

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3. Issue 10 October, 2014 Page No. 8699-8703

Sanket S.Deshpande, IJECS Volume 3 Issue 10 October, 2014 Page No.8698-8703 Page 8699

A Pragmatic Study of Malwares to Enrich

Application for Self Defence

Sanket S.Deshpande
1
, Prachetus H.Dindore

2
, Shubham N.Munot

3
, Prabhat kumar Prabhakar

 4
,

Prof.Anuradha S.Deokar
 5

1
Department of Computer Engineering

A.I.S.S.M.S College of Engineering

Pune,India

 dsanket.93@rediffmail.com

 2 Department of Computer Engineering

A.I.S.S.M.S College of Engineering

Pune,India

prachetusdindore@gmail.com

 3Department of Computer Engineering

A.I.S.S.M.S College of Engineering

Pune,India

 Shubhammunot27@gmail.com

4
Department of Computer Engineering

A.I.S.S.M.S College of Engineering

Pune,India

 pprabhakar003@gmail.com

5
Department of Computer Engineering

A.I.S.S.M.S College of Engineering

 Pune,India

 deokar.anu@gmail.com

Abstract: In the era of internet the probability of system or application being vulnerable to malwares such as viruses, Trojans, botnets etc.

has provoked data corruption, data manipulation, security breaching and so on. Different techniques like antivirus and firewalls have

emerged to combat against malware attacks. However existing signature based detections are unable to counteract anomalous behaviour of

specific applications. There exist various behaviour based techniques which detects malicious content by observing applications at run-time.

The focal point of this paper is on immunising an application against specific threats.

Keywords: malwares, signature, anomaly, system calls, automaton.

1. Introduction

Certain programs are designed with the intent of disrupting

system operations, corrupting databases, illegal monitoring of

user data etc. Such programs are collectively termed as

Malwares. They were initially used for the purpose of

experiments or pranks. But in today’s world, they are

generated to steal, monitor or destroy personal, financial or

business information. There exists various types of malwares

which include viruses, worms, Trojan, botnets, root kits, key

loggers etc which can break through any security defences

Current malware detection techniques mainly consist of

AV-Scanners etc. They are mainly based on Signature-

based detection. Signature-based revealing techniques

mainly use extracted byte sequence i.e. signature of

suspicious instructions and data. These signatures are used

to detect malwares by matching them with signatures

extracted from target machine. An attack of a malware,

whose signature doesn’t exist in the database of the

detection tool, hence can go unnoticed. There exist

various polymorphism and obfuscation techniques which

make malwares unrecognizable and hence used to bypass

the AV-Scanners.

http://www.ijecs.in/
mailto:dsanket.93@rediffmail.com
mailto:prachetusdindore@gmail.com
mailto:Shubhammunot27@gmail.com
mailto:pprabhakar003@gmail.com
mailto:deokar.anu@gmail.com

Sanket S.Deshpande, IJECS Volume 3 Issue 10 October, 2014 Page No. 8698-8703 Page 8700

There are basically two types of malware detection

techniques – Signature based detection and Anomaly

based Detection. Basic methodology of Signature based

detection is discussed in short above. Also there exists

polymorphism based techniques which deobfuscates

malwares before providing them to malware detectors. An

anomaly-based detection technique uses its knowledge of

what differs normal behaviour from malicious behaviour

of a program under inspection. Many solutions based on

anomaly detection technique use machine learning

algorithms but don’t take into account semantics of

subroutine call sequences. Some obfuscation techniques

may evade detection using those flaws.

A. Basic Terminologies:

1) MALWARE:

"Malware" is short for malicious software and used as a

single term to denote spy wares, worms, viruses, etc.

Malware is intended to cause damage to a standalone

computer or a networked pc.

2) SYSTEM CALL:

A system call is how a program requests a service from an

operating system's kernel. System calls provide an essential

interface between a process and the operating system.

3) POLYMORPHISM:

Polymorphism is the feature of being able to assign a

different meaning or usage to something in different contexts

- specifically, to allow an entity such as a variable, a function,

or an object to have more than one form.

4) SIGNATURE:

In order to describe the behaviour of computer program

formally --- the verification of the two components syntax

and semantics are essential. The signature determines the

syntactical components. It provides the available data formats

(i.e. sorts) and the available operations defined on them.

5) OBFUSCATION:

Obfuscation (or beclouding) is the hiding of intended

meaning in communication, making communication

confusing, wilfully ambiguous, and harder to interpret.

6) FINITE STATE AUTOMATA:

It is conceived as an abstract machine that can be in one of a

number of finite states. At a given time the machine is in only

one state. The next state and output of an FSM is a function

of the input and of the current state.

7) DYNAMIC BINARY INSTRUMENTATION:

 Dynamic Binary Instrumentation (DBI) provides the

technique for analysing the behaviour of a binary application.

It is analyzed at run time by the addition of instrumentation

code. After being added, this instrumentation code runs as

piece of the normal instruction stream.

Instrumentation refers to an ability to monitor or measure the

level of performance of a product to write trace information

and to identify errors. Programmers device instrumentation in

the form of code instructions that monitor specific

components in a system (for instance, the instructions may

possibly output logging information to appear on screen).

2. LITERATURE SURVEY

 Our main focus is on systems based on behavioral malware

detection with special emphasis on immunizing applications

against specific malwares. We have taken into account the

following eight methodologies for covering various aspects

of malware detection.

A. First Approach

 Any privileged process has root access and thus use

system calls and hence have maximum chances of damaging

system, if attacked by malware. Authors [1] — in 1996

developed an artificial immune system which detects any

abnormal behaviour of processes by observing sequence of

system calls hence limit damage to system.

Authors have given information about an approach of

Fink, Levitt and Ko, which focuses on determining normal

behaviour for privileged processes running as root. Forrest

et al had previously prepared a system similar to theirs.

But that system was at file-authentication level.

However this system fails sometimes while partial or

approximates matching and system cannot detect certain

attacks.

B. Second Approach

Authors [2] — describes the detection of intrusion which is

in terms of system calls.

They proposed i.e. introduced a simple IDS based on

monitoring system calls by active and privileged process.

Also comparison of different data modelling methods is

done.

Computational efficiency is high due to simple approach

of distinguishing normal and intrusive behaviour by traces

of system calls.

C. Third Approach

There are many techniques using learning program

behaviours, but FSA(Finite-State Automaton) based

techniques seems effective, but in previous attempts FSA –

learning was computationally expensive and not much

automated. Authors [3] — developed a technique of FSA-

learning which is fully automatic and efficient and consume

less time and space.

Sanket S.Deshpande, IJECS Volume 3 Issue 10 October, 2014 Page No. 8698-8703 Page 8701

System uses program counter, which is stored when a

certain privileged process turned to kernel mode using

system call, thus it can be used to trace system call and its

order in a procedure stack. Each distinct value of program

counter is used as a state in a FSA. Transitions between

various states can be shown with the help of pair of current

and previous system calls.

 This system successfully captures DoS attacks, Trojans,

buffer overflows but fails to capture certain attacks which

use system call argument values.

D. Fourth Approach

Authors [4] — describes a malware detection algorithm

that includes instruction semantics to detect malicious

program behaviour.

They propose a tool which is based on pattern matching

tool. This tool first disassembles binary program into

blocks and then generates a control flow graph(CFG).At

run-time the tool matches each block with

templates(malicious instruction sequence).If match is

found then it is discarded else it continues to run.

It detects variants of malwares with relatively low run-

time overhead. It is also resistant to common obfuscation

used by hackers.

E. Fifth Approach

Authors [5] — describes two advanced methods to handle

buffer overflow. First method intercepts calls to library

functions known to be vulnerable. Second method uses

binary modification of process memory to verify critical

elements before use.

These methods can transparently protect processes against

stack smashing attacks by corrupting return addresses.

F. Sixth Approach

Authors [6] — describes an alternative to the signature based

approach i.e. behavioural detection. In this approach run-time

behaviour of an application is monitored and compared

against malicious and/or normal profiles.

A behavioural classifier is trained by the normal behaviour

of typical services as well as malicious patterns for currently

known mobile malwares. The classifier with behaviour

signature database is deployed or installed to handsets. The

monitor agent assembles the application behaviour in the

form of API calls/events and given report to detection agent.

It then performs machine learning classification with

preloaded classifier that a program is innocent or malicious.

Since encryption/decryption doesn’t alter application

behaviour, multiple malware variants generated at runtime

can be detected with a single behaviour specification, hence

resilient to polymorphic worms.

Malware writers make use of different polymorphism and

obfuscation techniques in order to avoid detection by normal

malware detectors. Authors[7]— describe the use of a

malware transformer which is able to reverse the obfuscated

versions done by the malware writers.

G. Seventh Approach

A malware detector is one which is able to recognize and

notice malwares before their entry into the system. System

proposed by [7] — includes a malware transformer which

takes an obfuscated application as its input and generates

obfuscation free application as its output. The transformer is

able to handle three kinds of obfuscations like obfuscation

done by reordering of code, obfuscation through junk

insertion and packing obfuscation. For each of the three

obfuscation technique a corresponding transformer algorithm

has been applied to reverse the effect of obfuscation.

The addition of malware transformer as a part of the

detector leads to an effective software and its maintenance

along with the transformation performed. However the set of

obfuscations handled by the transformer remain limited.

H. Eighth Approach

Authors [8]— have used a different approach. In this

approach, system divides executable into blocks which

describes data flows in terms of regular expressions and data

invariants.

Then they have generated execution trace with the help of

DBI (Dynamic Binary Instrumentation). Execution trace is

converted into regular expressions.

They enforced security policies and checked these at run-

time. They have created a model and deploy it with

executable to compare executable behavior with security

policies. This approach is shown in detail in Fig.1

Figure 1: System Framework

3. DISCUSSION

First two approaches have used system calls and its variants

to prevent privileged processes, thus securing system from

damage. The third approach has used FSA to automate the

detection of malware. The fourth approach has used CFG to

detect malicious behaviour. Fifth approach uses library

function calls and process memory. The sixth approach has

used machine learning techniques to identify malicious data

Sanket S.Deshpande, IJECS Volume 3 Issue 10 October, 2014 Page No. 8698-8703 Page 8702

in mobile handsets .In seventh approach system contains a

deobfuscator which helps conventional malware detectors. In

eight approaches a model of specific security policies is

developed which is compared with executables at run time to

detect malicious behaviours.

However system calls approach remains restricted to

processes which have root access. So first three approaches

are not applications specific. Considering machine learning

techniques, the mainly depend on how well are they trained.

Malware deobfuscators are restricted by the limited set of

obfuscations and are susceptible to Zero Day attacks.

The fourth and eighth approaches have chosen a path of

monitoring the application at run time. And if at run time

behaviour of the executable deviates from the model then

security policies are enforced. We thus look forward to

extend these two approaches by bringing sophistication in the

input sequence generation and run time monitoring.

4. CONCLUSION

The various techniques discussed above in this paper thus

satisfy the requirements of enriching the applications in their

own characteristic way. Among various methodologies that

have been used, one striking feature which is in common is

observing behaviour of an application at run time with an

intention of detecting malicious data. Among all the

approaches last approach has better future due to less power

consumption, better detection rates and being application

specific.

REFERENCES

[1] Hofmeyr S., Forrest S., Somayaji T., Longstaff T.: A sense of self for

Unix processes. : IEEE convention on Security - Privacy, (1996).

[2] Warrender C., Pearlmutter B., Forrest S.: Detecting intrusions using
system calls: Alternative data models. In: Proceedings of IEEE
convention on Security - Privacy, (1999).

[3] Bendre M., Dhurjati D., Sekar R., Bollineni P.:A fast automaton
based method for detecting anomalous program behaviors. In: IEEE
convention on Security - Privacy, (2001).

[4] Jha S., Christodorescu M., Seshia S., Song D., Bryant R.: Semantics-
aware malware detection. In: Proceedings of IEEE convention on
Security - Privacy, (2005).

[5] Singh N., Baratloo A., Tsai T.: Transparent run-time defense against
stack smashing attacks. :USENIX Annual Technical convention,
(2000).

[6] Shin K.G., Bose A., Hu X., Park T.: Behavioral detection of malware
on mobile handsets. In: Proceedings of International Conference on
Mobile s, applications, andServices, (2008).

[7] Kinder J.,Christodorescu M., Jha S.,Katzenbeisser S., Veith H.:
Software transformations to improve malware detection. J Comput
Virol 3 (2007).

[8] Aaraj N., Raghunathan A., Jha N.K.: Virtualization-based framework
for malware defense. In: Proceedings of Convention Detection of
Intrusions and Malware and Vulnerability, Assessment (2008).

AUTHOR PROFILE

Sanket S. Deshpande is pursuing Bachelor’s Degree in

Computer Engineering in Savitribai Phule Pune University

from A.I.S.S.M.S College Of Engineering

Pune,Maharashtra,India.

Prachetus H. Dindore is pursuing Bachelor’s Degree in

Computer Engineering in Savitribai Phule Pune University

from A.I.S.S.M.S College Of Engineering

Pune,Maharashtra,India.

Shubham N.Munot is pursuing Bachelor’s Degree in

Computer Engineering in Savitribai Phule Pune University

from A.I.S.S.M.S College Of Engineering

Pune,Maharashtra,India.

Prabhat kumar Prabhakar is pursuing Bachelor’s Degree in

Computer Engineering in Savitribai Phule Pune University

Sanket S.Deshpande, IJECS Volume 3 Issue 10 October, 2014 Page No. 8698-8703 Page 8703

from A.I.S.S.M.S College Of Engineering

Pune,Maharashtra,India.

Prof.Anuradha S.Deokar is Assistant Professor in

Department Of Computer Engineering in Savitribai Phule

Pune University from A.I.S.S.M.S College Of Engineering

Pune,Maharashtra,India.

	PointTmp

