

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume - 3 Issue -9 September, 2014 Page No. 8155-8158

Vinayaka R H, IJECS Volume-3 Issue-9 September 2014 Page No. 8155-8158 Page 8155

Extended self destructing data system with data

recovery

 Vinayaka R H, Dayananda P , Shwetha S

PG student, Department of Information Science & Engineering MSRIT College, Bangalore, Karnataka, India

vinayak.rh7@gmail.com

Assistant Professor, Department of Information Science & Engineering MSRIT College, Bangalore, Karnataka, India

dayanandap@msrit.edu

Assistant Professor, Department of Information Science & Engineering RVCE College,

Bangalore, Karnataka, India

shwetha.ise@rvce.edu.in

Abstract: Personal data stored in cloud may contain account numbers or passwords or notes or any other important information that could

be used and misused by a hacker, a competitor, or a court of law. These data are cached, copied, and used by Cloud Service Providers

(CSPs), often without users authorization and control. SeDas mainly aims at protecting the user data’s privacy. All these data and their

copies become destructed or unreadable after a user-specified time, without any user intervention. In addition to that the decryption key will

be destroyed after the user-specified time. The presence of SeDas, a system that meets this challenge through a novel integration of

cryptographic techniques with active storage techniques based on T10 OSD (Object Storage Device) standard provides a recovery

mechanism to the legitimate users to obtain their data back by requesting to the cloud admin. A new key is be sent to the legitimate user

either to the Email or to Mobile using this key he has to login to the SeDas platform to get back their data. So this approach is more efficient

to use and possible to achieve all the privacy preserving goals.

Keywords: Cloud computing, Data privacy, Self Destructing data, Active Storage

1. INTRODUCTION

Recent advances of Cloud computing and popularization of

mobile Internet Cloud services are becoming more

important for people’s life. People are more or less

requested to submit or post some personal private

information to the Cloud by the Internet. When people do

this, they subjectively hope service providers will provide

security policy to protect their data from leaking so that

others people will not invade their privacy.

 As people rely more on the Internet and Cloud

technology security of their privacy takes more risks. On the

one hand, when data is being processed or transformed and

stored by the current computer system or network systems

The copies provided are essential for systems and the

network. However, these people have no knowledge about

these copies and cannot control them, so these copies can

leak their privacy.

 On the other hand, privacy also can be leaked via

Cloud Service Providers (CSPs) negligence, hackers or

some legal actions. These problems represents formidable

challenges to protect people’s privacy. A pioneering study

of Vanish[1] supplies a new idea for sharing and protecting

privacy. In Vanish system, a secret key is divided and stored

in a P2P system with distributed hash tables (DHTs). With

joining and exiting of the P2P node, the system can maintain

secret key. According to characteristics of P2P, after eight

hours the DHT will refresh every node. With Shamir Secret

Sharing Algorithm, when user cannot get enough parts of a

key, he/she will not decrypt data encrypted with the key,

which means the key is destroyed.

 Some special attacks to characteristics of P2P are a

challenge of Vanish, uncontrolled in how long the key can

survive is also one of the disadvantages for Vanish.

Considering the disadvantages, this paper has a solution to

implement a self-destructing data system, or SeDas, which

is based on an active storage framework. The SeDas system

defines two modules, a self-destruct method object that is

associated with each secret key part and survival time

parameter for each secret key part. If this is the case, SeDas

can meet the requirements of self-destructing data with

controllable survival time while users can use the system as

a general object storage system. Our contributions are

summarized as follows.

1) The focus on the related key distribution algorithm

ie., Shamir Sceret key algorithm, which is used as

the core algorithm to implement clients distributing

keys in the object storage system. The use of these

Vinayaka R H, IJECS Volume-3 Issue-9 September 2014 Page No. 8155-8158 Page 8156

methods implement a safety destruct with equally

divided key (Shamir Secret Shares)

2) By functionality and security properties evaluation of

the SeDas prototype, the results demonstrate that SeDas

is good to use and meets all the privacy-preserving

goals.

3) SeDas supports security erasing files and random

encryption keys stored in hard disk drive (HDD) or

solid state drive (SSD), respectively.

2. RELATED WORK

The following section gives the related work so far carried

out in the scope of self destructing data. Vanish[2] is the

system that provides the basic idea of self destructing data.

The system developed is a prototype which is implemented

using Distributed Hash Table (DHT). It used bittorrents

Vuze DHT that can support eight hours timeout or

PlanetLab hostedOpenDHT that can support one week

timeout. This system provides a plug-in for Firefox browser

that creates a message which automatically disappears after

a specified period of time. Here the expiry time for the data

is controlled by the DHT and not by the user. Later many

extensions are been implemented on the Vanish system.

Another system called FADE[4] , proposed by Tang et al

provides a contribution for the self destructing data by

integrating cryptographic techniques. These data will be

encrypted before sending it. This system will delete the files

and makes them unrecoverable by revoking the file access

permissions. A system called File System Design with

assured delete proposes three types of file delete. 1) Is the

expiration known at the time of file creation, 2)Is on demand

deletion of individual files and 3) Is the usage of custom

keys for classes of data. As given above, many systems have

been proposed to implement a self destructing system

among which only some provide promising results. The

system don’t have a user controllable data expiration time.

They rather have a fixed time for file expiration which is not

an efficient approach for the self destructing scenario Zeng

et al came up with the solution for user controllable expiry

time with the integration of cryptography techniques along

with active storage techniques based on T10 OSD(Object

Storage Device) standards. In this system all the data will

be self destructed after a specified time without user

intervention. The system mainly concentrates on encrypting

the data before encrypting and using the Shamir’s secret key

[3] distribution for the safeguarding the key. The key will be

retroactively deleted once the expiry time reached, makes

the data to unreadable.

3. SYSTEM DESIGN AND

IMPLEMENTATON

Figure 1: SeDas Architecture

There are three parties based on the active storage

framework as shown in figure 1 i) Metadata server

(MDS): MDS is responsible for user management, server

management, session management and file metadata

management. ii) Application node: The application node is

a client to use storage service of the SeDas. iii) Storage

node: Each storage node is an OSD. It contains two core

subsystems: key value store subsystem and active storage

object (ASO) runtime subsystem. The key value store

subsystem that is based on the object storage component is

used for managing objects stored in storage node lookup

object, read/write object and so on. object ID is used as a

key. The associated data and attribute are stored as values.

A. Active Storage Object

An active storage object derives from a user object and has a

time-to-live (ttl) value property. The ttl value is used to

trigger the self-destruct operation. The tll value of a user

object is infinite so that a user object will not be deleted

until a user deletes manually. The ttl value of an active

storage object is limited so an active object will be deleted

when the value of the associated policy object are true.

Interfaces extended by ActiveStorageObject class are used

to manage ttl value. The create member function needs

another argument for ttl. If the argument is 1, User Object::

create will be called to create a user object, else,

ActiveStorageObject:: create will call User Object::create

first and associate it with the self-destruct method object and

a self-destruct policy object with the ttl value. The getTTL

member function is based on the read_attr function and

returns the ttl value of the active storage object. The setTTL,

addTime and decTime member function is based on the

write_attr function and can be used to modify the ttl value.

B. Self-Destruct Method Object

Generally, kernel code can be executed efficiently; however,

the service method should be implemented in user space

with these following considerations. Many libraries such as

libc can be used by code in user space but not in kernel

space. Mature tools are used to develop software in user

Vinayaka R H, IJECS Volume-3 Issue-9 September 2014 Page No. 8155-8158 Page 8157

space. It is safer to debug code in user space than in kernel

space.

A service method needs a long time to process a

complicated task, so implementing the code of a service

method in user space can take advantage of performance of

the system. The system might crash with error in kernel

code, but this will not happen if error occurs in code of user

space.

A self-destruct method object is a service method. It needs

these three arguments, the lun argument specifies the device

and the pid argument specifies the partition and the obj_id

argument specifies the object to be destructed.

C. Data Process:

To use the SeDas system, user’s applications should

implement logic of data process and act as a client node.

There are two different logics: uploading and downloading.

The logic for uploading and downloading is as below:

 Uploading file process:
When a user uploads a file to a storage

system and stores his key in this SeDas system he

should specify the file, the key and ttl as the

arguments for uploading procedure. Algorithm 1

presents its pseudo-code. In these codes, our

assumption is that the data and key has been read

from the file. The ENCRYPT procedure uses

common encrypt algorithm or user-defined encrypt

algorithm. After uploading data to storage servers,

key shares generated by algorithm will be used to

create active storage object (ASO) in storage node

in the SeDas system.

 Downloading file process:

Any user who has relevant permission can

download data stored in the data storage system.

The data are decrypted before use. The whole logic

are implemented in code of user’s application.

D. Data Security Erasing in Disk:

 To secure delete sensitive data and reduce the negative

impact of OSD performance due to deleting operation, the

proportion of required secure deletion of all the files is not

that great, so if this part of the file updates operation

changes, then OSD performance will be impacted greatly.

Our implementation method are as follows: i) The system

pre specifies a directory in a special area to store sensitive

files. ii) Monitors the file allocation table and acquire and

maintains list of all sensitive documents, the logical block

address (LBA). iii) LBA list of sensitive documents appear

to increase or decrease, the update is sent to the OSD. iv)

OSD internal synchronizations maintain the lists of LBA,

the LBA data in the list updates. For example, for SSD, the

old data page writes 0, and then another writes the new data

page. When the LBA list is shorter than the corresponding

file, size is shrinking. v) For ordinary LBA, system uses the

regular update method. vi) By using ordinary data erasure

API, safety is assured to delete sensitive files of the

specified directory.

E. Recovery Mechanism:

A recovery mechanism is provided to the legitimate users to

obtain their data back by requesting to the cloud admin. A

new key will be sent to the legitimate user either to the

Email or to Mobile using this key he has to login to the

SeDas platform to get back data.

Algorithm1: Upload file (data, key, ttl)

//Input – data: Data which has to be uploaded

 Key: Security Key

 Ttl: time to leave (time to which the data on the

server should reside)

//Output – Success or Failure status

BEGIN

//encrypt the input data with the key

Buffer = ENCRYPT (data, key);

Connect to data storage network

If failed then return FAILURE

Create file in the data storage server

//use Shamir’s algorithm to create data[2]

//k is count of data servers in SeDas systems

shared Keys[1…k]=Shamir Algorithm(n,k,key)

for I from 1 to k

connect to DS[i]

if successful then

create object(shared Keys[i],ttl)

else

for j from 1 to I then

 delete keys share created before this one

end for

return FAILURE

endif

endfor

return SUCCESS

END

4. RESULTS

The experimental setup includes the usage of the open

source cloud service provider such as Jelastic cloud

platform. The cloud platform allows the user to use the

basic functionalities and software’s like TOMCAT, JAVA

compilers. These services will be provided free for over a

period of 15 days. This minimum support is enough to

deploy application on cloud. The database provided on the

cloud will help to store the files uploaded and the encrypt

keys used for each file, user is not aware of where the data is

stored on the cloud, a separate private cloud environment is

created and used for the experimental purpose. The figure 2

shows the time taken for system to upload the file with

different sizes and figure 3 shows the time taken for system

to encrypt the file with different sizes

Figure 2: Comparison of time taken to upload a file with

different sizes

Vinayaka R H, IJECS Volume-3 Issue-9 September 2014 Page No. 8155-8158 Page 8158

Figure 3: Comparison of time taken to encrypt a file with

different size.

5. CONCLUSION

Data privacy has become increasingly important in the

Cloud environment. A new approach is introduced for

protecting the data privacy from attackers who may obtain

user’s stored data and private decryption keys. The novel

aspect of our approach is the leveraging of the essential

properties of active storage framework based on T10OSD

standard. The demonstration shows the feasibility of our

approach by presenting SeDas, a proof-of-concept prototype

based on object-based storage techniques. A recovery

mechanism is also provided to the legitimate users to obtain

their data back by requesting to the cloud admin. Our

measurement and experimental results demonstrates that

SeDas is practical to use and provides security to user’s data

in cloud. The current SeDas system will help researchers to

provide information for the design of cloud services with

object-based storage system.

6. REFERENCES

[1] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy,

“Vanish: Increasing data privacy with self-destructing data,”

in Proc. USENIX Security Symp., Montreal, Canada, Aug.

2009, pp. 299–315.

[2]R. Geambasu, T. Kohno, A. Levy, and H. M. Levy,

‘Vanish: Increasing data privacy with self-destructing data,’

in Proc. USENIXSecurity Symp., Montreal, Canada, Aug.

2009, pp. 299–315.

[3] A. Shamir, ‘How to share a secret,’ Commun. ACM, vol.

22, no. 11, pp. 612–613, 1979.

[4] R. Perlman, ‘File system design with assured delete,’ in

Proc. Third IEEE Int. Security Storage Workshop (SISW),

2005.

[5] L. Qin and D. Feng, “Active storage framework for

object-based storage device,” in Proc. IEEE 20th Int. Conf.

Advanced Information Networking and Applications

(AINA), 2006.

[6] Y. Zhang and D. Feng, “An active storage system for

high performance computing,” in Proc. 22nd Int. Conf.

Advanced Information and Applications (AINA), 2008, pp.

644–651.

[7] T. M. John, A. T. Ramani, and J. A. Chandy, “Active

storage using object-based devices,” in Proc. IEEE Int.

Conf. Cluster Computing, , pp. 472–478.

[8] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff,

2009, Design of an intelligent object-based storage device.

[9] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B.

Ozisikyilmaz, W.-K. Liao, and A. Choudhary, “Enabling

active storage on parallel I/O software stacks,” in Proc.

IEEE 26th Symp. Mass Storage Systems and Technologies

(MSST), 2010.

