

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume - 3 Issue -9 September, 2014 Page No. 8188-8197

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8188

A Review On Software Testing In SDlC And Testing

Tools

T.Amruthavalli*, S.MahaLAkshmi*, K.HariKrishnan*

Assit Prof, SKR Engineering college. amrutha1201@gmail.com

Assit Prof, SKR Engineering college. maha3088@yahoo.com

UG Scholar,SKR Engineering College.hari1993skr @gmail.com

Abstract- The paper reviews the software testing and the different tools used for testing the software.The testing is

based on the methods of its attributes,security and its usability.Testing is an important part in software engineering

where the coding gets deployed based on the testing.The testing can be done with different parameters of different

types .I do not mean to give here a complete survey of software testing.Rather I intend to show how unwieldy mix of

theoretical and technical challenges faced by the testers between the state of art and practice.

Keyword-Software testing,Testing and debugging,Testing methods,Testing levels.

1.Introduction:

Software testing is an investigation conducted to

provide stakeholders with information about the

quality of the product or service under test. Software

testing can also provide an objective, independent

view of the software to allow the business to

appreciate and understand the risks of software

implementation. Test techniques include, but are not

limited to the process of executing a program or

application with the intent of finding software bugs

(errors or other defects)[1].It involves the execution of

a software component or system to evaluate one or

more properties of interest. In general, these properties

indicate the extent to which the component or system

under test. As the number of possible tests for even

simple software components is practically infinite, all

software testing uses some strategy to select tests that

are feasible for available time and resources. As a

result, software testing typically (but not exclusively)

attempts to execute a program or application with the

intent of finding software bugs (errors or other

defects).Software testing can provide objective,

independent information about the quality of software

and risk of its failure to users and/or sponsors.

2.Software Testing Levels:

Software testing is the process of evaluation a software

item to detect differences between given input and

expected output. Also to assess the feature of A

software item. Testing assesses the quality of the

product. Software testing is a process that should be

done during the development process. In other words

software testing is a verification and validation

process[2].

Verification

Verification is the process to make sure the product

satisfies the conditions imposed at the start of the

development phase. In other words, to make sure the

product behaves the way we want it to.

Validation

Validation is the process to make sure the product

satisfies the specified requirements at the end of the

development phase. In other words, to make sure the

product is built as per customer requirements.

mailto:amrutha1201@gmail.com
mailto:maha3088@yahoo.com

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8189

Black box testing – Internal system design is not

considered in this type of testing. Tests are based on

requirements and functionality.

White box testing – This testing is based on

knowledge of the internal logic of an application’s

code. Also known as Glass box Testing. Internal

software and code working should be known for this

type of testing. Tests are based on coverage of code

statements, branches, paths, conditions.

Unit testing – Testing of individual software

components or modules. Typically done by the

programmer and not by testers, as it requires detailed

knowledge of the internal program design and code.

may require developing test driver modules or test

harnesses.

Incremental integration testing – Bottom up

approach for testing i.e continuous testing of an

application as new functionality is added; Application

functionality and modules should be independent

enough to test separately. done by programmers or by

testers.

Integration testing – Testing of integrated

modules to verify combined functionality after

integration. Modules are typically code modules,

individual applications, client and server applications

on a network, etc. This type of testing is especially

relevant to client/server and distributed systems.

Functional testing – This type of testing ignores

the internal parts and focus on the output is as per

requirement or not. Black-box type testing geared to

functional requirements of an application.

System testing – Entire system is tested as per the

requirements. Black-box type testing that is based on

overall requirements specifications, covers all

combined parts of a system.

End-to-end testing – Similar to system testing,

involves testing of a complete application environment

in a situation that mimics real-world use, such as

interacting with a database, using network

communications, or interacting with other hardware,

applications, or systems if appropriate.

Sanity testing - Testing to determine if a new

software version is performing well enough to accept it

for a major testing effort. If application is crashing for

initial use then system is not stable enough for further

testing and build or application is assigned to fix.

Regression testing – Testing the application as a

whole for the modification in any module or

functionality. Difficult to cover all the system in

regression testing so typically automation tools are

used for these testing types.

Acceptance testing -Normally this type of testing

is done to verify if system meets the customer

specified requirements. User or customer do this

testing to determine whether to accept application.

Load testing – Its a performance testing to check

system behavior under load. Testing an application

under heavy loads, such as testing of a web site under

a range of loads to determine at what point the

system’s response time degrades or fails.

Stress testing – System is stressed beyond its

specifications to check how and when it fails.

Performed under heavy load like putting large number

beyond storage capacity, complex database queries,

continuous input to system or database load.

Performance testing – Term often used

interchangeably with ‘stress’ and ‘load’ testing. To

check whether system meets performance

requirements. Used different performance and load

tools to do this.

Usability testing – User-friendliness check.

Application flow is tested, Can new user understand

the application easily, Proper help documented

whenever user stuck at any point. Basically system

navigation is checked in this testing.

Install/uninstall testing - Tested for full,

partial, or upgrade install/uninstall processes on

different operating systems under different hardware,

software environment.

Recovery testing – Testing how well a system

recovers from crashes, hardware failures, or other

catastrophic problems.

Security testing – Can system be penetrated by

any hacking way. Testing how well the system protects

against unauthorized internal or external access.

Checked if system, database is safe from external

attacks.

Compatibility testing – Testing how well

software performs in a particular

hardware/software/operating system/network

environment and different combination s of above.

Comparison testing – Comparison of product

strengths and weaknesses with previous versions or

other similar products.

Alpha testing – In house virtual user environment

can be created for this type of testing. Testing is done

at the end of development. Still minor design changes

may be made as a result of such testing.

Beta testing – Testing typically done by end-users

or others. Final testing before releasing application for

commercial purpose.

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8190

 Fig:1 software

testing fundamentals

3.Phases of Testing :

Phase Activity Deliverables

Necessit

y

Requiremen

ts/Design

Review

You review

the software

requirements

/design

(Well, if they

exist.)

 Revie

w

Defect

Report

s

Curiosit

y

Test

Planning

Once you

have

gathered a

general idea

of what

needs to be

tested, you

‘plan’ for the

tests.

 Test

Plan

 Test

Estima

tion

 Test

Sched

ule

Farsight

edness

Test

Designing

You

design/detail

your tests on

the basis of

detailed

requirements

/design of

the software

(sometimes,

on the basis

of your

imagination).

 Test

Cases/

 Test

Scripts

/Test

Data

 Requir

ement

s

Tracea

bility

Matrix

Creativit

y

Test

Environmen

t Setup

You setup

the test

environment

(server/client

/network,

etc) with the

goal of

replicating

the end-

users’

environment.

 Test

Enviro

nment

Rich

compan

y

Test

Execution

You execute

your Test

Cases/Script

s in the Test

Environment

to see

whether they

pass.

 Test

Result

s

(Incre

mental

)

 Defect

Report

s
Patience

Test

Reporting

You prepare

various

reports for

various

stakeholders.

 Test

Result

s

(Final)

 Test/D

efect

Metric

s

 Test

Closur

e

Diploma

cy

http://softwaretestingfundamentals.com/test-plan/
http://softwaretestingfundamentals.com/test-plan/
http://softwaretestingfundamentals.com/test-case/
http://softwaretestingfundamentals.com/test-case/
http://softwaretestingfundamentals.com/test-script/
http://softwaretestingfundamentals.com/test-script/
http://softwaretestingfundamentals.com/defect-report/
http://softwaretestingfundamentals.com/defect-report/
http://softwaretestingfundamentals.com/defect-report/

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8191

Report

 Who

Worke

d Till

Late &

on

Weeke

nds

Report

4.Testing Roles:

It depends on the process and the associated

stakeholders of the project(s). In the IT industry, large

companies have a team with responsibilities to

evaluate the developed software in the context of the

given requirements. Moreover, developers also

conduct testing which is called Unit Testing[3]. In

most cases, following professionals are involved in

testing of a system within their respective capacities:

 Software Tester

 Software Developer

 Project Lead/Manager

 End User

Different companies have difference designations for

people who test the software on the basis of their

experience and knowledge such as Software Tester,

Software Quality Assurance Engineer, and QA Analyst

etc.

It is not possible to test the software at any time during

its cycle. The next two sections state when testing

should be started and when to end it during the SDLC.

4.1 Testing time:

An early start to testing reduces the cost, time to

rework and error free software that is delivered to the

client. However in Software Development Life Cycle

(SDLC) testing can be started from the Requirements

Gathering phase and lasts till the deployment of the

software. However it also depends on the development

model that is being used. For example in Water fall

model formal testing is conducted in the Testing phase,

but in incremental model, testing is performed at the

end of every increment/iteration and at the end the

whole application is tested.

Testing is done in different forms at every phase of

SDLC like during Requirement gathering phase, the

analysis and verifications of requirements are also

considered testing. Reviewing the design in the design

phase with intent to improve the design is also

considered as testing. Testing performed by a

developer on completion of the code is also

categorized as Unit type of testing.

Unlike when to start testing it is difficult to determine

when to stop testing, as testing is a never ending

process and no one can say that any software is 100%

tested. Following are the aspects which should be

considered to stop the testing:

 testing Deadlines.

 Completion of test case execution.

 Completion of Functional and code coverage to a

certain point.

 Bug rate falls below a certain level and no high

priority bugs are identified.

 Management decision.

5.Testing, Quality Assurance and Quality

Control:

Most people are confused with the concepts and

difference between Quality Assurance, Quality Control

and Testing. Although they are interrelated and at

some level they can be considered as the same

activities, but there is indeed a difference between

them. Mentioned below are the definitions and

differences between them:

S.N.
Quality

Assurance
Quality Control Testing

1

Activities

which ensure

the

implementation

of processes,

procedures and

standards in

context to

verification of

developed

software and

intended

requirements.

Activities

which ensure

the verification

of developed

software with

respect to

documented

(or not in some

cases)

requirements.

Activities which

ensure the

identification of

bugs/error/defects

in the Software.

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8192

2

Focuses on

processes and

procedures

rather then

conducting

actual testing

on the system.

Focuses on

actual testing

by executing

Software with

intend to

identify

bug/defect

through

implementation

of procedures

and process.

Focuses on actual

testing.

3

Process

oriented

activities.

Product

oriented

activities.

Product oriented

activities.

4
Preventive

activities.

It is a

corrective

process.

It is a corrective

process.

5

It is a subset of

Software Test

Life Cycle

(STLC).

QC can be

considered as

the subset of

Quality

Assurance.

Testing is the

subset of Quality

Control.

6.Testing and Debugging :

TESTING:

It involves the identification of bug/error/defect in the

software without correcting it. Normally professionals

with a Quality Assurance background are involved in

the identification of bugs[4]. Testing is performed in

the testing phase.

DEBUGGING:

It involves identifying, isolating and fixing the

problems/bug. Developers who code the software

conduct debugging upon encountering an error in the

code. Debugging is the part of White box or Unit

Testing. Debugging can be performed in the

development phase while conducting Unit Testing or

in phases while fixing the reported bugs.

6.1Testing Types :

Manual testing

This type includes the testing of the Software manually

i.e. without using any automated tool or any script. In

this type the tester takes over the role of an end user

and test the Software to identify any un-expected

behavior or bug[5]. There are different stages for

manual testing like unit testing, Integration testing,

System testing and User Acceptance testing.

Testers use test plan, test cases or test scenarios to test

the Software to ensure the completeness of testing.

Manual testing also includes exploratory testing as

testers explore the software to identify errors in it.

Automation testing

Automation testing which is also known as Test

Automation, is when the tester writes scripts and uses

another software to test the software. This process

involves automation of a manual process. Automation

Testing is used to re-run the test scenarios that were

performed manually, quickly and repeatedly.

Apart from regression testing, Automation testing is

also used to test the application from load,

performance and stress point of view. It increases the

test coverage; improve accuracy, saves time and

money in comparison to manual testing.

7.Testing Methods:

Black Box Testing

The technique of testing without having any

knowledge of the interior workings of the application

is Black Box testing. The tester is oblivious to the

system architecture and does not have access to the

source code. Typically, when performing a black box

test, a tester will interact with the system's user

interface by providing inputs and examining outputs

without knowing how and where the inputs are worked

upon.

White Box Testing

. In order to perform white box testing on an

application, the tester needs to possess White box

testing is the detailed investigation of internal logic

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8193

and structure of the code. White box testing is also

knowledge of the internal working of the code[6].

The tester needs to have a look inside the source code

and find out which unit/chunk of the code is behaving

inappropriately.

Grey Box Testing

Grey Box testing is a technique to test the application

with limited knowledge of the internal workings of an

application. In software testing, the term the more you

know the better carries a lot of weight when testing an

application.

Mastering the domain of a system always gives the

tester an edge over someone with limited domain

knowledge. Unlike black box testing, where the tester

only tests the application's user interface, in grey box

testing, the tester has access to design documents and

the database. Having this knowledge, the tester is able

to better prepare test data and test scenarios when

making the test plan.

Functional Testing

This is a type of black box testing that is based on the

specifications of the software that is to be tested. The

application is tested by providing input and then the

results are examined that need to conform to the

functionality it was intended for. Functional Testing of

the software is conducted on a complete, integrated

system to evaluate the system's compliance with its

specified requirements[7].

There are five steps that are involved when testing an

application for functionality.

Steps Description

I
The determination of the functionality that the

intended application is meant to perform.

II
The creation of test data based on the

specifications of the application.

III
The output based on the test data and the

specifications of the application.

IV
The writing of Test Scenarios and the

execution of test cases.

V
The comparison of actual and expected results

based on the executed test cases.

An effective testing practice will see the above steps

applied to the testing policies of every organization

and hence it will make sure that the organization

maintains the strictest of standards when it comes to

software quality.

Unit Testing

This type of testing is performed by the developers

before the setup is handed over to the testing team to

formally execute the test cases. Unit testing is

performed by the respective developers on the

individual units of source code assigned areas. The

developers use test data that is separate from the test

data of the quality assurance team.

The goal of unit testing is to isolate each part of the

program and show that individual parts are correct in

terms of requirements and functionality.

Integration Testing

The testing of combined parts of an application to

determine if they function correctly together is

Integration testing. There are two methods of doing

Integration Testing Bottom-up Integration testing and

Top Down Integration testing.

S.N. Integration Testing Method

1

Bottom-up integration

This testing begins with unit testing, followed

by tests of progressively higher-level

combinations of units called modules or builds.

2

Top-Down integration

This testing, the highest-level modules are tested

first and progressively lower-level modules are

tested after that.

In a comprehensive software development

environment, bottom-up testing is usually done first,

followed by top-down testing. The process concludes

with multiple tests of the complete application,

preferably in scenarios designed to mimic those it will

encounter in customers' computers, systems and

network.

System Testing

This is the next level in the testing and tests the system

as a whole. Once all the components are integrated, the

application as a whole is tested rigorously to see that it

meets Quality Standards. This type of testing is

performed by a specialized testing team.

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8194

System testing is so important because of the

following reasons:

 System Testing is the first step in the Software

Development Life Cycle, where the application is

tested as a whole.

 The application is tested thoroughly to verify that it

meets the functional and technical specifications.

 The application is tested in an environment which is

very close to the production environment where the

application will be deployed.

 System Testing enables us to test, verify and validate

both the business requirements as well as the

Applications Architecture.

Regression Testing

Whenever a change in a software application is made it

is quite possible that other areas within the application

have been affected by this change. To verify that a

fixed bug hasn't resulted in another functionality or

business rule violation is Regression testing. The intent

of Regression testing is to ensure that a change, such

as a bug fix did not result in another fault being

uncovered in the application.

Regression testing is so important because of the

following reasons:

 Minimize the gaps in testing when an application with

changes made has to be tested.

 Testing the new changes to verify that the change

made did not affect any other area of the application.

 Mitigates Risks when regression testing is performed

on the application.

 Test coverage is increased without compromising

timelines.

 Increase speed to market the product.

Acceptance Testing

This is arguably the most importance type of testing as

it is conducted by the Quality Assurance Team who

will gauge whether the application meets the intended

specifications and satisfies the client.s requirements.

The QA team will have a set of pre written scenarios

and Test Cases that will be used to test the application.

More ideas will be shared about the application and

more tests can be performed on it to gauge its accuracy

and the reasons why the project was initiated.

Acceptance tests are not only intended to point out

simple spelling mistakes, cosmetic errors or Interface

gaps, but also to point out any bugs in the application

that will result in system crashers or major errors in the

application.

By performing acceptance tests on an application the

testing team will deduce how the application will

perform in production. There are also legal and

contractual requirements for acceptance of the system.

ALPHA TESTING

This test is the first stage of testing and will be

performed amongst the teams (developer and QA

teams). Unit testing, integration testing and system

testing when combined are known as alpha testing.

During this phase, the following will be tested in the

application:

 Spelling Mistakes

 Broken Links

 Cloudy Directions

 The Application will be tested on machines with the

lowest specification to test loading times and any

latency problems.

BETA TESTING

This test is performed after Alpha testing has been

successfully performed. In beta testing a sample of the

intended audience tests the application. Beta testing is

also known as pre-release testing. Beta test versions of

software are ideally distributed to a wide audience on

the Web, partly to give the program a "real-world" test

and partly to provide a preview of the next release. In

this phase the audience will be testing the following:

 Users will install, run the application and send their

feedback to the project team.

 Typographical errors, confusing application flow, and

even crashes.

 Getting the feedback, the project team can fix the

problems before releasing the software to the actual

users.

 The more issues you fix that solve real user problems,

the higher the quality of your application will be.

 Having a higher-quality application when you release

to the general public will increase customer

satisfaction.

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8195

On the other hand Usability testing ensures that a good

and user friendly GUI is designed and is easy to use

for the end user. UI testing can be considered as a sub

part of Usability testing.

Security Testing

Security testing involves the testing of Software in

order to identify any flaws ad gaps from security and

vulnerability point of view. Following are the main

aspects which Security testing should ensure:

 Confidentiality.

 Integrity.

 Authentication.

 Availability.

 Authorization.

 Non-repudiation.

 Software is secure against known and unknown

vulnerabilities.

 Software data is secure.

 Software is according to all security regulations.

 Input checking and validation.

 SQL insertion attacks.

 Injection flaws.

 Session management issues.

 Cross-site scripting attacks.

 Buffer overflows vulnerabilities.

 Directory traversal attacks.

Portability Testing

Portability testing includes the testing of Software with

intend that it should be re-useable and can be moved

from another Software as well[8]. Following are the

strategies that can be used for Portability testing.

 Transferred installed Software from one computer to

another.

 Building executable (.exe) to run the Software on

different platforms.

Portability testing can be considered as one of the sub

parts of System testing, as this testing type includes the

overall testing of Software with respect to its usage

over different environments. Computer Hardware,

Operating Systems and Browsers are the major focus

of Portability testing. Following are some pre-

conditions for Portability testing:

 Software should be designed and coded, keeping in

mind Portability Requirements.

 Unit testing has been performed on the associated

components.

 Integration testing has been performed.

 Test environment has been established.

8.Software Testing Documentation:

Testing documentation involves the documentation of

artifacts which should be developed before or during

the testing of Software.

Documentation for Software testing helps in

estimating the testing effort required, test coverage,

requirement tracking/tracing etc. This section includes

the description of some commonly used documented

artifacts related to Software testing such as:

 Test Plan

 Test Scenario

 Test Case

 Traceability Matrix

Test Plan

A test plan outlines the strategy that will be used to test

an application, the resources that will be used, the test

environment in which testing will be performed, the

limitations of the testing and the schedule of testing

activities. Typically the Quality Assurance Team Lead

will be responsible for writing a Test Plan.

A test plan will include the following.

 Introduction to the Test Plan document

 Assumptions when testing the application

 List of test cases included in Testing the application

 List of features to be tested

 What sort of Approach to use when testing the

software

 List of Deliverables that need to be tested

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8196

 The resources allocated for testing the application

 Any Risks involved during the testing process

 A Schedule of tasks and milestones as testing is started

Test Scenario

A one line statement that tells what area in the

application will be tested. Test Scenarios are used to

ensure that all process flows are tested from end to

end. A particular area of an application can have as

little as one test scenario to a few hundred scenarios

depending on the magnitude and complexity of the

application[9].

The term test scenario and test cases are used

interchangeably however the main difference being

that test scenarios has several steps however test cases

have a single step. When viewed from this perspective

test scenarios are test cases, but they include several

test cases and the sequence that they should be

executed. Apart from this, each test is dependent on

the output from the previous test.

Test Case

Test cases involve the set of steps, conditions and

inputs which can be used while performing the testing

tasks. The main intent of this activity is to ensure

whether the Software Passes or Fails in terms of its

functionality and other aspects. There are many types

of test cases like: functional, negative, error, logical

test cases, physical test cases, UI test cases etc.

Furthermore test cases are written to keep track of

testing coverage of Software. Generally, there is no

formal template which is used during the test case

writing[10]. However, following are the main

components which are always available and included

in every test case:

 Test case ID.

 Product Module.

 Product version.

 Revision history.

 Purpose

 Assumptions

 Pre-Conditions.

 Steps.

 Expected Outcome.

 Actual Outcome.

 Post Conditions.

Many Test cases can be derived from a single test

scenario. In addition to this, some time it happened

that multiple test cases are written for single Software

which is collectively known as test suites.

9.conclusion

Thus the paper reviews the testing of different levels
and different methods of testing were been
discussed.Each and every testing has some
uniqueness in their own way.Thus testing which
makes the module with goodness and satisfy the
requirements of the customers.

Reference:

1. Exploratory Testing, Cem Kaner, Florida Institute

of Technology, Quality Assurance Institute Worldwide

Annual Software Testing Conference, Orlando, FL,

November 2006.

2. Software Testing by Jiantao Pan, Carnegie Mellon

University

3.Leitner, A., Ciupa, I., Oriol, M., Meyer, B., Fiva, A.,

"Contract Driven Development = Test Drive

Development – Writing Test Cases", Proceedings of

ESEC/FSE'07: European Software Engineering

Conference and the ACM SIGSOFT Symposium on

the Foundations of Software Engineering 2007,

(Dubrovnik, Croatia), September 2007

4. Kaner, Cem; Falk, Jack and Nguyen, Hung Quoc

(1999). Testing Computer Software, 2nd Ed. New

York, et al: John Wiley and Sons, Inc. pp. 480 pages.

ISBN 0-471-35846-0.

5. Kolawa, Adam; Huizinga, Dorota (2007).

Automated Defect Prevention: Best Practices in

T.Amruthavalli, IJECS Volume-3 Issue-9 September 2014 Page No. 8188-8197 Page 8197

Software Management. Wiley-IEEE Computer Society

Press. pp. 41–43. ISBN 0-470-04212-5.

6. Kolawa, Adam; Huizinga, Dorota (2007).

Automated Defect Prevention: Best Practices in

Software Management. Wiley-IEEE Computer Society

Press. p. 426. ISBN 0-470-04212-5.

7. Section 1.1.2, Certified Tester Foundation Level

Syllabus, International Software Testing Qualifications

Board

8. Principle 2, Section 1.3, Certified Tester

Foundation Level Syllabus, International Software

Testing Qualifications Board

9. "Proceedings from the 5th International Conference

on Software Testing and Validation (ICST) Software

Competence Center Hagenberg. "Test Design: Lessons

Learned and Practical Implications.".

10. Software errors cost U.S. economy $59.5 billion

annually, NIST report

http://en.wikipedia.org/wiki/International_Standard_Book_Number

