

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 9, September 2014 Page No. 8445-8450

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8445

A Study of Existing Cross Site Scripting Detection

and Prevention Techniques in Web Applications

Neha Gupta
1

1 Kurukshetra University, Department of CSE,U.I.E.T

 Kurukshetra, India

 ngupta514@gmail.com

Abstract: Web Applications provide wide range of services to its users in an efficient manner. Web based attacks are increasing with the

intent to harm the users or the reputation of particular organization. Most of these attacks occur through the exploitation of security

vulnerabilities found in web applications. These vulnerabilities exists because developer focuses more on the development of the application

rather than its security due to the time and budget constraints. Cross Site Scripting (XSS) is one of the major security vulnerability found in

web applications. In 2013, XSS is ranked third among the top 10 list of attacks by OWASP (Open Web Application Security Project).XSS

flaws occur whenever an application takes insecure data and sends it to the browser without proper validation or escaping. This can result in

hijacking user session, defacing websites and redirecting the user to malicious sites. In this paper, we will study different existing techniques

which can be used for detection and prevention of XSS attacks.

Keywords: Cross Site Scripting, Web Application Security, Web Application Attacks, Security Vulnerabilities.

1. Introduction

Web Applications have become one of the most important

ways to provide a broad range of services to users. In the

recent years, web-based attacks have caused harm to the users

of web applications. Most of these attacks occur through the

exploitation of security vulnerabilities in the web-based

programs. So, the mitigation of these attacks is very crucial to

reduce its harmful consequences. Attackers can potentially use

many different paths through your application to do harm to

your business or organization or the users. A web page that is

generated by the server and interpreted by the client browser

has both text and HTML markup. Web sites with only static

pages can have complete control over how their outputs are

interpreted by the client. Web sites with dynamic pages cannot

have full control over how the browser interprets these pages.

The main issue is that if malicious content can be introduced

into a dynamic web page, neither the web site nor the client is

capable of recognizing that anything like this happened and

prevent it. In 2013, XSS is ranked third among the top 10 list

of risks by OWASP(Open Web Application Security

Project)[16].

2. Cross Site Scripting

XSS (cross site scripting) flaws occur whenever an application

takes untrusted data and sends it to a web browser without

proper validation or escaping. Cross Site Scripting allows an

attacker to embed malicious scripts into a dynamic web page

which is vulnerable, executing the script on user machine in

order to gather data which can result in hijacking of user

sessions, defacing web sites, or redirecting the user to

malicious sites. A high level view of typical XSS attack is as

shown in fig. 1[18]. Depending on the ways HTML pages

reference user inputs, XSS attacks can be classified as

reflected, stored, or DOM-based [17].

2.1 Reflected or Non Persistent XSS

These holes are present in a Web application server program

where it references accessed user input in the outgoing web-

page. This type of XSS exploit is common in error messages

and search results. The malicious content does not get stored in

server. Sever bounces the original input to the victim as shown

in fig . 2[19].

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8446

Figure 1: XSS Attack

2.2 Stored or Persistent XSS

These holes exist when a server program stores user input

containing injected code in a persistent data store such as a

database and then references it in a webpage. Attacks on social

networking sites commonly exploit this type of XXS flaw.

Server stores the malicious content and serves the content in

original form as shown in fig. 3[19].

Both reflected and stored XSS holes result from

improper handling of user inputs in server-side scripts.

 Figure 2: Reflected XSS

2.3 DOM Based XSS

In contrast, This is an XSS attack wherein the attack payload is

executed as a result of modifying the DOM “environment” in

the victim’s browser used by the original client side script, so

that the client side code runs in an “unexpected” manner. That

is, the page itself does not change, but the client side code in

the page executes differently due to the malicious

modifications that have occurred in the DOM environment as

shown in fig. 4.

Figure 3: Stored XSS

 Figure 4: DOM based XSS

3. Related Work

Over the past few years, there has been lot of research

going on in both institutes as well as industries to prevent XSS

attacks. Researchers have proposed some detection and

prevention mechanisms discussed below:

[1]O.Ismail, M. Etoh, Y.Kadobayashi and

S.Yamaguchi developed a proposal and implementation of

automatic detection/collection system for cross site scripting

vulnerability which is a client side system. It consists of

detection/collection proxy server and a database server. For

detection and collection on attack data two modes are used

which are request change mode and response change mode. In

request change mode if there are any HTML special tags in

request or response, proxy will encode the tags and send the

safe message. However, it does not work well if there are

multiple parameters in request and response messages. We

have response change mode for multiple parameters in which

identifier will be attached with each special character. Thus

system will send request with identity. After that all the

collected information will be send to collection database

server. It not only protects clients from XSS attacks but also

inform the vulnerable web servers.

Some disadvantages with this approach are:

 How to use the collected information in database is

not addressed.

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8447

 How to make system deployed universally has also

not been addressed.

[2]T.Jim, N.Swamy and M.Hicks developed a

mechanism that modifies the browser so that it can execute

only legitimate scripts. It is based on two observations.

First is that browser can perform script detection perfectly

so the browser can be used to filter the scripts and second

is that the developer of the web application knows scripts

that should be executed for proper application functioning

so the website can specify the legitimate scripts and filter

the non legitimate scripts. In this the website embeds a

security policy in its pages that specifies allowed scripts to

run and browser enforce these policies i.e. security

policies specifies what data the server sends to BEEP

browsers. This mechanism requires minimal effort and

low performance overhead. Also, it will prevent all the

types of XSS attacks.

Some disadvantages with this approach are:

 It requires modifications in the frameworks or

installation of additional frameworks.

 Approved scripts have to be identified by the website.

[3]Benjamin Liv-shits and Monica Lam developed a static

analysis approach in which they used binary decision diagrams

to apply points-to analysis to server-side script. This approach

allows users to declare to specify information flow patterns

succinctly and declaratively by describing a language called

Program Query Language (PQL).It is static content sensitive

and flow insensitive approach for information flow tracking

analysis. It also has a model checking system which is used to

generate the input vectors that expose the vulnerability. Thus

with this approach we can find security vulnerabilities through

the synergism of a new language which can be used for

describing information flow, dynamic monitoring and model

checking. It is easy to implement and adopt and can easily find

the XSS vulnerabilities.

Some disadvantages with this approach are:

 It cannot check the correctness of input sanitization

functions and, instead, generally assume that

unhandled or unknown functions return unsafe data.

 It misses DOM-based XSS.

 It tends to generate many false positives.

[4]Motivated by static-analysis-based approaches Davide

Balzarotti implemented a novel approach to analysis of

sanitization process. More precisely a combination of static

and dynamic analysis techniques can be used to identify faulty

sanitization procedures that can otherwise be passed by an

attacker. The static analysis component uses data flow

techniques for identification of flow of input values from

sources to sensitive sinks and the dynamic phase identify all

the program paths from input sources to sensitive sinks that

were identified during static analysis. If any malicious value

reaches the sensitive sink during dynamic phase input is

reported for violation of security. This approach is able to

identify several vulnerabilities that form faulty sanitization

procedures and it avoids false positives.

Some disadvantages with this approach are:

 The implementation only works on server-side scripts,

so more research is needed on client-side script

analysis.

 This approach can result in false negatives.

 It has incomplete attack string library because of the

everyday introduction of new attacks.

 This technique suffers from state space explosion and

thus might miss some vulnerability in deep state

spaces.

[5]Siddharth Tiwari, Richa Bansal and Divya Bansal

developed an optimized client side solution for cross site

scripting which is a three step process i.e. script detector,

analyzer, and data monitoring system. Every HTTP request

will be passed to the script detector which reads the application

level parameters and applies rules to the input i.e. it checks for

the maximum number of characters. If there are more than the

maximum number of characters in the input the input is

rejected. Analyzer checks for the special characters in the

request because for the execution of scripts input will be

embedded with tags and special characters. If special

characters exist it will be passed to the parser else request is

processed. Analyzer uses whitelist and blacklist of sites

maintained and synchronized with the server of security sites.

Analyzer uses databases for detecting vulnerability. Data

monitoring system monitors the flow of data. Operations that

process sensitive data are marked along with results of those

operations. If the marked data is to be transferred over the

network user will be provided information about the

consequences with the help of a dialogue box and then user

well be asked to either allow or disallow the transfer. This

approach is platform independent.

Some disadvantages with this approach are:

 It degrades the performance of client system.

 It requires client action.

 [6]M.T. Louw and V.N. Venkatakrishnan

developed a tool that works on existing browsers. The main

objective of this approach is not to depend on browser’s parser

for building untrusted HTML parse trees. To accomplish this a

parse tree is generated at server of the application with

precautions that ensure that there is no dynamic content and the

generated parse tree is then conveyed to document generator of

the browser on the client browser without taking vulnerable

paths. It is a tool that mitigates the XSS attacks with which

first response pages are generated without any JavaScript node

on server side, the removed script will be then executed on the

browser side which is based on content generation by server

side by code instrumentation. This ensures that all the

unauthorized script execution will be prevented. It is effective

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8448

in most of the existing browsers, despite anomalous browser

behavior and has acceptable performance overhead.

Some disadvantages with this approach are:

 It has to rely on external JavaScript library that is

designed on client side.

 It also requires code instrumentation

 It requires installation of additional framework.

 [7]E.Kirda et al developed Noxes which acts like

a personal firewall that either allows or blocks connections to

websites based on the filter rules, which are user-specified

URL white lists and blacklists. Filter rules can be created

manually in which user enters the set of rules in a database, or

user can create a rule interactively whenever a request for

connection is made which does not match an existing rule or

user can use a snapshot mode in which Noxes tracks and

collects domains that have been visited by the browser. It runs

on the desktop of user as a background service and provides an

additional layer of protection that was not supported by

existing personal firewalls. When the browser sends a request

to a website that is not known, Noxes alerts the client

immediately, and asks the client to permit or deny the con-

nection, and remembers the client’s action for future reference.

This approach covers all type of XSS attacks and clients don’t

have to rely on the web application for security.

 Some disadvantages with this approach are:

 It requires client actions whenever a connection

violates the filter rules.

 It only detects exploits that send user information to a

third-party server, not other exploits such as those

involving Web content manipulation.

[8]Hossain Shahriar and Mohammad Zulkernine

developed MUTEC in which we apply the idea of mutation

based testing technique to generate adequate data sets for

testing the XSS vulnerabilities. In such technique an

implementation is injected with faults to generate mutants.

Rule for injecting fault is known as mutation operator. In this

approach there are 11 mutation operators. A test case kills

mutant if it causes different output between original program

and the mutant. There are two mutant killing criteria. First is

the number of HTML tags generated in DOM tree of

implementation and mutant are not equal and second is HTML

contents displayed in browser by implementation and mutant

are not equal. The ratio of number of killed mutants to total

number of non equivalent mutants is called mutation score and

it can be used to measure the adequacy of test data set. This

technique helps in discovering the vulnerabilities before the

actual deployment.

Some disadvantages with this approach are:

 It requires intensive labor as the task of generating

mutants is not automated.

 The effectiveness of testing based techniques depends

entirely on the correctness of specification.

[9]P.wurzinger, C.Platzer, C.ludl, E.kirda and C.Kruegel

developed a server side solution that detects and prevents cross

site scripting attacks. SWAP includes a reverse proxy that

intercepts all HTML responses and a modified browser which

detects the script content. Proxy forwards the web response to

a JavaScript detection component before it sends it to the client

browser. All legitimate script calls in the web application are

encoded in scriptIDs which are unparsable identifiers and so

they are hidden from JavaScript detection component. If there

are no scripts proxy will decode all scriptIDs and will deliver

response to clients and if scripts are detected it notifies the

client of XSS attack. This approach requires only simple

automated changes of original web application and is able to

distinguish between legitimate and malicious scripts.

Some disadvantages with this approach are:

 There is performance overhead.

 It is capable of detecting only JavaScript based

attacks. It cannot defend against other malicious

content.

 Also different web browsers may have different

notation on valid and invalid JavaScript.

[10]Matthew Van Gundy and Hao Chen developed a

mechanism to prevent cross site scripting exploits by enabling

web clients to separate trusted and untrusted content by

randomizing XML namespace prefixes in every document

before serving it to the client. These randomized XML

namespaces identify untrusted content and prevent such

content from distorting the document tree. The web application

partitions the web page content into different trust classes and a

policy specifies the browser capability each trust class is

allowed to exercise. It involves both server side and client side

components. Server annotates every element and attribute of

delivered document with trust classification and delivers the

policy that specifies which elements, attributes and values are

allowed for each trust class and the browser verifies whether

parsed tree conforms to the policy. Noncepaces is simple and it

does not need to sanitize untrusted content.

Some disadvantages with this approach are:

 It has moderate overhead.

 It does not protect against stored XSS attacks.

 For documents that are not based on XML,

noncespaces does not work.

[11]Sid Stamm, Brandon Sterne and Gervase Markhan

developed an approach that has content restrictions and content

security policy. Content restrictions allow designers to specify

content interaction on their websites which is basically a

security mechanism needed by web and can be activated and

enforced by web browsers when a policy is provided by HTTP.

Content security policy specifies from where resources may be

requested and the type of resources that may b loaded. It is

effective to lock down sites and provide alert for

vulnerabilities. Content security policy is activated by client

browser when X-Content-Security-Policy HTTP header in

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8449

provided in HTTP response. The content of the header will

either point to the file that contains policy or will directly state

the policy. Content security policy can be used as an early

warning mechanism for the attacks However, for each

document, policies have to be specified in HTTP header.

Some disadvantages with this approach are:

 There is no single policy for all the documents.

 Creating policies manually is a very tough task.

[12]Sharth Chandra V. and S. Selvakumar developed

BIXTAN which is a XSS sanitizer that is composed of HTML

parser, a modified browser that acts as JavaScript tester and a

mechanism for identifying static tags. When user enters code in

a field of the web application, XSS sanitizer gets invoked. The

user created HTML content is passed to the XSS sanitizer.

XSS sanitizer will parse the content given by the user and

during this HTML content is checked for static tags. Then

static tags are retained and all other tags will be filtered.

Though static tags do not invoke any dynamic content but

some parsing quirks lead to invocation of dynamic content

with use of static tags and to filter these quirks JavaScript

tester is used. Static tags are then sent to JavaScript tester to

check if there is JavaScript content. After the code is sanitized

it is converted to DOM. Finally, a safe parse tree is generated

when this code is returned to client. It is compatible with all

the browsers and provides high fidelity and robustness.

Main disadvantage with this approach is:

 Browser source has to be modified for obtaining

results.

[13]Rattipong Putthacharoen and Pratheep Bunyatnoparat

developed a technique that is implemented in web proxy where

cookies that are passed between user and web application are

rewritten automatically. Basically, the name attribute in cookie

will be rewritten automatically by a randomized value before it

is sent to the browser database. Hence browser will have

randomized value in its database rather than the value sent by

the server. Cookie that will be returned by the browser will

also be rewritten back to original value at web proxy before

being forwarded to web server thus preventing cookie stealing.

There is no change required on both browser and server.

Some disadvantages with this approach are:

 It has compatibility issues.

 It has performance overhead.

 There is a single point failure issue.

 This approach work only for HTTP’s and does not

work for SSL connections.

[14]Hossain Shahriar and Mohammad Zulkernine

developed a server side approach which is based on boundary

injection and policy generation notation. In this approach we

pre and posted each dynamic content generation with a

boundary which is a HTML or JavaScript content. Token is

also inserted in each pair of boundary which is used to

uniquely identify content generation or legitimate script

location. Pair of boundary contains information on expected

content features. This approach does not require understanding

of whether suspected contents are derived from untrusted or

trusted resources. Also, it does not need to transfer any

sensitive information to the browser and it does not require

code instrumentation. It also protects programs that suffer

incorrect input filtering.

Some disadvantages with this approach are:

 This approach incurs runtime overhead due to

interception of HTTP traffic.

 It requires user-defined security policies which can be

labor-intensive.

[15]Takeshi Matsuda, Daiki Koizumi and Michio

Sonoda developed a detection algorithm against cross site

scripting attacks by extracting an attack feature of cross site

scripting attacks and then considering the appearance position

and frequency of symbols. It focuses attention on characters

which are included in XSS attacks. It uses the idea of word

extraction algorithm as a reference to construct the detection

algorithm. It focuses attention on characters which are included

in XSS attacks. It picked up 32 characters that are found in

cross site scripting attacks. It basically finds position and

frequency of those characters in input string to find the

detection threshold. It detects cross site scripting attacks with

help of attack feature value and threshold. In process of

learning the threshold symbols found in cross site scripting

attacks are ranked with numbers and other symbols are ranked

as 0. From rank attack feature, value is computed against the

input and based on this and input it is judged whether there is

an attack or not.

Main disadvantage with this approach is:

 It requires the learning of detection threshold.

4. Conclusion

Cross site scripting has been a major threat for web

applications and its users from past few years. Lot of work has

been done to handle XSS attacks which include:

 Client side approaches

 Server side approaches

 Testing based approaches

 Static and dynamic analysis based approaches

Each kind of solution has been discussed in this paper.

Different approaches have their own advantages and

disadvantages. Major problems faced are:

 requirement of complex frameworks

 additional runtime overhead

 intensive labor requirements

 not being able to cover all types of XSS attacks

Neha Gupta
1
 IJECS Volume 3Issue 9 September 2014 Page No.8445-8450 Page 8450

 prone to human error

 requires client action

 not able to detect web content manipulation

 false positives and false negatives

 effectives depend on completeness of specification

Based on our requirements we can choose among the possible

solutions. However, there is no ideal solution for the detection

and prevention of XSS attacks.

References

[1] O.Ismail, M. Etoh, Y.Kadobayashi and S.Yamaguchi,” A

Proposal and Implementation of Automatic

Detection/Collection System for Cross-Site Scripting

Vulnerability,” Proc. 18th IEEE International Conference on

Advanced Information Networking and Application, 2004,pp.-

145-151.

[2] T.Jim , N.Swamy and M.Hicks, “ Defending against

Cross-Site Scripting Attacks with Browser-Enforced

Embedded Policies,”Proc of the WWW,Banff,Alberta,May

2007,pp. 601-610.

[3] M.S. Lam et al., “Securing Web Applications with Static

and Dynamic Information Flow Tracking,” Proc. 2008 ACM

SIGPLAN Symp. Partial Evaluation and Semantics-Based

Program Manipulation (PEPM 08), ACM, 2008, pp. 3-12

[4] D. Balzarotti et al., “Saner: Composing Static and

Dynamic Analysis to Validate Sanitization in Web

Applications,” Proc. 29th IEEE Symp. Security and Privacy

(SP 08), IEEE CS, 2008, pp. 387-401.

[5] Siddharth Tiwari, Richa Bansal, Divya Bansal,

“Optimized Client Side Solution for Cross Site Scripting,”

IEEE 16th International Conference on Networks, December

2008, pp.1-4.

[6] M.T. Louw and V.N. Venkatakrishnan, “Blueprint: Robust

Prevention of Cross-Site Scripting Attacks for Existing

Browsers,” Proc. 30th IEEE Symp. Security and Privacy (SP

09), IEEE CS, 2009, pp. 331-346.

[7] E. Kirda et al., “Client-Side Cross-Site Scripting

Protection,” Computers & Security,”Proc of 21st ACM

Symposium on Applied Computing,Oct. 2009, pp. 592-604.

[8] H. Shahriar and M. Zulkernine, “MUTEC: Mutation-Based

Testing of Cross Site Scripting,” Proc. 5th Int’l Workshop

Software Eng. for Secure Systems (SESS 09), IEEE, 2009, pp.

47-53.

[9] P.wurzinger,C.Platzer,C.ludl,E.kirda and C.Kruegel,

“SWAP:Mitigating XSS Attacks using Reverse Proxy, ”Proc.

Of the SESS,Vancouver,Msy 2009,pp. 33-39.

[10] M.Gundy and H.Chen, “Noncespaces: Using

Randomization to Enforce Information Flow Tracking and

Thwart Cross-site Scripting Attacks,” Proc. Of NDSS,San

Diego,Feb. 2009.

[11] S.Stamm, B.Sterne and G.Markham, “Reining in the Web

with Content Security Policy,” Proc. of WWW, Releigh, North

Carolina, April 2010, pp. 921-930.

[12] Sharath Chandra V. and S.Selvakumar,

“BIXTAN:Browser Independent XSS Sanitizer for prevention

of XSS attacks ,”ACM SIGSOFT ,September 2011, pp.1-7.

[13] R.Putthacharoen and P.Bunyatnoparat,” Protecting

Cookies from Cross Site Script Attacks Using Dynamic

Cookies Rewritng Technique,”Proc. of IEEE 13th International

Conference on Advanced Communication Technology, Feb

2011,pp. 1090-1094.

[14] Hossain Shahriar and Mohammad Zulkernine, “S2XS2:

A Server Side Approach to Automatically Detect XSS Attacks

,”IEEE Ninth International Conference on

Dependable,Automatic and secure computing,2011.

[15] Takeshi Matsuda , Daiki Koizumi and Michio Sonoda,

“Cross Site Scripting Attacks Detection Algorithm Based on

the Appearance Position of Characters”The 5th International

Conference on Communications,Computers and

Applications.Istanbul,Turkey,October 2012,pp.-65-70.

[16] Open Web Application Security Project,

 Top 10 ,https://www.owasp.org/index.php/Top_10_2013-

Top_10

[17] Cross Site Scripting Wikipedia,

http://en.wikipedia.org/wiki/Cross-site_scripting

[18] Cross site scripting

,accunetix,http://www.acunetix.com/websitesecurity/cross-site-

scripting/

[19] Cross site scripting,Secure web development,

,http://hwang.cisdept.csupomona.edu/swanew/Code.aspx?m=X

SS

Author Profile

Neha Gupta pursuing the M.tech Degree in Software

Engineering from University Institute of Engineering and

Technology,Kurukshetra University in 2014.Doing Research on

Detection and Prevention on Cross Site Scripting Attacks.

http://en.wikipedia.org/wiki/Cross-site_scripting

