space keyloggers require a user with superuser 

privileges to consciously install and execute unsigned code 

within the kernel, a practice often forbidden by modern 

operating systems such Windows Vista or Windows 7.In light 

of these observations, it is no surprise that 95 percent of the 

existing keyloggers run in user space [4]. Despite the rapid 

growth of keylogger-based frauds (i.e., identity theft, password 

leakage, etc.), not many effective and efficient solutions have 

been proposed to address this problem. Traditional defense 

mechanisms use fingerprinting strategies similar to those used 

to detect viruses and worms. Unfortunately, this strategy is 

hardly effective against the vast number of new keylogger 

variants surfacing every day in the wild. 
 
In this paper, we propose a new approach to detect 

keyloggers running as unprivileged user-space processes. To 

match the same deployment model, our technique is entirely 

implemented in an unprivileged process. As a result, our 

solution is portable, unintrusive, easy to install, and yet very 

effective. In addition, the proposed detection technique is 

completely black-box, i.e., based on behavioral 

characteristics common to all keyloggers. In other words, 
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our technique does not rely on the internal structure of the 

keylogger or the particular set of APIs used. For this reason, 

our solution is of general applicability. We have prototyped 

our approach and evaluated it against the most common free 

keyloggers [5]. Our approach has proven effective in all the 

cases. We have also evaluated the impact of false positives 

in practical scenarios. In the final part of this paper, we 

further validate our approach with a homegrown keylogger 

that attempts to thwart our detection technique. Albeit 

already robust against the large majority of evasive 

behaviors, we also present and evaluate a heuristic against 

elaborated evasion strategies. 

 
The structure of the paper is as follows: we start with an in-

depth analysis of modern keyloggers in Section 2. We then 

introduce our approach in Section 3, detail its architecture in 

Section 4, and evaluate the resulting prototype in Section 5. 

Section 6 discusses the robustness against evasion 

techniques. We conclude with related work in Section 7 and 

final remarks in Section 8. 

 

2. INTERNALS OF MODERN   

KEYLOGGERS 
 

Breaching the privacy of an individual by logging his 

keystrokes can be perpetrated at many different levels. For 

example, an attacker with physical access to the machine 

might wiretap the hardware of the keyboard. A dishonest 

owner of an Internet cafe´, in turn, may find it more 

convenient to purchase a software solution, install it on all 

the terminals, and have the logs dropped on his own 

machine. Depending on the setting, a keylogger can be 

implemented in many different ways. For instance, external 

keyloggers rely on some physical property, either the 

acoustic emanations produced by the user typing [6], or the 

electromagnetic emanations of a wireless keyboard [7]. 

Hardware keyloggers are still external devices, but are 

implemented as dongles placed in between keyboard and 

motherboard. All these strategies, however, require physi-

cal access to the target machine. 

 

To overcome this limitation, software approaches are more 

commonly used. Hypervisor-based keyloggers (e.g., 

BluePill [8]) are the straightforward software evolution of 

hardware-based keyloggers, literally performing a man-in-

the-middle attack between the hardware and the operating 

system. Kernel keyloggers come second in the chain and are 

often implemented as part of more complex rootkits. In 

contrast to hypervisor-based approaches, hooks are directly 

used to intercept buffer-processing events or other kernel 

messages. 

 

Albeit effective, all these approaches require privileged 

access to the machine. Moreover, writing a kernel driver—-

hypervisor-based approaches pose even more challenges—-

requires a considerable effort and knowledge for an 

effective and bug-free implementation (even a single bug 

may lead to a kernel panic). User-space keyloggers, on the 

other hand, do not require any special privilege to be 

deployed. They can be installed and executed regardless of 

the privileges granted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1.The delivery phases of a keystroke, and the 

components potentially subverted  
 

This is a feat impossible for kernel keyloggers, since they 

require either superuser privileges or a vulnerability that allows 

arbitrary kernel code execution. Furthermore, user-space 

keylogger writers can safely rely on well-documented sets of 

APIs commonly available on modern operating systems, with 

no special programming skills required. 
 
User-space keyloggers can be further classified based on the 

scope of the hooked message/data structures. Since a system 

hosts multiple applications, keystrokes can be intercepted either 

globally (i.e., for all the applications) or locally (i.e., within the 

application). We term these two classes of user-space 

keyloggers type I and type II. Fig. 1 shows the proposed 

classification: the left pane shows the process of delivering a 

keystroke to the intended application, whereas the right pane 

highlights the particular component subverted by each type of 

keylogger. Both types can be easily implemented in Windows, 

while the facilities available in Unix-like OSes—X11 and GTK 

required—allow for a straightforward implementation of the 

more invasive type I keyloggers. 
 
Table 1: Presents a list of all the APIs that can be used to 

implement a user-space keylogger.  

In brief, the SetWin-dowsHookEx() and 

gdk_window_add_filter() APIs are used to interpose the key 

logging procedure before a 

 

 

 

 

 

 

 

 

 

 

Table 1 
If the Scope of the API is Local, the Keylogger Must Inject 

Portions of Its Code in Each Application, e.g., Using a 

Library keystroke is effectively delivered to the target 

process. For SetWindowsHookEx(), this is possible by 

setting the last parameter (thread_id) to 0 (which subscribes 

to any keyboard event). For gdk_window_add_filter(), it is 

sufficient to set the handler of the monitored window to 
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NULL. The class of functions Get * State(), XQuer-

yKeymap(), and inb(0x60) query the state of the keyboard 

and return a vector with the state of all (one in case of 

GetKeyState()) the keystrokes. When using these functions, 

the keylogger must continuously poll the keyboard in order 

to intercept all the keystrokes. The functions of the last class 

apply only to Windows and are typically used to overwrite 

the default address of key-stroke-related functions in all the 

Win32 graphical applica-tions. We have not found any 

example of this particular class of keyloggers in Unix-like 

OSes. 

 

Since some of the APIs have just local scope, Type II 

keyloggers need to inject part of their code in a shared 

portion of the address space to have all the processes 

execute the provided callback. The only exception is with a 

Type II keylogger that uses either GetKeyState() or GetKey-

boardState(). In these cases, the keylogging process can 

attach its input queue (i.e., the queue of events used to 

control a graphical user application) to other threads by 

using the procedure AttachtreadInput(). As a tentative 

counter-measure, Windows Vista recently eliminated the 

ability to share the same input queue for processes running 

in two different integrity levels. Unfortunately, since higher 

integ-rity levels are assigned only to known processes (e.g., 

Internet Explorer), common applications are still vulnerable 

to these interception strategies. 

We can draw three important conclusions from our analysis. 

First, all user-space keyloggers are implemented by either 

hook-based or polling mechanisms. Second, all APIs are 

legitimate and well-documented. Third, all modern 

operating systems offer (a flavor of) these APIs. In 

particular, they always provide the ability to intercept 

keystrokes regardless of the application on focus. This 

design choice is dictated by the necessity to support such 

functionalities for legitimate applications. The following are 

three simple scenarios in which the ability to intercept 

arbitrary key-strokes is a functional requirement: 1) 

keyboards with additional special-purpose keys; 2) window 

managers with system-defined shortcuts; 3) background user 

applications whose execution is triggered by user-defined 

shortcuts (for instance, an application handling multiple 

virtual work-spaces requires hot keys that must not be 

overridden by other applications).  
 

3.OUR APPROACH 

 
Our approach is explicitly focused on designing a detection 

technique for unprivileged user-space keyloggers. Unlike 

other classes of keyloggers, a user-space keylogger is a 

background process which registers operating-system-

supported hooks to surreptitiously eavesdrop (and log) every 

keystroke issued by the user into the current foreground 

application. Our goal is to prevent user-space keyloggers 

from stealing confidential data originally intended for a 

(trusted) legitimate foreground application. Malicious fore-

ground applications surreptitiously logging user-issued 

keystrokes (e.g., a keylogger spoofing a trusted word 

processor application) and application-specific keyloggers 

(e.g., browser plugins surreptitiously performing keylogging 

activities) are outside our threat model and cannot be 

identified using our detection technique.  

Our model is based on these observations and explores the 

possibility of isolating the keylogger in a controlled 

environment, where its behavior is directly exposed to the 

detection system. Our technique involves controlling the 

keystroke events that the keylogger receives in input, and 

constantly monitoring the I/O activity generated by the 

keylogger in output. To assert detection, we leverage the 

intuition that the relationship between the input and output 

of the controlled environment can be modeled for most 

keyloggers with very good approximation. When the input 

and the output are controlled, we can identify common I/O 

patterns and flag detection. Moreover, pre-selecting the 

input pattern can better avoid spurious detections and 

evasion attempts.  

To detect background keylogging behavior our technique 

comprises a preprocessing step to forcefully move the focus 

to the background. This strategy is also necessary to avoid 

flagging foreground applications that legitimately react to 

user-issued keystrokes (e.g., word processors) as 

keyloggers. 

The key advantage of our approach is that it is centered 

around a black-box model that completely ignores the 

keylogger internals. I/O monitoring is a nonintrusive 

procedure and can be performed on multiple processes 

simultaneously. As a result, our technique can deal with a 

large number of keyloggers transparently and enables a fully 

unprivileged detection system able to vet all the processes 

running on a particular system in a single run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig. 2. The different components of our architecture. 

 

Our approach completely ignores the content of the input 

and the output data, and focuses exclusively on their 

distribution. Limiting the approach to a quantitative analysis 

enables the ability to implement the detection technique 

with only unprivileged mechanisms, as we will better 

illustrate later. The underlying model adopted, however, 

presents additional challenges. First, we must carefully deal 

with possible data transformations that may introduce 

quantitative differences between the input and the output 

patterns. Second, the technique should be robust with 

respect to quantitative similarities identified in the output 

patterns of other legitimate system processes. In the 

following, we discuss how our approach deals with these 

challenges. 

 

4. ARCHITECTURE 
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Our design is based on five different components as 

depicted in Fig. 2: injector, monitor, pattern translator, 

detector, pattern generator. The operating system at the 

bottom deals with the details of I/O and event handling. The 

OS Domain does not expose all the details to the upper 

levels without using privileged API calls. As a result, the 

injector and the monitor operate at another level of 

abstraction, the Stream Domain. At this level, keystroke 

events and the bytes output by a process appear as a stream 

emitted at a particular rate. 

 

The task of the injector is to inject a keystroke stream to 

simulate the behavior of a user typing at the keyboard. 

Similarly, the monitor records a stream of bytes to 

constantly capture the output behavior of a particular 

process. A stream representation is only concerned with the 

distribution of keystrokes or bytes emitted over a given 

window of observation, without entailing any additional 

qualitative information. The injector receives the input 

stream from the pattern translator, which acts as bridge 

between the Stream Domain and the Pattern Domain. 

Similarly, the monitor delivers the output stream recorded to 

the pattern translator for further analysis. In the Pattern 

Domain, the input stream and the output stream are both 

represented in a more abstract form, termed Abstract 

Keystroke Pattern (AKP). A pattern in the AKP form is a 

discretized and normalized representation of a stream. 

Adopting a compact and uniform representation is 

advantageous for several reasons.  

First, this allows the pattern generator to exclusively focus 

on generating an input pattern that follows a desired 

distribution of values. Details on how to inject a particular 

distribution of keystrokes into the system are offloaded to 

the pattern translator and the injector. Second, the same 

input pattern can be reused to produce and inject several 

input streams with different properties but following the 

same underlying distribution. Finally, the ability to reason 

over abstract representations simplifies the role of the 

detector that only receives an input pattern and an output 

pattern and makes the final decision on whether detection 

should or should not be triggered. 
 
 4.1.Injector 

 
The role of the injector is to inject the input stream into the 

system, simulating the behavior of a user at the keyboard. 

By design, the injector must satisfy several requirements. 

First, it should only rely on unprivileged API calls. Second, 

it should be capable of injecting keystrokes at variable rates 

to match the distribution of the input stream. Finally, the 

resulting series of keystroke events produced should be no 

different than those generated by a real user. In other words, 

no user-space keylogger should be somehow able to 

distinguish the two types of events. To address all these 

issues, we leverage the same technique employed in 

automated testing. On Windows-based operating systems 

this functionality is provided by the API call key-bd_event.  

 

 4.2.Monitor 

 
The monitor is responsible to record the output stream of all 

the running processes. As done for the injector, we allow 

only unprivileged API calls. In addition, we favor strategies 

to perform realtime monitoring with minimal overhead and 

the best level of resolution possible. Finally, we are 

interested in application-level statistics of I/O activities, to 

avoid dealing with filesystemlevel caching or other potential 

nuisances. Fortunately, most modern operating systems 

provide unprivileged API calls to access performance 

counters on a per-process basis. On all the versions of 

Windows since Windows NT 4.0, this functionality is 

provided by the Windows Management Instrumentation 

(WMI). In particular, the performance counters of each 

process are made available via the class Win32_Process, 

which supports an efficient query-based interface. The 

counter WriteTransferCount contains the total number of 

bytes written by the process since its creation. Note that 

monitoring the network activity is also possible, although it 

requires a more recent version of Windows, i.e., at least 

Vista. To construct the output stream of a given process, the 

monitor queries this piece of information at regular time 

intervals, and records the number of bytes written since the 

last query every time. The proposed technique is obviously 

tailored to Windows-based operating systems. Nonetheless, 

we point out that similar strategies can be realized in other 

OSes; both Linux and OSX, in fact, support analogous 

performance counters which can be accessed in an un-

privileged manner; the reader may refer to the iotop utility 

for usage examples. 

             4.3.Detector 

 
The success of our detection algorithm lies in the ability to 

infer a cause-effect relationship between the keystroke 

stream injected in the system and the I/O behavior of a 

keylogger process, or, more specifically, between the 

respective patterns in AKP form. While one must examine 

every candidate process in the system, the detection 

algorithm operates on a single process at a time, identifying 

whether there is a strong similarity between the input pattern 

and the output pattern obtained from the analysis of the I/O 

behavior of the target process. Specifically, given a 

predefined input pattern and an output pattern of a particular 

process, the goal of the detection algorithm is to determine 

whether there is a match in the patterns and the target 

process can be identified as a keylogger with good 

probability. 

The first step in the construction of a detection algorithm 

comes down to the adoption of a suitable metric to measure 

the similarity between two given patterns. In principle, the 

AKP representation allows for several possible measures of 

dependence that compare two discrete sequences and 

quantify their relationship. In practice, we rely on a single 

correlation measure motivated by the properties of the two 

patterns. The proposed detection algorithm is based on the 

Pearson product-moment correlation coefficient (PCC), one 

of the most widely used correlation measures [9]. Given two 

discrete sequences described by two patterns P and Q with 

N samples, the PCC is defined as [9]sample standard 

deviations, and P and Q are sample means.The PCC has 

been widely used as an index to measure bivariate 

association for different distributions in several applications 

including pattern recognition, data analysis, and signal 

processing [10]. The values given by the PCC are always 

symmetric and ranging between _1 and 1, with 0 indicating 

no correlation and 1 or _1 indicating complete direct (or 

inverse) correlation. To measure the degree of association 

between two given patterns we are here only interested in 

positive values of correlation. Hereafter, we will always 
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refer to its absolute value. Our interest in the PCC lies in its 

appealing mathematical properties. In contrast to other 

correlation metrics, the PCC measures the strength of a 

linear relationship between two series of samples, ignoring 

any nonlinear association. In our setting, a linear 

dependence well approximates the relationship between the 

input pattern and an output pattern produced by a keylogger. 

The intuition is that a keylogger can only make local 

decisions on a per-keystroke basis with no knowledge about 

the global distribution. Thus, in principle, the resulting 

behavior will linearly approximate the original input stream 

injected into the system.  
An interesting application of the location invariance property is 

the ability to mitigate the effect of buffering. When the 

keylogger uses a fixed-size buffer whose size is comparable to 

the number of keystrokes injected at each time interval, it is 

easy to show that the PCC is not significantly affected.  
 
4.4 Pattern Generator 

 

Our pattern generator is designed to support several pattern 

generation algorithms. More specifically, the pat-tern 

generator can leverage any algorithm producing a valid 

pattern in AKP form. We now present a number of pattern 

generation algorithms and discuss their properties. 

 

The first important issue to consider is the effect of 

variability in the input pattern. Experience shows that 

correlations tend to be stronger when samples are dis-

tributed over a wider range of values [11]. In other words, 

the more the variability in the given distributions, the more 

stable and accurate the resulting PCC computed. This 

suggests that a robust input pattern should contain samples 

spanning the entire target interval ½0; 1&. The level of 

variability in the resulting input stream is also similarly 

influenced by the range of keystroke rates used in the 

pattern translation process. The higher the range delimited 

by the minimum keystroke rate and maximum keystroke 

rate, the more reliable the results. 

 
A robust pattern generation algorithm should allow for a 

minimum number of false positive. When the chosen input 

pattern happens to closely resemble the I/O behavior of 

some benign process, the PCC may report a high value of 

correlation for that process and trigger a false detection. For 

this reason, it is important to focus on input patterns that 

have little chances of being confused with output patterns 

generated by legitimate processes. Fortunately, studies show 

that the correlation between realistic I/O workloads for PC 

users is generally considerably low over small time 

intervals. The results presented in [13] are derived from 14 

traces collected over a number of months in realistic 

environments used by different categories of users. The 

authors show that the value of correlation given by the PCC 

over 1 minute of I/O activity is only 0.046 on average and 

never exceeds 0.070 for any two given traces. This suggests 

that the I/O behavior of one or more processes is in general 

very poorly correlated with other I/O distributions. 

 

The problem of designing a pattern generation algorithm 

that minimizes false positives under a given known 

workload can be modeled as follows: we assume that traces 

for the target workload can be collected and converted into a 

series of patterns (one for each process running on the 

system) of the same length N. All the patterns are generated 

to build a valid training set for the algorithm. Under the 

assumption that the traces collected are representative of the 

real workload available at detection time, our goal is to 

design an algorithm that learns the characteristics of the 

training data and generates a maximally uncorrelated input 

pattern. Concretely, the goal of our algorithm is to produce 

an input pattern of length N that minimizes the PCC 

measured against all the patterns in the training set. Without 

any further constraints on the samples of the target input 

pattern, it can be shown that this problem is a nontrivial 

nonlinear optimization problem. In practice, we can relax 

the original problem by leveraging some of the assumptions 

discussed earlier. As motivated before, a robust input pattern 

should present samples distributed over a wide range of 

values. To assume the widest range possible, we can 

arbitrarily constrain the series of samples to be uniformly 

distributed over the target interval ½0; 1&. This is 

equivalent to consider a set of N samples of the form  Prior 

research has shown how to transform this particular problem 

into an equivalent Quadratic Assignment Problem (QAP) 

that can be very efficiently solved with a standard QAP 

solver when the global minimum is known in advance [15]. 

In our solution, we have implemented a similar approach 

limiting the approach to a maximum number of iterations to 

guarantee convergence since the minimum value of the PCC 

is not known in advance. In practice, for a reasonable 

number of samples N and a modest training set, we found 

that this is rarely a concern. The algorithm can usually 

identify the optimal pattern in a bearable amount of time. 

 

To conclude, we now more formally propose two classes of 

pattern generation algorithms for our generator. First, we are 

interested in workload-aware generation algorithms. For this 

class, we focus on the optimization algorithm we have just 

introduced—we refer to this pattern generation algorithm 

with the term WLD—assuming a number of representative 

traces have been made available for the target workload. 

Moreover, we are interested in workload-agnostic pattern 

generation algorithms. With no assumption made on the 

nature of the workload, they are more generic and easier to 

implement. In this class, we propose the following 

algorithms: 

 

Random (RND). Each sample is generated at random.  

Random with fixed range (RFR). The pattern is a random 

permutation of a series of samples uniformly distributed  

over the interval ½0; 1&. This is to maximize the amount of 

variability in the input pattern. 

Impulse (IMP). Every sample 2i is assigned the value of 0 

and every sample 2i þ 1 is assigned the value of 1.  

This algorithm attempts to produce an input pattern with 

maximum variance and idle periods at minimum. 

Sine wave (SIN). The pattern generated is a discrete sine 

wave distribution oscillating between 0 and 1.  

The sine wave grows or drops with a fixed step of 0.1. This 

algorithm explores the effect of constant increments and 

decrements in the input pattern. 

 

5  EVALUATION 
 

To evaluate the proposed detection technique, we 

implemented a prototype based on the ideas described in the 

paper. Written in C# in 7,000 LoC, it runs as an 

unprivileged application for the Windows OS. It also 

collects simultaneously all the processes’ I/O patterns, thus 
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allowing us to analyze the whole system in a single run. 

Although the proposed design can easily be extended to 

other OSes, we explicitly focus on Windows for the 

significant number of keyloggers available. In the following, 

we present several experiments to evaluate our approach. 

The ultimate goal is to understand the effectiveness of our 

technique and its applicability to realistic settings. For this 

purpose, we evaluated our prototype against many publicly 

available keyloggers. We also developed our own keylogger 

to evaluate the effect of particular conditions more 

thoroughly. Finally, we collected traces for different realistic 

PC workloads to evaluate the effectiveness of our approach 

in real-life scenarios. We ran all of our experiments on PCs 

with a 2.53 Ghz Core 2 Duo processor, 4 GB memory, and 

7,200 rpm SATA II hard drives. Every test was performed 

under Windows 7 Professional SP1, while the workload 

traces were gathered from a number of PCs running several 

different versions of Windows. Since the performance 

counters are part of the default accounting infrastructure, 

monitoring the processes’ I/O came at negligible cost: for 

reasonable values of T , i.e., > 100 ms, the load imposed on 

the CPU by the monitoring phase was less than 2 percent. 

On the other hand, injecting high keystroke rates introduced 

additional processing overhead throughout the system. 

Experimental results showed that the overhead grows 

approximately linearly with the number of key-strokes 

injected per sample. In particular, the CPU load imposed by 

our prototype reaches 25 percent around 15,000 keystrokes 

per sample and 75 percent around 47,000. Note that these 

values only refer to detection-time overhead. No runtime 

overhead is imposed by our technique when no detection is 

in progress. 

 

5.1.Keylogger Detection  

 
To evaluate the ability to detect real-world keyloggers, we 

experimented with all the keyloggers from the top monitoring 

free software list [5], an online repository continuously updated 

with reviews and latest develop-ments in the area. To carry out 

the experiments,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Detection Result 
 
 

Table 2 shows the keyloggers used in the evaluation and 

summarizes the detection results. All the keyloggers were 

detected within a few seconds without generating any false 

positives; in particular, no legitimate process scored PCC 

values _ 0:3. Virtuoza Free Keylogger required a longer 

window of observation to be detected; this sample was 

indeed the only keylogger to store keystrokes in memory 

and flush out to disk at regular time intervals. Nevertheless, 

we were still able to collect consistent samples from flush 

events and report high PCC values. 

 

In a few other cases, keystrokes were kept in memory but 

flushed out to disk as soon as the keylogger detected a 

change of focus. This was the case for Actual Keylogger, 

Revealer Keylogger Free, and Refog Keylogger Free. To 

deal with this common strategy, our detection system 

enforces a change of focus every time a sample is injected. 

In addition, some of the keyloggers examined included 

support for encryption and most of them used variable-

length encoding to store special keys. As Section 5.2 

demonstrates, our approach deal with these nuisances 

transparently with no effect on the resulting PCC. 

 

5.2.False Negatives  

 
In our approach, false negatives may occur when the output 

pattern of a keylogger scores an unexpectedly low PCC value. 

To test the robustness of our approach against false negatives, 

we made several experiments with our own artificial keylogger. 

Our evaluation starts by analyzing the impact of the number of  

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 6. Impact of different classes of noise on the PCC 

 

samples N and the time interval T on the final PCC value. For 

each pattern generation algorithm, we plot the PCC measured 

with our prototype keylogger which we configured so that no 

buffering or data transformation was taking place. Figs. 3a and 

3b depict our findings with Kmin ¼ 1 and Kmax ¼ 1;000. We 

observe that when the keylogger logs each keystroke without 

introdu-cing delay or additional noise, the number of samples N 

does not affect the PCC value. This behavior should not suggest 

that N has no effect on the production of false negatives. When 

noise in the output stream is to be expected, higher values of N 

are indeed desirable to produce more stable PCC values and 

avoid false negatives. 
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   Fig. 4. Impact of Kmax and T on the PCC. Fig. 5. Detection of a 

keylogger buffering its outpu

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 7. Impact of N and T on the PCC measured with our prototype keylogger 

against different workloads. 
 

 

In a more advanced version of our keylogger, we also 

simulated the effect of several possible input-output 

transformations. First, we experimented with a keylogger using 

a nontrivial fixed-length encoding for keystrokes. Fig. 5a 

depicts the results for different values of padding p with N ¼ 

30, Kmin ¼ 1, and Kmax ¼ 1,024. A value of p ¼ 1,024 simulates 

a keylogger writing 1,024 bytes on the disk for each 

eavesdropped keystroke. As discussed in Sec-tion 4.4,  

 

 

the PCC should be unaffected in this case and presumably 

exhibit a constant behavior. The figure confirms this intuition, 

but shows the PCC decreasing linearly after p _ 10;000 bytes. 

This behavior is due to the limited I/O throughput that can be 

achieved within a single time interval. We previously 

encountered similar problems when choosing suitable values 

for Kmax. Note that in this scenario both Kmin and Kmax are 

affected by the padding introduced, thus yielding a more 

significant impact on the PCC. 

 

The result is that each of these transformations can be always 

approximated by a linear transformation with constant scaling. 

We conclude our analysis by verifying the impact of a 

keylogger buffering the eavesdropped data before leaking it to 

the disk. Although we have not found many real-world 

examples of this behavior in our evaluation, our technique can 

still handle this class of keyloggers correctly for reasonable 

buffer sizes. Fig. 6 depicts our detection results against a 

keylogger buffering its output through a fixed-size buffer. The 

figure shows the impact of several possible choices of the 

buffer size on the final PCC value. We can observe the pivotal 

role of Kmax in successfully asserting detection. For example, 

increasing Kmax to 10,240 is necessary to achieve sufficiently 

high PCC values for the largest buffer size proposed. This 

experiment demonstrates once again that the key to detection is 

inducing the pattern to distinctly emerge in the output 

distribution, a feat that can be easily obtained by choosing a 

highly variable injection pattern with low values for Kmin and 

high values for Kmax. We believe these results are encouraging 

to acknowledge the robustness of our detection technique 

against false nega-tives, even in presence of complex data 

transformations. 

 

5.3.False Positives  

 
In our approach, false positives may occur when the output 

pattern of some benign process accidentally scores a significant 

PCC value. If the value happens to be greater than the selected 

threshold, a false detection is flagged. This section evaluates 

our prototype keylogger to investigate the likelihood of this 

scenario in practice. 

 

 

6 .EVASION AND  COUNTERMEASURES  

 
In this section, we speculate on the possible evasion techniques 

a keylogger may employ once our detection strategy is 

deployed on real systems. 

 

6.1.Aggressive Buffering  

 

A keylogger may rely on some forms of aggressive buffering, 

for example flushing a very large buffer every time interval t, 

with t being possibly hours. While our model can potentially 

address this scenario, the extremely large window of 

observation required to collect a sufficient number of samples 

would make the resulting detection technique impractical. It is 

important to point out that such a limitation stems from the 

implementation of the technique and not from a design flaw in 

our detection model.  

 

    6.2.Trigger-Based Behavior  

 

A keylogger may trigger the keylogging activity only in face of 

particular events, for example when the user launches a 

particular application. Unfortunately, this trigger-based 

behavior may successfully evade our detection technique. This 

is not, however, a shortcoming specific to our approach, but 

rather a more fundamental limitation common to all the 

existing detection techniques based on dynamic analysis [17]. 

While we believe that the problem of triggering a specific 

behavior is orthogonal to our work and already focus of much 

ongoing research, we point out that the user can still mitigate 

this threat by periodically reissuing detection runs when 

necessary (e.g., every time a new particularly sensitive context 

is accessed). Since our technique can vet all the processes in a 

single detection run, we believe this strategy can be realistically 

used in real-world scenarios. 

 

6.3.Discrimination Attacks  

 

Mimicking the user’s behavior may expose our approach to 

keyloggers able to tell artificial and real keystrokes apart. A 

keylogger may, for instance, ignore any input failing to display 
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known statistical propertiese.g., not akin to the English 

language. However, since we control the input pattern, we can 

carefully generate keystroke scancode sequences displaying the 

same statistical properties (e.g., English text) expected by the 

keylogger, and therewith perform a separate detection run 

thwarting this evasion technique. About the case of a keylogger 

ignoring key-strokes when detecting a high (nonhuman) 

injection rate. This strategy, however, would make the 

keylogger prone to denial of service: a system persistently 

generating and exfiltrating bogus keystrokes would induce this 

type of keylogger to permanently disable the keylogging 

activity. Recent work demonstrates that building such a system 

is feasible in practice (with reasonable overhead) using 

standard two facilities [18].  

 
6.4.Decorrelation Attacks  

 
Decorrelation attacks attempt at breaking the correlation metric 

our approach relies on. Since of all the attacks this is 

specifically tailored to thwarting our technique, we hereby 

propose a heuristic intended to vet the system in case of 

negative detection results. This is the case, for instance, of a 

keylogger trying to generate I/O noise in the background and 

lowering the correlation that is bound to exist between the 

pattern of keystrokes injected I and its own output pattern O. In 

the attacker’s ideal case, this translates to PCCðI; OÞ _ 0. To 

approximate this result in the general case, however, the 

attacker must adapt its disguisement strategy to the pattern 

generation algorithm in use, i.e., when switching to a new 

injection I
0
 6¼ I, the output pattern should reflect a new 

distribution O
0
 6¼ O. The attacker could, for example, enforce 

this property by adapting the noise generation to some input 

distribution-specific variable (e.g., the current keystroke rate). 

Failure to do so will result in random noise uncorrelated with 

the injection, a scenario which is already handled by our PCC-

based detection technique. At the same time, we expect any 

legitimate process to maintain a sufficiently stable I/O behavior 

regardless of the particular injection chosen. The conclusion is 

that analyzing a sufficiently large number of samples is crucial to 

obtain accurate results when estimating the similarity between 

different distributions. 
 

7.  RELATED WORK 

 
While ours is the first technique to solely rely on unprivi-leged 

mechanisms, several approaches have been recently proposed 

to detect privacy-breaching malware, including keyloggers. 

Behavior-based spyware detection has been first introduced by 

Kirda et al. in [21]. Their approach is tailored to malicious 

Internet Explorer loadable modules. In parti-cular, modules 

monitoring the user’s activity and disclosing private data to 

third parties are flagged as malware. Their analysis models 

malicious behavior in terms of API calls invoked in response to 

browser events. Those used by keyloggers, however, are also 

commonly used by legitimate programs. Their approach is 

therefore prone to false positives, which can only be mitigated 

with continuously updated whitelists. 

 
Other keylogger-specific approaches have suggested detecting the 

use of well-known keystroke interception APIs. Unfortunately, all 

these calls are also used by legitimate applications (e.g., 

shortcut managers) and this approach is again prone to false 

positives. Xu et al. [23] push this technique further, specifically 

targeting Windows-based operating systems. They rely on the 

very same hooks used by keyloggers to alter the message type 

from WM_KEYDOWN to WM_CHAR. A keylogger aware of 

this countermeasure, however, can easily evade detection by 

also switching to a new message type or periodically 

registering a new hook to obtain the highest priority in the hook 

chain. 

 

Closer to our approach is the solution proposed by Al-

Hammadi et al. [24]. Their strategy is to model the keylogging 

behavior in terms of the number of API calls issued in the 

window of observation. To be more precise, they observe the 

frequency of API calls invoked to 1) intercept keystrokes, 2) 

writing to a file, and 3) sending bytes over the network. A 

keylogger is detected when two of these frequencies are found 

to be highly correlated. Since no bogus events are issued to the 

system (no injection of crafted input), the correlation may not 

be as strong as expected. The resulting value would be even 

more impaired in case of any delay introduced by the 

keylogger. Moreover, since their analysis is solely focused on a 

specific bot, it lacks a proper discussion on both false positives 

and false negatives. In contrast to their approach, our 

quantitative analysis is performed at the byte granularity and 

our correlation metric (PCC) is rigorously linear. As shown 

earlier, linearity makes our technique completely resilient to 

several common data transformations performed by 

keyloggers. 

 

A similar quantitative and privileged technique is sketched by 

Han et al. [25]. Unlike the solution presented in [24], their 

technique does include an injection phase. Their detection 

strategy, however, still models the key-logging behavior in 

terms of API calls. In practice, the assumption that a certain 

number of keystrokes results in a predictable number of API 

calls is fragile and heavily implementation-dependent. In 

contrast, our byte-level analysis relies on finer grained 

measurements and can identify all the information required for 

the detection in a fully unprivileged way. Complementary to 

our work, recent approaches have proposed automatic 

identification of trigger-based behavior, which can potentially 

thwart any detection technique based on dynamic analysis. In 

parti-cular, in [17], [26] the authors propose a combination of 

concrete and symbolic execution for the task. Their strategy 

aims to explore all the possible execution paths that a malware 

can possibly exhibit during execution. As the authors in [17] 

admit, however, automating the detection of trigger-based 

behavior is an extremely challenging task which requires 

advanced privileged tools. The problem is also undecidable in 

the general case. 
 

 

 8. CONCLUSIONS 

 
In this paper, we presented an unprivileged black-box approach 

for accurate detection of the most common keyloggers, i.e., 

user-space keyloggers. We modeled the behavior of a 

keylogger by surgically correlating the input (i.e., the 

keystrokes) with the output (i.e., the I/O patterns produced by 

the keylogger). In addition, we augmented our model with the 

ability to artificially inject carefully crafted  keystroke patterns. 

We then discussed the problem of choosing the best input 

pattern to improve our detection rate. Subsequently, we 

presented an implementation of our detection technique on 

Windows, arguably the most vulnerable OS to the threat of 

keyloggers. To establish an OS-independent architecture, we 
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also gave implementation details for other operating systems. 

We successfully eval-uated our prototype system against the 

most common free keyloggers [5], with no false positives and 

no false negatives reported. Other experimental results with a 

homegrown keylogger demonstrated the effectiveness of our 

technique in the general case. While attacks to our detection 

technique are possible and have been discussed at length in 

Section 6, we believe our approach considerably raises the bar 

for protecting the user against the threat of keyloggers. 
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