

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 8 August, 2013 Page No. 2403-2408

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2403

Empirical Study on Migrating Data From Relational

Databases To Object-Oriented Technology.

 Dr Leelavathi Rajamanicakam

drleelavathir@gmail.com

Abstract: Tremendous changes have been taking place in information technology for a few decades. Due to the rapid evolution in this area, the

demand for innovation in this area is much higher than elsewhere. This requires large effort of companies to respond quickly to market

conditions in order to organize work and conduct business more efficiently. In particular, companies have to reengineer existing form of new

key technologies like WWW or E-Commerce. A typical scenario in many companies when applying a reengineer process is That on the one

hand, a large body of data is captured in relational or even hierarchal or network databases, and on the other hand object oriented

applications have to be developed. Thereby, a new object model is constructed which represents the current state of the company’s business

processes. However, the new object model and the existing relational database’s model usually do not go well together. In other words, a large

semantic gap between both models must be bridged. The approach proposed in this paper is database migration. Basically, this approach

comprises two tasks. In the first task, the relational database schema is reengineered. The schema is transformed into a well designed and

intuitively understandable object oriented schema, which the new applications can adapt. Afterwards, the data are (automatically) migrated

into an object oriented DBMS.

An algebra is proposed for a formal definition of data migration process. The schema transformation process is subdivided into three

sequential phases. In the first phase, the relational schema is transformed (automatically) into an SOT schema. This initial SOT schema is then

redesigned resulting in the adequate object oriented schema. Finally, in the third phase t resulting SOT schema is (again automatically)

transformed into an object oriented schema according to the ODMG standard. The data migration process is generated automatically for each

schema transformation phase. In order to implement schema transformation, the concept of transformation rule is proposed. The

transformation rules define elementary restructuring operations within the SOT model. A basic set of transformation rules has been proposed

which can be extended. Finally, a prototype has been implemented as a proof of concept.

Keywords: Ecommerce, relational schema, life cycle, object technology.

1. Introduction

In general process covers all areas of information systems. In

this thesis, in particular, three areas are of major interest.

Relational Databases Systems: Relational database system

represents the current standard in technology for implementing

database applications. The concept was proposed in the early

seventies, and now commercial DBMS (database management

systems) like DB2, oracle, Informix Sybase or dominate the

market of data persistence. A large body of electronic data is to

be read in relational database now a days. One big bonus of

RDBMS is the maturity they have gained in extensive research

efforts in the last decades. This allows RDMS products to be

used for high performance and mission-critical database

applications.

Object-Orientation: Now a day’s object oriented paradigm

prevails in modern software development. It has emerged as an

important technology to ensure software quality, reusability,

portability, maintainability and extensibility. Almost all the

components of the new information systems are developed

within an object-oriented software engineering life cycle. In

particular, these components include database systems, user

interfaces, operating systems and applications. The phase of

object –oriented software engineering comprises, amongst

others, analysis, design and implementation. More and more

object-oriented programming languages like small talk, C++

and java are replacing procedural languages.

Reengineering: The rapid changes in information technology

and society force companies to quickly respond to changing

conditions on a global market. This raises the problem of

reengineering information system take advantage of these

technologies. In general, two cases motivate in green

engineering can be distinguished. Firstly, changes in the

internal organization of companies must be reflected in

information systems. This is also referred to as business

process reengineering (BPR). Secondly, due to the emerging

key technologies like E-commerce, the WWW or data-ware

housing, companies have to adapt, modify or even rewrite parts

of their information systems.

A typical scenario in many companies when apply in

reengineering process is that the one hand, a large body of data

is captured in relational (or even hierarchical or network)

databases, and on the other hand new object-oriented

applications have to be developed. Thereby, a new object

model is constructed which represents the current state of the

Companies Business Processes. However, the new object

model and the existing relational database’s model usually do

not go well together. In other words, a large semantic gap

between both models must be bridged.

The evolutions of database technology on one side and

software engineering on the other side have barely influenced

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2404

each other in the last decades. As a consequence, RDBMS and

object-orientation incorporate principally different paradigms.

Existing relational databases and object-oriented applications

cannot be integrated in a seamless way, a problem which is

known as impedance mismatch. More precisely, the transition

of data stored in the relational database to object-oriented

applications and vice-versa is non-trivial.

Meanwhile, object-oriented DBMS (OODBMS) have been

proposed to support seamless integration of object technology

and data persistence, and various commercial products are

available. However, many organizations principally refrain

from using OODBMS because existing products cannot

compete with RDBMS with respect to maturity and reliability.

Other organizations are willing to give OODBMS a try, but

then require the existing relational data to be available in

object-oriented database stems.

As top gap solutions, mainly hybrid approaches such as object-

oriented views over related schemas have been proposed.

There by, the data-

base remains untouched and a mapping between objects and

relations is defined. However, these approaches do not resolve

the data model mismatch. Moreover, the implementation of a

mapping between both models is an expensive and error prone

activity, and the required data conversions at runtime lead to

performance degradations.

The approach proposed in this thesis is database migration.

Basically, this approach comprises two tasks. In the first task,

the relational database schema is reengineered. The schema is

transformed into a well-designed and intuitively understandable

object-oriented schema, which the new applications can adapt.

Afterwards, the data are (automatically) migrated to

OODBMS. There are several reasons why database is

migration is worth further investigation. First, database

migration promises better results than other approaches like

object views for the following reasons. Since the data are

converted to objects only once, database migration principally

allows more flexibility with respect to the reengineering the

relational schema into a suitable object –oriented schema. In

addition, performances higher because data does not have to be

converted at runtime. Secondly, existing approaches for

database migration do not exploit the full potential of the

object-oriented paradigm, so that the resulting object oriented

schema still “looks rather relational” and retains existing

drawbacks and weaknesses of the relational schema. Finally,

efforts are taken to remedy the current immaturity of

commercial OODBMS for some mission-critical database

applications. Nevertheless, OODBMS have the advantage of

being more efficient when modeling complex data structures.

They are well suited for storing data of complex (non-standard

applications) such as CAD systems and office automation

systems. Recently, object-relational DBMS (ORDBMS) have

started to offer some object –oriented features, and further

features are likely to be addresses in the future. ORDBMS can

be expected to extend current commercial RDBMS products.

Hence, they offer the same reliability as RDBMS. ORDBMS

have the same problem, as discussed before, for OODBMS,

namely to convert an existing relational schema in to new

exploiting object-oriented features, and to adapt the database.

Thus, the results present in this thesis for OODBMS will also

be important for the (future) object-relational database systems.

Besides reengineering of the complete information system of a

company, database migration may also be of interest for other

tasks. For Example, it may happen that new applications do not

have to operate on the original databases.

Instead from time-to –time the database pr part of it can be

downloaded into an object-oriented database. For example,

could represent a company’s product catalogue on which web-

based java applications then operate.

2. RELATIONAL DTABASE CONCEPTS.

Relational database systems represent the standard technique

for implementing database applications. The main foundations

of relational databases were laid in The early seventies, mainly

in the relational data model[Cod70]. Later, the Entity-

Relationship model[Che76] was proposed for simple yet

powerful modeling of relational database schemas. This chapter

aims to reflect the current state of the art in relational database

application design. The focus is on three main aspects. Firstly,

data models used for constructing relational database systems

discussed. These are, on the concept level, the entity-

relationship model and, on the logical level, the relational data

model. Secondly, the object -relation ethical foundations are

discussed. This is based on relational algebra which represents

the main formalism for implementing RDBMS. Most available

DBMS provide access via the declarative query language SQL

(Structured Query language), which is based on relational

algebra. Finally, the last part of this chapter deals with design

strategies for constructing relational database applications.

Database application design is not only the task of encoding

relational schemas. Usually it is a sequential and iterative

process which covers several design phases like database

design and functional analysis.

3. DATA MODELS

The process of designing database schema is usually

decomposed into several phases. In each phase, a different data

model is used. Typically three levels of designs are

distinguished, as shown in fig 2-1: conceptual design, logical

design and physical design. The task conceptual design is to

formalize the results obtained from requirements engineering

by means of a certain method. The resulting conceptual schema

has a higher level of abstraction than the subsequent logical

schema and does not include any implementation details.

Logical design consists of mapping the conceptual schema into

a logical schema which can be processed by the DBMS. The

logical schema is thus expressed by means of data definition

language. Finally, the physical schema describes the internal

storage structure of the database.

The Entity-Relationship model.

The Entity relationship(ER) model was introduced by

Chen[Che76], and describes data as entities, relationships and

attributes. An entity is a “thing” in the real world with an

independent existence, For example, a department, a projector

an employee. Each entity has attributes- the particular

properties that describe it. For example, an employee entity

may be described by the employee’s name, salary and address.

An entity type defines a collection of entities that have the

same attributes. The relationship type is the concept to define

associations between two or more entity types, and is formally

defined as a subset of the Cartesian product of the participating

entity types.

The relational data model is one of the traditional data models

like the network model and hierarchical models. These have

been quite successful in developing the database technology for

many traditional data base applications. The relational data

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2405

model and algebra have a clear foundation in the proposal of

Codd. Relational database design follows a waterfall –oriented

approach. Firstly, a Conceptual schema is created, usually by

means of entity-relationship model. Such a conceptual schema

describes the universe of disclosure as a set of entities which

are characterized by a number of attributes. In addition,

relationship between entities can also be defined. In the second

stage of relational database design, logical design, a relational

schema is created in terms of a data definition language which

can be processed by a DBMS. The transformation of ER

schema into a relational schema is a semiautomatic process.

Sometimes, specific constricts in the ER schema such as

generalization relationships, may raise several alternative

constructs in the relational schema. Although parts of the

specified semantics in the ER schema may get lost in the

relational schema, the latter can be enhanced by adding

constraints or views.

Object –oriented concepts are slightly older than relational

concepts. However, it took quite a long time for object-

orientation to enter the main stream. In the late seventies, the

first popular language Small- talk-80 was introduced by

Xerox[GR89]. The following languages C++ and Java became

widely used in industry. Parallel to the evolution of the object-

oriented

programming languages, conventional languages were

extended with concepts for implementing abstract data types

and information hiding, in order to satisfy new requirements of

software engineering. Examples of such languages are Modula-

2 and Ada. However pure object oriented languages were

considered the best choice for integrating new software

engineering requirements, supporting reuse, maintaining

software, sustaining the object oriented software engineering

life cycle, and modeling the universe of discourse.

Later, persistency of data captured in objects was desired for

seamless integration of applications and databases. Efforts in

this field resulted in the object-oriented database system

manifest[ABD+89], where the requirements for object

databases were delineated, more than 20 years after the first

concept was introduced.

The phase of software engineering typically comprise, amongst

others, analysis, design and implementation. The main

description of this chapter is organized as follows. The basic

object-oriented modeling. Concerning the construction of the

database schemas, the Object Database Management Group

(ODBMG) has introduced a common schema definition

language and query language.

4-SPECIFICATION OF OBJECT BEHAVIOUR

The example present in this category deals with shifting

functionality from applications to the DBMS. In order to

discover how far the inclusion of (object specific) behavioral

information in an object oriented design process influences the

resulting database schema. A UML class diagram representing

the same geometric information before object specific behavior

can be specified, objects have to be explicitly designed. When

considering the relational schema, several objects are not

explicitly modeled. For example, this is the case for composite

objects, polylines and polygons. With regard to composite

objects, they are identified in the relational schemas by those

ID values in the general GeoObject table which appear in the

CompID attribute of any tuple. They can be retrieved by the

following query: Select distinct CompID from GeoObject.

From the relational point of view, there is no reason to

explicitly model composite objects in the relational schema. It

is sufficient that composite objects can be extracted from the

database, where a view can be defined containing composite

objects using the query mentioned above. In a object-oriented

design, various object specific operations can be specified, for

composite objects. Examples of such operations are rotate,

move or scale, Or an operation boundary() which returns the

smallest possible rectangle with angle0, enclosing all of its

components but not intersecting any of them. Another example

of objects not being modeled explicitly are points, which are

used to define all kinds of basic objects. Points are not stored in

an extra table. Instead, pairs of two attributes for the x-

coordinates and y-coordinates are shared over most existing

tables. Again, in the relational schema, there is no reason for an

additional table point for two reasons. Firstly, a single point has

no meaning without the basic object in which it is defined.

Hence, every point is involved in exactly one composition

relationship. Secondly, the union of all points presents in the

database has no meaning. In other words, there is no need to

define queries over all points.

In an object-oriented design, however, object specific

operations for points can ideally be implemented as methods of

a class point. In addition operations common to all objects like

rotation or scaling can be easily implemented if a certain origin

is specified for all objects. For rectangles, rounded rectangles

and ellipses, the x and y values represent the origin. The origin

of a line is the point specified by the values x1 and y1. Finally,

for polylines and polygons, the coordinate taking the index

value 1 is defined as the origin.

The main contribution of this chapter has been to demonstrate

that relational and object-oriented database design follow

different design strategies and consequently result in

structurally different database schemas. There is no universally

mapping strategy between relational constructs on the one side

and object-oriented constructs on the other. In particular, this

concerns the primary construct relations, tuples, classes and

objects.

Relation VS Classes: The examples demonstrated that not

every relation in a relational schema corresponds to a class in a

corresponding object- oriented schema. Conversely, not every

class present in a object-oriented schema is derived from a

corresponding relation in a relational schema. The two main

properties of object-orientation highlight this fact are object-

specific behavior and encapsulation.

Tuples VS Objects: Not every tuple in a relational database is

represented as an object-oriented database. Conversely, not

every object is derived from one specific tuple. Reasons for this

are the lack of conceptual modeling constructs in relational

database design, and the possible specification of the object life

cycles.

The contributions of this chapter from the requirements for the

migration approach. The examples presented in this chapter

demonstrate the consequence of these different design

strategies, which is that converting a relational schema to a

corresponding object-oriented schema is a non-trivial task.

Consequently, the migration algorithms must be powerful

enough to support such conversations.

5. STATE OF THE ART IN MIGRATION TO OBJECT

TECHNOLOGY.

The wide acceptance of object technology in software

engineering has motivated the combination object technology

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2406

and data persistence. Currently, the effort to smoothly integrate

relational data and object technology is especially high when

new object-oriented applications have to access existing

relational databases. Relevant approaches are discussed and the

advantages and disadvantages of each of them are compared.

Database migration, the subject of this thesis, is one of the

approaches. In general, two different approaches can be

distinguished. Firstly, the data is retained in relational

databases. The simplest solution, a gateway between a

relational and an object-oriented database.

Database migration is the second approach, in which the

RDBMs is completely replaced by an object-oriented one, and

both schema and database must be migrated. The decision to

apply a particular migration strategy for a certain database

system depends on several practical constraints. For example,

when old database applications still need to access existing

databases, data migration cannot be chosen, unless the

applications need to be reengineered for some reason.

Architecture of object view of relational databases

The transformation from the enriched relational schema to the

object-oriented schema is usually processed automatically. In

principle, every table of the relational schema is mapped into a

class and foreign key constraints are mapped into reference

attributes. Consequently, every tuple of the relational database

is represented as an object in the object view. Some approaches

allow lightly more flexible transformations and can, for

example, support inheritance hierarchies on the object level.

There as on why only rather trivial schema transformations are

supported is the need for data conversion at run time. When

transforming a schema to construct an object view, the

functionality for data conversion, in one or both directions must

also be specified. This deficiency is illustrated in next section.

6. OBJECT RELATIONAL MAPPING.

The transformation of object-oriented schema into a relational

alone, when using objects for programs and relations for

persistence. In some cases new object-oriented applications

still tend to use relational DBMSs due to its advantages of

maturity and widespread use. These approaches offer an

automatic schema transformation process from an object-

oriented schema to a relational schema. Since both object-

relational mapping and relational–object mapping share the

task of specifying mappings between relational constructs and

object-oriented constructs, several object-relational mapping

product also support the inverse direction. Research projects in

this area are Penguin[KH93] and object Driver[Leb93].

The Construction of object views is not merely the inverse task

of the object-relational mapping process, which can be

performed automatically. In the case of object- relational

mapping, the object-oriented schema has been created by

forward engineering. When creating object views the relational

schema must undergo a reverse engineering process.

In addition, schema transformation, object views also have to

support data manipulation operations. However, the

information on how to convert elements of the relational

schema to elements of the object-oriented schema is usually not

sufficient for automatically generating data manipulation

expressions. Therefore, not all approaches support seamless

data manipulation operations. List (key, Index, Value1,

Value2, Value3, Value4).

In this relation, a list value is composed of tuples having a

common value min the attribute key. The two ordering criteria

of a list value are the index value and the attribute name. Two

instances of the list values. Whereas on the object-oriented side

typical list operations, like insertion of a value at some

position, are provided, these must be implemented manually.

The algorithm for implementing the insertion operation is non-

trivial. First, the index value of the tuple and the insertion point

where the new element is inserted must be computed. Then, all

the elements behind the insertion point must be shifted one

position to the right. In some cases like the first list value, a

new tuple must be inserted.

For combinational relational databases and object technology

have been discussed. In principle, two different strategies exist:

object views over relational database and database migration.

Although both strategies seem to very different, often practical

constraints determine which migration strategy to use. As

regards, object views, various approaches have been proposed

and several commercial tools already exist. Although this

strategy exhibits serious problems, At least for performance

reasons, it represents the current trend of migration to object

technology.

In contrast, database migration has not received comparable

attention. The reasons for this phenomenon are manifold. First,

ser refrain from introducing OODBMS technology due to their

low maturity and limited capabilities, that is, the market has not

provided them with a robust, integrated object-oriented

development and deployment tool set. Second, the few existing

tools are not mature enough for commercial usage and are

rather inflexible. This means that they show the same

inadequacies as object views, except for performance

gradation.

Other reasons for choosing object views lie in diverse practical

constraints. Especially in old and barely maintained databases,

it may be the case that a reverse engineering process does not

extract the intended semantics of the database. Database

migration requires a deeper insight into the semantics of the

database. On the other hand, if legacy applications cannot be

totally replaced by new ones, the data must reside as is in the

relational database.

7. SEMANTIC ENRICHMENT.

Semantic enrichment is the task of gathering additional

semantic information which is not explicitly available from the

relational database system. This task is also known as reverse

engineering, which emphasizes that the result of the semantic

enrichment process can be represented through a conceptual

schema. Whereas the process of database design is called

forward engineering, reverse engineering can be considered the

inverse process, that is, there construction of conceptual

schema out of an existing database. Reverse engineering is not

only essential in the field of database migration, but of high

importance for information systems reengineering in general.

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2407

However, in contrast to forward engineering, reverse

engineering has not received comparable attention in the

literature.

Semantic approaches and CASE tools hardly exist. Reverse

engineering of database systems is a topic of its own. There are

various reasons for applying reverse engineering to databases,

besides a subsequent database migration, as considered in this

context. During the design and maintenance of the logical

database schema, some domain semantics might not be

captured anymore. Thus without possessing a conceptual view

of the database it is difficult for users to understand the

semantics of the database and retrieve data correctly. The need

for conceptual schemas becomes more essential for redesigning

existing databases when new application requirements are

considered. Another area of application is database integration,

which is best performed at the conceptual level[BLN86].

Finally, the semantics of the database must be extracted when

switching to another data model. This is required for both

object views and data migration.

8. SCHEMA TRANSFORMATION AND DATA

MIGRATION.

Several approaches have been proposed for schema

transformation from relational schema to object oriented ones.

Most of these approaches have one aspect in common, that is,

they provide a one step mapping, where every element of the

target object schema is directly derived from an element of the

relational source schema. These approaches are viable at best

for small and well designed schemas which, for example are

derived from an entity-relationship schema and are in third

normal form(3NF). In addition, not all subsequent definition of

all database emigration process. This is especially the case

when schema transformation is expressed on a rather informal

level.

Two approaches for database emigration are worth mentioned.

In [AYCD98] an algebraic database migration approach is

proposed for which a prototype also exists[AY98]. The focus is

on optimizing the migration process and physical or

organization of the database. However, the schema

transformation process does not support flexible

transformations. In contrast to this, the approach in [Fah96]

exhibits more flexible schema transformations, but the resulting

migration operations cannot be optimized. In particular,

various transformation rules are proposed for both the

relational and object-oriented model. Furthermore, the instance

mapping must be applied after each individual schema

transformation operation separately, and is expressed on a

rather information level. As a consequence, the database

migration process cannot be optimized. Some other approaches

propose useful schema transformations in both, the relational

and object-oriented[BP96] context. In relational database

design, schema transformations have been used for reverse

engineering[HTJC93b] or quality improvement[BCN92], in

order to reduced efficiencies such as de normalization or

optimizations. In object-oriented design on other hand, schema

transformations have been used for schema refinement[BP96].

The purpose of traditional data models, such as relational or the

object-oriented model is to allow a formal representation of the

universe of discourse.

The support of schema evolution is not a major requirement of

these data models. Existing algebras, like relational or object-

oriented algebra are one way to describe a formal foundation.

The algebras way may be used in different ways: as a formal

semantics of the data and a query language itself. Besides

optimization, the requirements for the SOT data model and

algebra differ from existing approaches. Therefore there are

not suitable for schema transformation and data migration, and

a new approach is presented in this chapter.

The main purpose of SOT data model is the support of schema

restructuring and data mapping. Schema restructuring is the act

of modifying the SOT schema. Data mapping changes the

database state, such that the resulting database is consistent

with the modified SOT schema. Schema restructuring and data

mapping are implemented by algebra. For simplicity, schema

and data share the same algebra. Several reasons exists why

neither the relational nor the neither object-oriented nor any

other existing data model fulfill the requirements of database

migration. The main reason is that the purposes of these data

models are different from ours. Most existing algebras serve as

theoretical foundation to describe the formal semantics of data

and of a query language. However, the object-oriented data

model does not support (formal) schema updates.

More precisely, the relational model lacks the identity aspect

and the support of complex structures. Identity is simulated

through key attributes whose uniqueness must be maintained by

the user. Since key attributes may also represent contents of the

universe of discourse, restructuring rules relaxing the

uniqueness requirements of these attributes may cause

problems. As regard complex structures, aggregates and sets

may be simulated by additional relationships, but list or array

structures cannot be expressed directly. On the other hand, the

object-oriented model is too restrictive in object identity and

inheritance handling. Schema restructuring cannot easily be

propagated to the data level. The interface of an object or its

class membership (usually) cannot be changed once it is

created. As regards object identity, there can be no external

influence on creating new object identifiers as will be

demonstrated later. Concerning cardinality, the “not null” and

“candidate key” restrictions, known from the relational data

model, do not exist.

Conceptual model like the entity-relationship model, which are

considered. The migration frame work, the main originality of

the transformation process lies in the ability for flexible schema

redesign. Input of the transformation process is a relational

schema and a set of tables. On the object-oriented side, a

schema expressed in the ODMG interface notation and data

expressed in the ODMG object interchange format (OIF) is

targeted. This way the approach is not dependent on the

concrete target DBMS.

Dr Leelavathi Rajamanickam, IJECS Volume 2 Issue 8 August, 2013 Page No.2403-2408 Page 2408

The data migration process is generated after completing these

three steps of schema transformation.

9. SOT ALGEBRA, DEFINED OVER THE INITIAL

EXTENSIONS.

Finally, in the third step SOT model is mapped to a class

structure and the object-oriented database is created from the

SOT extensions. The target class structure is expressed in the

ODMG object definition language (ODL) [CB00], and the

database is created either by creating a migration application or

by sorting the SOT extensions in a dump file in the ODMG

object t interchange format (OIF). Like the first step, this step

can be performed automatically as well.

10. CONCLUSIONS.

Existing approaches for migration do not exploit the full

potential of the object-oriented paradigm so that the resulting

object-oriented schema still looks rather relational and retains

the drawbacks and weaknesses of the relational schema.

Therefore, one of the goals of this approach is to support

schema transformation into an adequate object-oriented schema

s obtained by forward engineering, rigorously using an object-

oriented design method. In the first part of the paper, the

fundamental differences between relational and object-oriented

database are discussed. For the implementation of the database

migration process an intermediate data model is proposed

which allows defining both, schema transformation and data

migration. This data model contains all object- oriented

modeling constructs and supports flexible schema

transformations. Furthermore, algebra is proposed for formal

definition of the data migration process.

References

[1] Steven E. Minze, “A signaling protocol for Complex

Multimedia services.” IEEE Journal on Selected Areas in

communications, vol. 9. No. 9. December 1991, pp.1383-

1394.

[2] Stanley L. Moyer, Howard E. Bussey, Paul E. Brierley.

“A Connection Management Interface for Fabric Control

Application,” in Proc. IEEE International Conference on

Communications ICC’93, Geneva, Switzerland, May 23-

26, 1993.

[3] Steven E. Minzer, Petros N. Mouchtaris, An Object-

Oriented Solution for Signaling in Heterogeneous

Multimedia networks,” in Proc. Bell core Object-oriented

Systems and Technology Symposium, 1993..

[4] Margret A. Ellis, Bjarne Stroustrup. The Annotated C++

Reference Manual, Addison-Wesley, Reading MA, 1990.

[5] S.-C (Tom) Soon, P.E. Brierley, et. Al. “Using State

machines for Object-oriented Modeling,” in Proc,

Bellcore Object-Oriented Systems and Technology

Symposium, 1991.

Author Profile

Dr Leelavathi Rajamanickam received PH.D degree in Computer

Science and Engineering from University of Allahabad in 2011 and

Master’s degrees in Computer Applications from Kakatiya University

in 2000, respectively. During 2001-2007, she worked as Head of

Department in Lal Bahadur College, Warangal, India and from 2007-

2012 worked in Malaysia.

