

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 10, October 2014 Page No. 8555-8560

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8555

Android Mobile Automation Framework
1
Pallavi Raut

2
Satyaveer Tomar

1
Department of Computer Sci & Engineering, RGPV, Bhopal
2
Departmen of Computer Sci & Engineering SBITM , Betul

Abstract: Android is now the most used mobile operating system in the world. Android now has more users,

more phones and more tablets worldwide than any other mobile operating system. One of the most difficult

challenges facing testing teams is their ever changing and evolving configurations. The number of mobile

device variations in the marketplace is quite staggering. Dozens of new mobile devices, such as Smart

Phones, are being released monthly by device manufacturers, many with incremental operating system

features and enhancements, which are further adding to the variation of configurations of these devices. Also

application development life cycle for android is very short and hence testing time is squeezed. Testing of

application across different version of android is a challenge. In this paper we present an approach for

automating the testing process for Android applications, with a focus on GUI and functional bugs.

Keywords:- Android SDK, ADB, Net beans, Eclipse-IDE, java/c++

, AMAF-ANDROID MOBILE AUTOMATION FRAMEWORK

I. INTRODUCTION

Android is a Linux-based, open source mobile

operating system developed by Open Handset

Alliance led by Google to develop apps for Android

devices. Lot of OEM is in market that developed

devices and applications for android platform.

Mobile application users tend to be savvy and, as

such, have high expectations of quality for

applications they install on their devices.

Applications are expected to be responsive, stable,

and secure. They want simple to use interfaces and

they expect 100% uptime 24x7. They expect

application functionality to be problem-free.

Compatibility Testing is an important aspect of

Mobile Application Testing which requires test cases

to be executed on various combinations of supported

Mobile OS(s) / Versions / Devices (and/or

Emulators/Simulators). AMAF framework is

solution to overcome the mobile application

challenges.

Figure 1, shows the structure of Android platform

and the components of an Android application.

Android platform is composed of 4layers:

Applications at the top, an Application Framework

layer that provides services to applications, e.g.,

controlling activities or providing data access, a

Library/VMlayer, and, at the bottom,

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8556

 Figure 1: Architecture of Android platform.

the Linux kernel. Applications run at the very top of

the platform. Services for applications, e.g., the

Activity Manager, which controls activities for each

application, or Content Providers which load the

content provider defined by each application

The important layer from test automation

perspective is Application layer. Applications are the

top layer in the android architecture and this is where

applications are gonna fit. Several standard

applications come pre-installed with every device,

such as:

SMS client app

 Dialler

 Web browser

 Contact manager

Whereas third party developed application can be

downloading either from google play or install it

using command prompt if application file available.

2. Related Work

2.1 MonkeyTalk

MonkeyTalk is a well-developed system that

supports record, replay, and test automation across

different technologies and frameworks including

Android[7]. The system allows you to record and

replay user inputs, create automated user tests or run

interactive tests through their IDE which is built on

top of the popular eclipse IDE. Using MonkeyTalk,

one can connect to a virtual or physical device

running Android and run their tests on it. From there,

most of the user interactions can be recorded and are

converted to their specific format including detailed

information about the events that occurred and the

elements they affected. MonkeyTalk also provides a

JavaScript api which allows you to override event

handlers to record custom messages.

2.2 Robotium

Robotium is an Android UI automation framework

designed to make programmatic simulation of user

actions on Android devices very simple[8]. It does

not support any record or replay functionality as is

but provides several mechanisms to ensure sanity in

actions taken.

For example, when typing into a textbox or clicking

on a button it grants its user the ability to check that

the desired elements exist and that their data or

attributes are correct.

2.3 Deterministic Replay

A lot of research is being carried out in the area of

UI testing for mobile apps, many of which involve

record and replay. [1] Jason Flinn and Z. Morley

Mao from the University of Michigan published a

paper [1] about the applicability of deterministic

replay for UI testing for mobile devices. Through

their research they aimed at studying the challenges

posed by implementing replay on phones. They also

explored the benefits of replay, especially when it is

performed remotely on cloud or cloudlet.

2.4 GUITAR

GUITAR (Graphical User Interface Testing

framework) is a test generation and automation

framework that can be applied to GUIs of many

kinds. [9] It has been extended to android

applications as Android GUITAR. Android-Guitar is

intended to simplify the testing process of GUIs on

the Android platform by invoking GUITAR. A

plugin is being developed that allows the GUITAR

Ripper and Replayer to communicate with an

Android application running on an Android emulator.

This plugin is expected to facilitate automated and

comprehensive testing of Android GUIs, as well as

increase the breadth of GUITAR functionality.

3. Challenges in Mobile world

Testing mobile applications is more complex and

time consuming compared to traditional desktop and

web applications. The majority of desktop

applications need to be tested on a single dominant

platform – Windows. The lack of a similar dominant

platform for mobile apps results in many apps being

developed for and tested on Android, iOS and

sometimes even more platforms. Challenges are

1. The biggest challenge when it comes to mobile

application testing is the plethora of devices spread

across different platforms. Obviously, it is not

feasible to test application on each and every

available device which means you have to

strategically choose a few physical devices.

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8557

One need to remember that testing on one device

never assures it would work on any other device,

irrespective of whether it is of same make, same OS

Version or using the same platform! Not testing on a

physical device always runs a risk of potential

failure on that device, especially when the target

audience for the application is widespread, like for a

game.

Testing demands different physical devices to

cover the following:

I) Varying screen sizes.

II) Different Form factors.

III) Different pixel density and resolution.

IV) Different input methods like QWERTY, touch

etc.

2. Different platform testing: In case of native app, it

goes without saying that it will need dedicated

testing effort on all platforms for which it is

developed. It gets a bit tricky in case of HTML5

based hybrid applications. While the code remains

same, lot of factors come into play on different

platforms.

3.Testing on different OS versions of the same

platform: Test your application on all major

platforms aka Android, iOS, Windows etc but each

one of them have several OS versions floating in

market. An obvious choice is to test on the most

recent versions of all the platforms but this would

not do justice for Android application. The latest

version of Android is Jellybean introduced quite a

while ago, still there are lot of devices which have

not yet received OS updates (and possibly will

never be updated). It is interesting to note a big

difference in Google’s and Apple’s approach in

handling the OS updates. While the former relies on

device manufacturers to update the respective

devices, Apple handles the updates itself resulting

into mass updating of all Apple devices as soon as a

new OS version is released. Whatever is the OS

version on a device, user can still install your

application and use it, which calls for testing

different OS versions.

4. Testing on various networks and network vendors:

Most of the mobile applications require network

connectivity sometime or the other. If the app talks

to a server for flow of information to and fro, testing

on various (atleast all major ones) networks is

important. Mobile networks use different

technologies like CDMA and GSM with their 2G,

3G and 4G versions. The network infrastructure used

by network operators may affect data

communication between app and the backend. Apart

from the different operators, an application needs to

be tested on Wi-Fi network as well.

5. Mobile environment: It poses another unique

challenge to the tester. Mobile environment is very

dynamic and has constraints like limited computing

resources or available memory and battery life

4. Proposed Scheme

This Android Mobile Automation Framework is

based on robotium. This is an open source Android

testing framework with robust functionalities to

cover almost all possible scenarios encountered in

android applications. It has powerful features which

make this framework for android Black-box testing

to develop test scripts for functional, system as well

as acceptance test scenarios.

When it comes to testing mobile devices, there are

two fundamental ways to approach the testing

process. The first way is to use an emulator, which is

a software application that allows you to reasonably

simulate the behaviour of a mobile application on a

given mobile device configured in a certain way.

While emulators are quite useful, they are not to be

relied upon solely due to limitations in the emulation

software. The second way is to use the actual

devices you are targeting in the mobile marketplace.

The test cases written using this framework can

either be executed on the Android Emulator Android

Virtual Device (AVD)) or on a real Android device.

Below architecture depicts the Android mobile

automation framework.

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8558

 Fig2: Architecture of AMAF

Xml file is one of the input files of the Android

Mobile Automation framework (AMAF). It contains

the steps required to navigate through the various

screens in an application. A typical xml file contains

the name of the application as the entry point (parent

tag) and the derived commands as the child tags.

When test script is developed, it will be compiled

using Eclipse and then will upload the apk to device

with help of framework which then invoke the test

script on device and start execution

 Fig: 3 AMAF Home screen

5. Implementation and Results

5.1 Test Case Generation

Eclipse is a development environment that has

been extended by AMAF with the necessary

functionality to create test scripts against mobile

applications. The benefit of using Eclipse for

creating automated test cases is that you have

nowone platform for development and debugging,

scripts can run in parallel on different mobile

devices and compiled test scripts.

AMAF test can access the attributes of the user

interface elements as they are defined in the mobile

operating system. This is an essential technique that

has been used by test automation tools on the PC for

many years.

AMAF is a testing framework for java

applications, integrated in the Android development

environment. JUnit can generate several classes of

test cases based on the application source code.

Since activities are the main entry points and control

drivers in Android applications, test case generation

is based on activities. We first identify all activities

in an application and then use the Activity Testing

class in Junit to generate test cases for each activity.

Test script will be generated and placed at

appropriate folder in AMAF framework.

 Fig: 4 Test case generation

5.2 Test Execution Environment

Once the test cases developed, in first panel, select

the test scripts that needs to be execute and then

create the test suite.

In order to display device in device list, adb path

needs to be set up in environment variable and then

only in device details panel, select the device details

and test suite that created in first panel. Device

connected to AMAF should display like below in

fire of adb command

After that select the device and test suite in

execution panel and start execution. Script will run

on device.

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8559

5.3 Test Case Results Analysis

After execution of all test script, test result summary

will be generated. Test results can be exported in

HTML or CSV format. This test result summary

contents result of test script Passed or Failed. Option

to view either passed or failed test cases is available.

6. Conclusion

In this paper, a technique for automatic testing of

Android mobile applications have been proposed.

The technique is based on robotium and is used to

develop test cases that reveal application faults like

run-time crashes, or that can be used in regression

testing. Test cases consist of event sequences that

can befired on the application user interface. At the

moment, we have not considered other types of

events that may solicit a mobile application (such as

external events produced by hardware sensors, chips,

network, or other applications running on the same

mobile device) and just focused on user events

produced through the GUI.

The proposed testing technique aims at finding

GUI, functional and user-visible faults on modified

Versions of the application. This framework will be

worked on both Emulator and physical android

device.

Benefits of this automation framework are

 Framework has capacity to handle multiple

activity

 One script will run on all android platform

versions

 43% of efforts save per cycle compared to

manual testing as shown in table 1

 Based on Junit, opening the door for Unit

Testing with Android

 Maintenance of the script is very easy

 Support Native as well as Hybrid application

 Table 1 Automation ROI Results

References

[1] Domenico Amalfitano, Anna Rita Fasolino,

PorfirioTramontana"A GUI Crawling-based

technique for Android Mobile Application

Testing"DOI: 10.1109/ICSTW.2011.77 Conference:

Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth

International Conference

[2] Cuixiong Hu&IulianNeamtiu “Automating GUI

Testing for Android Applications” Department of

Computer Science and Engineering University of

California, Riverside, CA, USA

http://www.cs.ucr.edu/~neamtiu/pubs/ast11hu.pdf

[3] Gerrard Paul,"Testing GUI Applications",

EuroSTAR Conference, Edinburgh, November

1997,

http://www.gerrardconsulting.com/GUI/TestGui.htm

l, 18.07.2010

[4] Garima Pandey, DikshaDani“ Android Mobile

Application Build on Eclipse” International Journal

of Scientific and Research Publications, Volume 4,

Issue 2, February 2014, ISSN 2250-3153

[5] Testing for poor responsiveness in android

applications ShengqianYang ;Dacong Yan ;

Rountev, A. Engineering of Mobile-Enabled

Systems (MOBS), 2013 1st International Workshop

on the DOI: 10.1109/MOBS.2013.6614215

Publication Year: 2013

[6] Using GUI ripping for automated testing of

Android applications Amalfitano, D. ;Fasolino, A.R.

; Tramontana, P. ; De Carmine, S. ; Memon, A.M.

Automated Software Engineering (ASE), 2012

Proceedings of the 27th IEEE/ACM International

Conference on DOI: 10.1145/2351676.2351717

Publication Year: 2012

[7] Gorilla Logic, MonkeyTalk.

https://www.gorillalogic.com/monkeytalk

Testing Cycle Test cases
Total Efforts

(PD)

Person

Weeks(PW)
Automation Efforts(PD)

First Cycle 1000 10 2 5

Second Cycle 1000 10 2.0 5

Regression Release 1200 8 1.6 5.625

Total Effort 28 6 16

Total Effort (PM) 0.76

% Efforts Saved 43%

Total Effort Estimation

1.33

http://www.cs.ucr.edu/~neamtiu/pubs/ast11hu.pdf

1
Pallavi Raut, IJECS Volume 3 Issue 10 October, 2014 Page No.8555-8560 Page 8560

[8] Renas Reda, Robotium - The World’s Leading

Android Test Automation Framework, User scenario

Testing for Android.

https://code.google.com/p/robotium/.

[9] Nguyen, Bao, Bryan Robbins, and Ishan

Banerjee, GUITAR - A GUI Testing Framework

Event Driven Software Lab - University of

Maryland. http://sourceforge.net/projects/guitar/

[10] Shyam Bhati, Sandeep Sharma, Karan Singh

"Review On Google Android a Mobile Platform"

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727Volume 10,

Issue 5 (Mar. - Apr. 2013), PP 21-25

[11] Khawlah A. AI-Rayes, AiseZulalSevkli, Hebah

F. AI-Moaiqel, Haifa M. AI-Ajlan, Khawlah M. AI-

Salem, Norah I. AI-Fantoukh "A Mobile Tourist

Guide for Trip Planning" IEEE

MULTIDISCIPLINARY ENGINEERING

EDUCATION MAGAZINE, VOL. 6, NO. 4,

DECEMBER 2011

 [12] R. Gove and J. Faytong. Identifying infeasible

GUI test cases usingsupport vector machines and

induced grammars. In TESTBED, pages 202–211,

2011.

[13] F. Gross, G. Fraser and A. Zeller. Search-based

system testing: Highcoverage, no false alarms. In

ISSTA, pages 67–77, 2012.

[14] S. Hao, D. Li, W. G. J. Halfond, and R.

Govindan. Estimating mobile application energy

consumption using program analysis. In ICSE, 2013.

[15] C. Hu and I. Neamtiu.Automating GUI testing

for Android applications.In AST, pages 77–83, 2011.

[16] J. Jeon, K. K. Micinski, J. A. Vaughan, A.

Fogel, N. Reddy, J. S. Foster,and T. Millstein. Dr.

Android and Mr. Hide: Fine-grained permissionsin

Android applications. In SPSM, 2012.

[17] M. Jovic, A. Adamoli, and M. Hauswirth. Catch

me if you can:Performance bug detection in the wild.

In OOPSLA, pages 155–170,2011.

