

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 10 October, 2014 Page No. 8647-8650

Priyanka Talole
1
 IJECS Volume 3 Issue 10 October Page No.8647-8650 Page 8647

Hetertogenous Database Migration using ODTDM

Supported with SAX and SDM algorithms

Priyanka Talole
1
, Mayur Talole

2

 1 Bachelor of Engineering,
 Department Of Computer Engineering,

 Nutan Maharashtra Institute Of Engineering And Technology,

University Of Pune, India

tpriyanka123@gmail.com

2Department of Electronics Engineering,

Vishwakarma Institute of Technology,

University of Pune, India

 mayur.talole@outlook.com

Abstract: This paper proposes to describe an approach used for migration of historical database from one database to

required database, and setting up a daily feed from the product into the system data to have previous day reports

available for current day trading. Here are different type of database we used like Ms Access, MSSQL, Oracle in source

and destination. At present day there are only one language to other migration code conversion techniques. This paper

attempts to give pros and cons of developed approach over existing ways in order to achieve enhanced database migration

system.

Keywords: Data migration, ETL, XML, Relational database, Schema-based, Mapping, Shredding.

1. Introduction

As small scale organization gradually grows, need of

expansion of database arises. Thus they have to switch to

more efficient databases. Database translator can be used

to translate data existing in a database to another database.

2. Literature survey

“To develop a Migration tool that helps in migrating

database structures and data across various relational

Databases. It will also facilitate migrating data from

MSAccess, Excel Worksheet to SQLServer and MySql. It

also migratesSQLServer - to - MySql and vice versa.” The

system will take an existing database in one format from

the user and will convert it to a database in another format,

which again will be specified by the user. Not only will it

convert tables etc. The various other scopes can be

enumerated as follows:

I. Security: The application is such that it segregates

the authorized as well as unauthorized users.

II. Time efficient: Migrating every record manually

would take quite a lot of time but using a migration

tool would take the application few seconds to

migrate from the specified source to the specified

destination.

III. Flexible: The inherent nature of this application is

flexible. The initial concept of data migration that we

have implemented on typical case of Access to MySql

can be further extended to any source database and to

any destination database.

IV. Interactive: The highly interactive nature of this

application ensures that minimum special training is

required to handle it .

V. Visually Attractive: Interactive systems designed

using Visual Studio makes the system visually

attractive.

DESIGN DATA MIGRATION PROGRESS:

3. Development Methodology

Figure1: Complete block diagram of development

methodology.

3.1 Mapping

Mapping is the most crucial step for the success of any

data migration. The mapping involved three steps

a) Mapping source tables.

Priyanka Talole
1
 IJECS Volume 3 Issue 10 October Page No.8647-8650 Page 8648

b) Mapping source table to the physical data model

(PDM).

c) Gap analysis to find if the entities mapped as

present in existing customer Logical data model

(LDM).

3.2 Design

Design included elaborating the various rules described

in the mapping document. During this phase, it was

required to revisit some of the mapping rules due to

technical constraints. For transferring the files from

source to the ETL environment, Oracle dump was

extracted from the source system, transferred to the ETL

environment and uploaded.

Figure 2: Flow chart of designing process of data migration.

3.3 Development

The development had two distinct stages:

i. Build scripts for new tables

ii. Build data transformation logic.

3.4 Testing

Two unique testing techniques followed by this

programme helped earlier completion of testing cycle.

i. User testing before system integration testing –

In order to mitigate the risk of misinterpretation of

transformation

ii. Tool based Regression Testing –

The frequency of change requests was very high which

could impact the quality of deliverables easily. A

regression tool which compared the data with previous

delivery data and produces a report on mismatches

automatically was developed. This helped to identify any

regression issues created during these changes.

3.5 Cleansing

The data cleansing methodology we used to clean

unnecessary data. While transferring data from one or

source database to destination database some noise

include which provide harm to current database so

cleansing technique we use.

4. Difference between existing and proposed

system

a. Existing tool:

1. Whole table is migrated.

2. Desktop migration

3. No time scheduling.

4. One way migration.

5. No user log maintenance.

6. Procedure, view, trigger we cannot execute in some cases.

b. Proposed tool:

1. Selective migration i.e. particular columns from a table can

be migrated.

2. Web enabled migration. And desktop migration also

included.

3. Scheduled based migration. So, it become easier to user for

time schedule.

4. Both way migrations.

5. Maintaining user logs.

6. Procedure, view, trigger we can execute.

7. ALGORITHM : ODTDM

- OBJECT DOCUMENT TYPE DEFFINATION

MAP

Storing and querying XML documents using a

RDBMS is a challenging problem since one needs to

resolve the conflict between the hierarchical, ordered

nature of the XML data model and the flat, unordered

nature of the relational data model. This conflict can

Be resolved by the following XML-to-Relational

mappings: schema mapping, data mapping and query

mapping. . In this paper, we propose:

(i) A lossless schema mapping algorithm to generate

a database schema from a DTD, which

makes several improvements over existing

algorithms,

(ii) Two linear data mapping algorithms based on

DOM and SAX, respectively, to map ordered

XML data to relational data. To our best

knowledge, there is no published linear

schema-based data mapping algorithm for

mapping ordered XML data to relational

data.

Experimental results are presented to show that our algorithms

are efficient and scalable.

1. Schema mapping,

Either a fixed generic database schema (schema-oblivious

XML storage) is used, or a database schema is generated from

an XML schema or DTD (schema-based XML storage) for the

storage of XML documents. To support the ordered nature of

the XML data model, an order encoding scheme such as those

proposed in can be used and additional columns are introduced

to store the ordinals of XML elements.

2. Data mapping,

Which shreds an input XML document into relational tuples

and inserts them into the relational database whose schema is

generated in the schema mapping phase.

3. Query mapping,

Which translates an XML query into its relational equivalent

(i.e. SQL statements or relational algebra expressions),

Priyanka Talole
1
 IJECS Volume 3 Issue 10 October Page No.8647-8650 Page 8649

executes them against the database and returns the query result

to the user. If the query result is to be returned as XML

documents, then a reconstruction algorithm is needed to

reconstruct the XML subtrees rooted at the matching nodes.

The main contributions of this paper are:

1. We propose a schema mapping algorithm, ODTDMap,

which generates a database schema from an XML

DTD for storing and querying ordered XML

documents. Although the main idea of ODTDMap is

similar to the shared inlining algorithm and its variant,

ODTDMap makes several improvements over them.

2. We propose an efficient DOM-based linear data

mapping algorithm, OXInsert, which shreds and

composes input XML documents into relational tuples

and inserts them into the relational database according

to the schema generated by ODTDMap. OXInsert is

based on our previous data mapping algorithm

XInsert, but it takes into account the ordered nature of

the input XML documents and set-valued attributes

that were not considered by XInsert.

3. We propose an efficient and linear SAX-based data

mapping algorithm, SDM, which shreds and

composes ordered XML documents into relational

tuples and inserts them into the relational database

according to the schema generated by ODTDMap.

4.1 Schema mapping algorithm ODTDMap :

In this section, we propose our schema mapping

algorithm, ODTDMap, which generates a database

schema from an XML DTD for storing and querying

ordered XML documents. In ODTDM used to map a child

and its parent to the same table when the child appears at

most once under its parent. This operation is called in

lining. The in lining approach reduces the number of

tables in the generated database schema and thus the

number of joins for a query. The ODTDMap algorithm

consists of the following three main steps:

I. Simplifying DTD: Since a DTD expression might be

very complex due to its hierarchical nesting

capability, this step greatly simplifies the mapping

procedure.

II. Creating and inlining DTD graph: We create the

corresponding DTD graph based on the simplified

DTD, and then inline as many descendant nodes as

possible to a parent node in the DTDgraph. Thus, all

descendants of an XML elements which occur at most

once under e will be mapped to the same relation with

e.

III. Generating database schema and s-mapping: After a

DTD graph is in lined, we generate a database schema

and s-mapping based on the inlined DTD graph.

IV. Data mapping: As the target database schema might be

complex and its corresponding XML-to-Relational

schema mapping is non-trivial, it is challenging to

design an efficient schema-based data mapping

algorithm.

The main challenging issues include the following:

a) Varying document structure: XML documents have

varying structures due to the optional occurrence

operators ‘?’, ‘*’, and choice operator ‘j’ used in the

underlying DTD, unlike relational tables which

always have a fixed structure. A data mapping

algorithm should keep track of the missing child

nodes and handle structural differences between the

same type of element nodes due to the optional

operators using efficient data structures.

b) Scalability: In an online environment, where new

XML documents might be inserted into the database

on-the-fly, a data mapping algorithm will be used

frequently. Thus, it is critical that a data mapping

algorithm is efficient and scales well with the size of

XML documents. It is obvious that a linear data

mapping algorithm will fulfill this requirement the

best. In conclusion, the time complexity of OXInsert

is O(n).

5. System Test after database migration

The system checks the quantity of migration, the results of

which important criterions of deciding whether to start up new

system.

The system test after migration includes:

 Completeness check: check the existence of reference

of foreign key.

 Consistency check: make sure the same mining data

have consistence value in bit.

 Records count check: check the consistency of records

count in new system and in old system.

 Special sample data check: check the consistency of

records count in new database and in old database.

 System integrity test: CPU speed, memory capacity,

and migration time.

The integrity data contrast between old and new system to

inquiry the same data by each inquiry tool and compare the

result. First the data in new system are setback to what they are

the day before migration in old system. Then patch the

operation of the last day in old system into new one and

compare the output. The system function test on windows

2000 and Windows XP. The result of system shows that

connection between required database, mapping type and

functions of data migration Simulated error condition indicate

that system logs are correct and records of information are in

time and accurate.

6. Conclusion
A “Database Migration Suite” is usually developed for

individuals and organizations to save time for converting to a

new database if a database already exists. The purpose of our

Priyanka Talole
1
 IJECS Volume 3 Issue 10 October Page No.8647-8650 Page 8650

project is to migrate data from an existing database to another

database.

Our migrator tool provides source and destination databases as

Sql Server, My Sql, Oracle 10g. The very purpose of our

project is to provide flexibility to client to migrate his existing

database into a different database without any manual

intervention.

7. References

[1] Bachman, C. W.: A Personal Chronicle - Creating

Better Information Systems, with Some Guiding

Principles. IEEE Transactions on Knowledge and

Data Engineering, Vol. 1, No. 1, 1989, pp. 17-31.

[2] J. Zhiquan, L. Chengfei, S. Zhongxiu, Z. Xiaofang, C.

Peipei, and G. Jianming, “Design and Implementation

of a heterogeneous distributed database system,” in

Journal of Computer Science and Technology,

published by Springer Boston, vol. 5, no. 4, pp. 363-

373.

[3] P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and

E. Varvarigos, “Data Consolidation: A Task

Scheduling and Data Migration Technique for Grid

Networks,” in Eighth IEEE International Symposium

on Cluster Computing and the Grid, 2008.

[4] L. Golubchik, S. Khuller, Y. Kim, S. Shargorodskaya,

and Y. J. Wan, “Data migration on parallel disks,” in

12th Annual European Symposium on Algorithms

(ESA), 2004.

[5] J. Hall, J. Hartline, A. Karlin, J. Saia, and J. Wilkes,

“On algorithms for efficient data migration,” in

SODA, 2001, pp. 620–629.

[6] S. Khuller, Y. Kim, and Y.-C. Wan, “Algorithms for

data migration with cloning,” in 22nd ACM

Symposium on Principles of Database Systems

(PODS), 2003, pp. 27–36.

[7] S. Khuller, Y. Kim, and A. Malekian, “Improved

algorithms for data migration,” in APPROX, 2006.

[8] R. Gandhi, M. M. Halldorsson, G. Kortsarz, and H.

Shachnai, “Improved results for data migration and

open shop scheduling,” in ICALP, 2004, pp. 658–

669.

[9] Y. Pan, Y. Zhang, and K. Chiu, “Hybrid Parallelism

for XML SAX Parseing,” in 2008 ICWS ’08. IEEE

International Conference on Web Services, pp 505-

512, 2008.

[10] Larson, J. A.: Bridging the Gap between Network

and Relational Database Management Systems. IEEE

Computer, Vol. 16, 1983, pp. 82-92.

[11] Rodgers, J.: Database Coexistence - Requirements

and Strategies. Proc. of the 18th Mini-G.U.I.D.E.

Conference, Florence 1989, pp. 117- 142.

[12] Lixian xing,Yanhong li,“Design And Application Of

Data Migration In Heterogeneous Database,” IEEE

International Forum On Information Technology And

Applications,2010.

[13] Jiahong Wang, Norihisa Segawa, Masatoshi

Miyazaki,” On-Line Data Migration Approaches and

Their Performance Comparisons”,IEEE Software and

Information Science, 0-7803-7080-5/01, 2001.

[14] Chadi Kari, Yoo-Ah Kim, Alexander Russell, “Data

Migration In Heterogeneous Storage System”, IEEE

International conference on Distributed Computing

Systems, DOI 10.1109/ICDCS, 2011.

