

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October, 2014 Page No. 8589-8591

Dipali B. Parase, IJECS Volume 3, Issue 10 October, 2014 Page No.8589-8591 Page 8589

A new diskless checkpointing approach for handling

multiple processor failures

Dipali B. Parase
1
, Dr. Mrs. S. S. Apte

2

1Solapur University, Walchand Institute of technology, Solapur, Maharashtra, India

deepali..parase@rediffmail.com

2Solapur University, Walchand Institute of technology, Solapur, Maharashtra, India

headcse@gmail.com

Abstract: In a distributed computing environment, it is necessary to handle the multiple processor failures. In this paper we present a new

diskless checkpointing approach which combines neighbor based diskless checkpointing and parity-based diskless checkpointing. As we are

storing checkpoint in the peer processors memory, the problem of stable storage is overcome by using neighbor-based diskless checkpointing

method. Also for reducing memory consumption problem we use parity-based diskless checkpointing technique. There is no need of dedicated

checkpoint processors. It can handle multiple processor failures simultaneously in the system.

Keywords: Diskless checkpointing, failure recovery

1. Introduction

In a system, we run a large computation application. If the

system fails, in the middle of its execution, there is need to

restart the application after recovery from the failure. When we

restart the computation, it will start from the beginning. This

results into wasting number of CPU cycles more in computing

the same task again. Therefore, most of the systems employ

rollback recovery mechanism for failure recovery. In this

method we are storing status of a computation onto a stable

storage at each regular interval. So, after failure recovery our

system should restart from the point where it fails.

Checkpointing using stable storage incurs considerable

amount of operational overhead to the system, as number of

checkpoint to be taken was restricted. To overcome this we use

a diskless checkpointing approach. It contains three methods:

neighbor-based, parity based, and Reed-Solomon coding based

diskless checkpointing approach.

We use Neighbor-based diskless checkpointing approach

and parity based approach.

 Neighbor-based diskless checkpointing

In this technique [2], [6], [7], each processor saves its

checkpoints in the memory of peer processors. Each

checkpoint is stored in its entirety in peer memory, and no

coding is involved. Whenever a processor fails, the last

checkpoint can be readily recovered from one of these peer

processors. However, this approach may consume a large

amount of memory to tolerate multiple failures

 Parity-Based diskless checkpointing

Parity-based schemes [3], [4] use a dedicated checkpoint

processor to store the parity of the checkpoints taken by all the

application processors using XOR operations. This approach is

simple and easy to implement. Based on some parity array

coding technique, two checkpoint processors can tolerate two

failures.

Combination of these two techniques is our approach [1]. To

overcome the problem of storage overhead we use neighbor

based approach. And for reducing memory consumption

problem we apply parity based technique.

2. Methodology

Consider, a distributed system consisting of a collection of n

processors (or nodes), P0; P1; P2; …; Pn-1, that are

interconnected by a (wired or wireless) network. Each

processor has physical memory and communication capability.

Stable storage installation is not required in the system, and

checkpoint data must be stored in the physical memory.

 Assume that a computing task is partitioned into n subtasks

such that each subtask is executed on a distinct processor Pi, 0

≤ i ≤ n -1, in a distributed and asynchronous manner. These

subtasks communicate with each other by passing messages

via the underlying network

The neighbor based diskless checkpointing. Here, we are

using two terms CS (Checkpoint Storage node) and CC

(Checkpoint Coverage node). Each processor Pi, 0≤ i ≤ n -1,

must send its checkpoint to a set of at least k other processors

for storage. Where, k is size of storage nodes. These

processors are called the checkpoint storage nodes (CS) of Pi.

Meanwhile, Pi receives checkpoint data from other processors

and stores these checkpoints in its (volatile) memory. The

processors for which Pi is a checkpoint storage node are called

the checkpoint coverage nodes (CC) of Pi. The set of

checkpoint storage nodes of Pi are denoted by CSi and the set

Dipali B. Parase, IJECS Volume 3, Issue 10 October, 2014 Page No.8589-8591 Page 8590

of checkpoint coverage node of Pi are denoted by CCi, in

[1][8].

Initially, we assumed that each processor have their CS and

CC list. Each processor in the system stores checkpoint into

nodes in CS and receives from its CC’s. When processor, say

Pi, receives checkpoint from its CCi’s it does XORing of own

checkpoint and received checkpoint. It also stores copy of its

own checkpoint into its own memory.

If processor Pi, fails then it can send the recovery request to

its CSi nodes. At least one node in the CSi list must be alive

for helping processor Pi in its checkpoint recovery operation.

Suppose, say processor Pr is the node in CSi list which is alive.

Own checkpoint is stored into checkpoint variable. We also

store the previous checkpoint of each processor in the

prev_checkpoint variable. And current checkpoint is stored

into the curr_checkpoint variable. Then last checkpoint will be

calculated by first nullify the previous checkpoint using

.checkpoint^=prev_checkpoint and recovered as

checkpoint^=curr_checkpoint. Then our system will restart

from where it last failed. To handle failure recovery we

required only one CS node must be alive.

In [1], the condition for failure recovery was: at least one CS

should alive and all CC’s of that CS must be alive. But in our

case it recovers last checkpoint from CS node. Thus, only one

CS node required to recover failure.

.

2. Implementation
We use a distributed or parallel system. Here, we take an

application called MAT [8]. This application performs a matrix

multiplication. We are having two matrices of size 4000*4000.

Consider, we are allowing simultaneous k processor failures in

our system. For example k=2. So we require number of

processors equal to 5. We take one more processor as master

and 5 processors as slaves. Master is for distributing the task

and a slave computes the task. Master also informs operator

about failed slave. To work in parallel we divide the task of

multiplication among processors. After dividing each

processor performs its computations. A row is taken as a

checkpoint. While performing computation each processor

stores its checkpoint into own memory as local copy. Consider

the slave’s CS and CC lists as in Table 1.

 Table 1: List of CS and CC for each slave

Processor

(Slave id)

CS CC

1 {2,3} {4,5}

2 {3,4} {5,1}

3 {4,5} {1,2}

4 {5,1} {2,3}

5 {1,2} {4,5}

From the above Table 1 slave 1 stores its checkpoint into CS

nodes CS {2, 3}. Consider, slave 1 and slave 3 fails. As k=2, k

is maximum number of allowable processor failure. A failed

processor is recovered only when it has at least one CS node is

alive. Then, we can recover the slave 1 just contacting to the

slave 2.and slave 3 is recovered by contacting either slave 4 or

slave 5. Since, CS for slave 3 is CS {4, 5}. Hence, our

approach handles multiple processor failures [8]

3. Results and Discussion

 In our project we are enhancing neighbor-based diskless

checkpointing approach. Here, we are considering the

combination of neighbor-based diskless checkpointing

approach for reducing memory overhead and also for reducing

stable storage requirement, we use the parity technique. We are

comparing our new approach with the disk-based approach. In

the disk-based approach we are storing a checkpoint into a file.

Here, we were compared time of storing checkpoint in this

disk-based approach with our proposed approach. As shown in

Figure 1.

Figure.1 comparison of disk based approach with our

proposed approach

From the above comparison we can say that time required

for taking checkpoint in our approach is less than in disk-

based. Also, we can compare our graph with graph given in

paper [1]. From that we clearly understand that the time taken

by our scheme and both scheme RS-code and neighbor based

diskless checkpointing approach in paper [1], is less.

We have proposed that our approach works for k

simultaneous failures. It can handle k simultaneous failures.

But the condition is at least one of its node from CS must be

alive. Then only we can recover its last status. We compare our

approach with approach proposed in [1]. In the paper [1], they

compared average time overhead for taking checkpointing in

between Reed-Solomon and our approach. The results are

shown in the Table 2; in this table we have compared these

results with our results.

Table 2: Average Time Overheads (in Seconds) for

Checkpoints

 #

Schemes

5 10 15 20 25

RS-

Code

3.14 2.64 2.48 2.45 2.43

Results

in [1]

1.37 1.38 1.32 1.23 1.22

Disk-

based

1.35 3.66 5,79 8.16 9.75

Ours

Slave 1 0.084 0.38 0.5 0.55 0.64

Slave 2 0.044 0.32 0.40 0.42 0.43

Slave 3 0.18 0.65 0.77 0.85 0.94

Slave 4 0.14 0.28 0.32 0.34 0.37

Slave 5 0.08 0.11 0.15 0.17 0.19

Dipali B. Parase, IJECS Volume 3, Issue 10 October, 2014 Page No.8589-8591 Page 8591

From above results its shows that our approach for taking

checkpoint is better than RS-Code, approach in [1], and Disk-

based approach.

This study also measures the time it takes to recover from

two failures, which is the largest number of simultaneous

failures allowed by these schemes. According to our proposed

scheme simultaneous processor failure is allowed two i.e.

k=2.Table 4 shows the average recovery time for our scheme.

In [1] results are shown for average recovery time, to recover

previous checkpoints for the three failed processors.

Table 3 Average Recovery Time in Seconds for the

Schemes

Schemes Recovery Time

RS-Code 2.13

Results in paper

[1]

0.61

Ours 1.07

4. Conclusion
This study addresses diskless checkpointing issues in a

distributed or parallel computing environment and presents a

new approach to enhancing neighbor-based schemes to tolerate

multiple failures. This method allows checkpoint related

operations to be evenly distributed among all processors,

achieving good load balance. We have proposed that our

approach works for k simultaneous failures. It can handle k

simultaneous failures. But the condition is at least one of its

node from CS must be alive. Then only we can recover its last

status. We compare our approach with approach proposed in

[1]. In the paper [1], they compared average time overhead

taken in taking checkpointing in between Reed-Solomon and

our approach. The results are shown in the Table 2, in this

table we have compared these results with our results. From

these results it is observed that our approach for taking

checkpoint is better than RS-Code, neighbor-based approach in

[1], and Disk-based approach.

References

[1] Ge-Ming Chiu, Member, IEEE Computer Society, and

Jane-Ferng Chiu, “A New Diskless Checkpointing

Approach for Multiple Processor Failures”,IEEE

transactions on dependable and secure computing, vol. 8,

no. 4, July/august 2011

[2] T.-C. Chiueh and P. Deng, “Evaluation of Checkpoint

Mechanisms for Massively Parallel Machines,” Proc. IEEE

Symp. Fault Tolerant Computing (FTCS ’96), pp. 370-379,

June 1996.

[3] J.-F.Chiu and G.-M. Chiu, “Hardware-Supported

Asynchronous Checkpointing Scheme,” IEE Proc.—

Computers and Digital Techniques, vol. 145, no. 2, pp. 109-

115, Mar.1998.

[4] J.S. Plank, Y. Kim, and J. Dongarra, “Algorithm-Based

Diskless Checkpointing for Fault Tolerant Matrix

Operations,” Proc. IEEESymp. Fault-Tolerant Computing

(FTCS’95), pp.351-360, June1995.

[5] J.S. Plank, Y. Kim, and J. Dongarra, “Fault-Tolerant

Matrix Operations for Networks of Workstations Using

Diskless Checkpointing,”J. Parallel Distributed Computing,

vol. 43, no. 2, pp. 125-138, 1997

[6] J.S. Plank and K. Li, “Faster Checkpointing with N + 1

Parity,”Proc. IEEE Symp. Fault-Tolerant Computing (FTCS

’94), pp. 288-297, June 1994

[7] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun,

G. Bosilca,and J. Dongarra, “Fault Tolerant High

Performance Computing bya Coding Approach,” Proc.

ACM Symp. Principles and Practice of Parallel

Programming (PPoPP ’05), pp. 213-223, June 2005.

[8] Parase Dipali B, Dr Mrs. Apte S S, Shegadar21 A R

“Enhancement in neighbor based diskless checkpointing

approach”, IJECS Volume 3 Issue 9 September, 2014 Page

No.7966-7967, September, 2014

